

54. Separation and purification of compounds

HKDSE syllabus			
Separation and purification methods			
Students should learn			
□ crystallisation			
□ distillation / fractional distillation			
liquid-liquid extraction			
paper, column or thin layer chromatography			
Students should be able to			
□ describe various separation and purification methods			
□ separate and purify substances by the following methods:			
i. crystallisation			
ii. distillation / fractional distillation			
iii. liquid-liquid extraction			
iv. chromatographic methods			
□ determine the Rf values of substances in a chromatogram			
□ determine the melting point or boiling point of a substance			
□ examine the purity of a substance by measuring its melting or boiling point			
□ justify the choice of an appropriate method used for the separation of substances in a mixture			

A. Separation and Purification

How to separate and purify the salt solid (NaCl) from the following mixture?

Process 3:

To obtain a soluble solid from its solution. When do we use this method?

- 1. Obtaining salt from sea water.
- 2. To concentrate a solution quickly.

Is the salt pure?_____, because impurities such as ______ is present.

Purification

Process 4:

Method 1: Cooling a hot concentrated solution

- 1. Some solvent is boiled away in order to concentrate it.
- 2. Test for saturation: cold dry glass rod
- 3. Stop heating and start cooling

- Method 2: Evaporating a solution slowly at room temp1. As the solvent in a solution evaporates away, the solution becomes more and more concentrated until it becomes saturated.
- 2. Further evaporation causes crystallization to occur.

Principle of crystallization

- As temperature increases, solubility of salt increases.
- 2. The solution cannot hold **All** of its solute
- 3. Excess Salt are separated out as crystal.

Washing of crystals

- 1. After crystallization, the crystals are separated from the remaining solution by **Filtration**
- 2. After filtration, the crystals are washed with **cold distilled water** as this removes any soluble impurities on the surface of the crystals.
- 3. The crystals are taken out with a pair of forceps and then dried by blotting on filter paper.

How to separate each chemical species from the following mixture?

Process 7:

You are provided with a mixture of two liquids, **heptanoic acid** and **cylcohexanone**. Outline an experimental

procedu	inc, based on inquid-inquid extraction, to is	solate pure neptanoie actu from the mixture.	
		ethoxyethane layer aqueous layer containing the product	Like dissolves like Water:
1.	Add and dilute	solution to the mixture in a separating	0.11
fun	nel and shake. The heptanoic acid reacts	with sodium hydroxide to give sodium heptanoate.	Oil:
2.	Allow the organic layer and the aqueous	s layer toafter shaking.	
3.	The organic layer contains	while the aqueous layer contains	
	Ru	un off and collect the aqueous layer.	
4.	Regenerate the heptanoic acid by adding	g dilute hydrochloric acid to the aqueous layer.	
5.	Then extract the heptanoic acid with eth	oxyethane, remove final traces of water using a	
	drying agent, and filter off the drying ag	gent.	
6.	Finally distill off the ethoxyethane to ob	otain pure heptanoic acid.	

You are provided with dilute $Na_2CO_3(aq)$ and dilute $H_2SO_4(aq)$. Outline an experimental procedure, based on solvent extraction, to separate solid Y from a solution of X and Y in dichloromethane. 2016 DSE PII Q3 C)ii)1

<u>B.</u> Chromatography (色層法)

I

Principle of chromatography

The movement of each d	lye depends on 2 factors:	
1	of dye in the solvent	
2	of the dye on the stationary phase.	
There are	_ types of chromatography in the syllabus.	
<u>R_f (Retention factor) val</u>	ue of substance	
$R_{f} =$		

Different substance will have different Rf value in different solvent.

(c) The main pigments in a certain brand of tomato paste are lycopene (reddish orange) and β -carotene (yellow). In order to isolate lycopene from the tomato paste, an experiment involving solvent extraction, thin-layer chromatography (TLC) and column chromatography was performed.

2015 DSE P2 Q3 3c)i)

(i) The result of TLC is shown below:

Calculate the R_f value for the lycopene spot.

3c)ii) (1 mark)

(ii) With reference to the result of TLC, explain whether the first-collected coloured fraction in the column chromatography is lycopene or β -carotene, if the same stationary phase and mobile phase are used.

(1 mark)

Chromatography

Diagram	Procedures
Paper Solvent Front Solvent	 Draw a using a pencil. Apply a of coloring on the baseline and allowed to Put the paper in the solvent with the baseline <u>above/below</u> the liquid level. Allow the solvent to move up (diffusion)

Mobile phase		
Stationary phase	in the Paper	
Functions	1.	
	If the component is colourless:	
Pomarka	1. If it is amino acid, use	to make it visible.
Kennarks	2. Or place the chromatogram in the atmos	phere of I ₂ vapour.
	3. If it is fluorescent, use	to make it visible.

Chromatography (TLC)

Diagram	Procedures
thin layer chomatography	TLC is the similar to that of paper chromatography
plate pend line pend line solvent	EXCEPT that the adsorbent is a

Mobile phase	
Stationary phase	Fine layer of or coated onto a glass plate.
Functions	1. 2.
Remarks	Adv: 1 Disadv: 2

HKDSE Chemistry

Chromatography

Diagram	Procedures
Keep adding	 Mixture to be separated is applied to the of the column. The liquid solvent () is passed through the column by or by the application of Because the different components in the mixture have different with the stationary and mobile phases, they will be carried along with the mobile phase to varying degrees and a separation will be achieved. The individual components () are as the solvent drips the bottom of the column.

Mobile phase	
Stationary phase	in vertical glass column. E.g.:/
Functions	1. 2.

C. Test for purity

Determination of melting point

Presence of even ____% impurity can lower the melting point and ______ the range to several degrees

A pure solid should have a <u>sharp/ wide range of melting point because melting point depends mainly on the</u>______ of structure.

The presence of impurity lowers / increases the melting point of a solid.

Precaution

- 1. Make sure the level of the solids in the tube is the _____ as the bulb of the thermometer.
- 2. Avoid heating the liquid too

Determination of boiling point

		water out	A pure liquid should have a <u>sharp/</u> wide range of
still h	head —		boiling point
liquid product	5	condenser	
umping granules -	h	water in	
3. (4	(a) (Dutline how hex-1-ene can be obt. methods.	ained from a mixture of hex-1-ene, octane and water by phy
2013 P2	Q3 (Boiling points: hex-1-ene = 63°C,	octane = 125° C, water = 100° C)
			(4 m
			(4 II
2014 (DSE P2	(ii)	Which of the following chemic	(4 th als is most suitable for drying ethyl ethanoate ?
2014 (DSE P2 Q3)a)	(ii)	Which of the following chemic anhydrous magnesium sulphate	als is most suitable for drying ethyl ethanoate ?
2014 (DSE P2 Q3)a)	(ii)	Which of the following chemic anhydrous magnesium sulphate	als is most suitable for drying ethyl ethanoate ? e, concentrated sulphuric acid, solid sodium hydroxide (1 m
2014 (DSE P2 Q3)a) 2014 DSE P2 2014	(ii) (iii)	Which of the following chemic anhydrous magnesium sulphate Suggest how copper powder o iron(III) oxide by chemical m	als is most suitable for drying ethyl ethanoate ? e, concentrated sulphuric acid, solid sodium hydroxide (1 m can be obtained from a mixture of copper powder and nethod.
2014 DSE P2 Q3)a) 2014 DSE P2 Q3)a)	(ii) (iii)	Which of the following chemic anhydrous magnesium sulphate Suggest how copper powder o iron(III) oxide by chemical m	als is most suitable for drying ethyl ethanoate ? , concentrated sulphuric acid, solid sodium hydroxide (1 m can be obtained from a mixture of copper powder and hethod. (2 m
2014 (DSE P2 Q3)a) 2014 DSE P2 Q3)a)	(ii) (iii)	Which of the following chemic anhydrous magnesium sulphate Suggest how copper powder o iron(III) oxide by chemical m	als is most suitable for drying ethyl ethanoate ? e, concentrated sulphuric acid, solid sodium hydroxide (1 m can be obtained from a mixture of copper powder and hethod. (2 m

Directions: Questions 1 and 2 refer to the following information. A student obtained the following chromatogram in the identification of the colourings in four fruit drinks, P, Q, S and T.

Which of the drinks contains the green colouring?

A Drink P B Drink Q C Drink S D Drink T

1.

2.

Why should the student make further checks on drink T?

- A Its colour is too dark.
- B Its colour is different from the other drinks.
- C It contains too many food colourings.
- D It contains a colour that is not identified in this test.

3. A student used paper chromatography to separate two components, X and Y, in a solution. A spot of the solution was initially placed at the origin. When the spot corresponding to compound X ($R_f = 0.60$) had advanced 4.5 cm, the spot corresponding to component Y was 1.0 cm before X. The R_f value of component Y is A 0.13. B 0.22. C 0.47. D 0.73.

4. Directions: Questions 4 and 5 refer to the following experiment.
 Four red substances, W, X, Y and Z, were tested by paper chromatography. The test was done using two different solvents. The chromatograms obtained are shown below.

What is the $R_{\rm f}$ value of substance Y in solvent 1?A 0.28B 0.52C 0.63D 1.57

5. An unknown red substance was tested. The chromatogram obtained using solvent 1 is shown below. Its $R_{\rm f}$ value in solvent 2 is 0.82. The unknown red substance could be

- A W. B X. C Y.
- DZ.

2018 DSE

(iii) What is meant by the ' R_f value' of a substance in a paper chromatogram ?

(2 marks)

BDDCB

HKDSE Chemistry

Liquid – Liquid Extraction

Example: To Extract the pure $I_{2(S)}$ from $I_{2(aq)}$

If you want to extract more lodine from the aqueous layer, you can **<u>repeat</u>** the extraction.

Liquid – Liquid Extraction Scheme

lodine in water

Steps:			
1. Add	and		into a
2	it and allows two	o layers to sepa	rate.
3	the aqueous laye	r and	the upper non-aqueous layer.
4. The solven	t is	_ and pure I_2 is	collected.

More Example:

Mixture containing heptanoic acid and benzene

2016 DSE

(c) X and Y are isomeric compounds with their structures shown below :

- (ii) The melting point of X is 50 °C while that of Y is 77 °C. Both of them are insoluble in water but soluble in dichloromethane. When treated with dilute Na₂CO₃(aq), no reaction occurs for X but reaction occurs for Y to form a soluble salt.
 - (1) You are provided with dilute Na₂CO₃(aq) and dilute H₂SO₄(aq). Outline an experimental procedure, based on solvent extraction, to separate solid Y from a solution of X and Y in dichloromethane.

(2) Suggest how you can identify that the solid obtained in (1) is pure compound Y. (5 marks)

2017 DSE

- 3. (c) Many plants contain useful organic compounds which can be obtained by extraction using suitable solvents.
 - (i) The leaf of a certain plant contains a useful organic compound S. S can dissolve gradually in a warm organic solvent, and can be extracted from the leaves by using this solvent.
 - 'Heating under reflux' is a method commonly used to carry out this kind of extraction. State the advantage of this method.
 - (2) After extraction, the solvent can be removed from the extract by simple distillation. Draw a labelled diagram for the set-up required for this simple distillation.
 - (3) S obtained from the extraction may contain other organic impurities. Suggest a method for separating S from these impurities.

(4 marks)

HKDSE Chemistry

2018 DSE

(iii) What is meant by the ' R_f value' of a substance in a paper chromatogram ?

(2 marks)

1

2016 DSE Marking

(ii)	(1)	•	$Na_2CO_3(aq)$ is added to the solution of X and Y in dichloromethane.	1	
		•	The mixture is shaken in a separating funnel.	1	
			The mixture in the separating funnel is allowed to settle, and the aqueous layer is then separated from the organic layer.	j.	
		•	Dilute H ₂ SO ₄ (aq) is added to the aqueous layer until no more precipitate is	1	
			formed.		
		•	Solid Y can be obtained by filtration.	1	
	(2)	Measure the melting point of the solid obtained.			
		If th	e melting point of the solid is 77°C, it may be pure compound Y.	1	

2017 DSE marking

(c) (i) (1) The solvent will not lose during heating.

 (2) extract — (3) column chromatography 2018 DSE marking 	water out water in heat water in heat water in heat water in heat	2
$R_{\rm f}$ = Distance travelled by the	/ Distance travelled by the	
The value of R_f depends on the		ionary phase.