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UNDERSTANDING RELATIONSHIPS USING COPULAS*

Edward W. Frees† and Emiliano A. Valdez‡

ABSTRACT

This article introduces actuaries to the concept of ‘‘copulas,’’ a tool for understanding relation-
ships among multivariate outcomes. A copula is a function that links univariate marginals to their
full multivariate distribution. Copulas were introduced in 1959 in the context of probabilistic
metric spaces. The literature on the statistical properties and applications of copulas has been
developing rapidly in recent years. This article explores some of these practical applications, in-
cluding estimation of joint life mortality and multidecrement models. In addition, we describe
basic properties of copulas, their relationships to measures of dependence, and several families
of copulas that have appeared in the literature. An annotated bibliography provides a resource
for researchers and practitioners who wish to continue their study of copulas. For those who wish
to use copulas for statistical inference, we illustrate statistical inference procedures by using in-
surance company data on losses and expenses. For these data, we (1) show how to fit copulas
and (2) describe their usefulness by pricing a reinsurance contract and estimating expenses for
pre-specified losses.

1. INTRODUCTION

As emphasized in ‘‘General Principles of Actuarial Sci-
ence’’ (Committee on Actuarial Principles 1997), ac-
tuaries strive to understand stochastic outcomes of
financial security systems. Because these systems are
generally complex, outcomes are measured in several
dimensions. Describing relationships among different
dimensions of an outcome is a basic actuarial tech-
nique for explaining the behavior of financial security
systems to concerned business and public policy
decision-makers. This article introduces the concept
of a ‘‘copula’’ function as a tool for relating different
dimensions of an outcome.

Understanding relationships among multivariate
outcomes is a basic problem in statistical science; it
is not specific to actuarial science nor is it new. In
the late nineteenth century, Sir Francis Galton made
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Conference, held August 6–8, 1997, at the University of Calgary,
Calgary, Alberta, Canada.
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a fundamental contribution to understanding multi-
variate relationships with his introduction of regres-
sion analysis. In one dataset described in his 1885
presidential address to the anthropological section of
the British Association of the Advancement of Sci-
ences, Galton linked the distribution of heights of
adult children to the distribution of their parents’
heights. Galton showed not only that each distribu-
tion was approximately normal but also that the joint
distribution could be described as a bivariate normal.
Thus, the conditional distribution of adult children’s
height, given the parents’ height, could also be de-
scribed by using a normal distribution. As a by-prod-
uct of his analysis, Galton observed that ‘‘tall parents
tend to have tall children although not as tall as the
parents’’ (and vice versa for short children). From
this, he incorrectly inferred that children would ‘‘re-
gress to mediocrity’’ in subsequent generations, hence
suggesting the term that has become known as re-
gression analysis. See Seal (1967) and Stigler (1986)
for additional accounts of the works of Galton and
other early contributors to statistical science.

Regression analysis has developed into the most
widely applied statistical methodology; see, for ex-
ample, Frees (1996) for an introduction. It is an im-
portant component of multivariate analysis because it
allows researchers to focus on the effects of explana-
tory variables. To illustrate, in the Galton dataset of
family heights, regression allows the analyst to
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2 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

describe the effect of parents’ height on a child’s adult
height. Regression analysis also is widely applied in
actuarial science; as evidence, it is a required edu-
cational component of the two main actuarial bodies
in the U.S. and Canada, the Society of Actuaries and
the Casualty Actuarial Society.

Although widely applicable, regression analysis is
limited by the basic setup that requires the analyst to
identify one dimension of the outcome as the primary
measure of interest (the dependent variable) and
other dimensions as supporting or ‘‘explaining’’ this
variable (the independent variables). This article ex-
amines problems in which this relationship is not of
primary interest; hence, we focus on the more basic
problem of understanding the distribution of several
outcomes, a multivariate distribution. For an exam-
ple in actuarial science, when two lives are subject to
failure, such as under a joint life insurance or annuity
policy, we are concerned with joint distribution of
lifetimes. As another example, when we simulate the
distribution of a scenario that arises out of a financial
security system, we need to understand the distribu-
tion of several variables interacting simultaneously,
not in isolation of one another.

The normal distribution has long dominated the
study of multivariate distributions. For example, lead-
ing references on multivariate analysis, such as Ander-
son (1958) and Johnson and Wichern (1988), focus
exclusively on the multivariate normal and related dis-
tributions that can be derived from normal distribu-
tions, including multivariate extensions of Student’s t-
and Fisher’s F-distributions. Multivariate normal dis-
tributions are appealing because the marginal distri-
butions are also normal. For example, in the Galton
dataset, the distribution of adult children’s height and
the distribution of parents’ height are each approxi-
mately normal, in isolation of the other. Multivariate
normal distributions are also appealing because the as-
sociation between any two random outcomes can be
fully described knowing only (1) the marginal distri-
butions and (2) one additional parameter, the corre-
lation coefficient.

More recent texts on multivariate analysis, such as
Krzanowski (1988), have begun to recognize the
need for examining alternatives to the normal distri-
bution setup. This is certainly true for actuarial sci-
ence applications such as for lifetime random
variables (Bowers et al. 1997, Chap. 3) and long-
tailed claims variables (Hogg and Klugman 1984),
where the normal distribution does not provide an
adequate approximation to many datasets. An exten-
sive literature in statistics deals with nonnormal

multivariate distributions; see, for example, Johnson
and Kotz (1973) and Johnson, Kotz and Balakrishnan
(1997). However, historically many multivariate dis-
tributions have been developed as immediate exten-
sions of univariate distributions, examples being the
bivariate Pareto, bivariate gamma, and so on. The
drawbacks of these types of distributions are that (1)
a different family is needed for each marginal distri-
bution, (2) extensions to more than just the bivariate
case are not clear, and (3) measures of association
often appear in the marginal distributions.

A construction of multivariate distributions that
does not suffer from these drawbacks is based on the
copula function. To define a copula, begin as you
might in a simulation study by considering p uniform
(on the unit interval) random variables, u1, u2, . . . ,
up. Here, p is the number of outcomes that you wish
to understand. Unlike many simulation applications,
we do not assume that u1, u2 , . . . , up are indepen-
dent; yet they may be related. This relationship is de-
scribed through their joint distribution function

C u , u , . . . , u~ !1 2 p

5 Prob U ≤ u , U ≤ u , . . . , U ≤ u~ 1 1 2 2 p p .!
Here, we call the function C a copula. Further, U is
a (ex-ante) uniform random variable, whereas u is the
corresponding (ex-post) realization. To complete the
construction, we select arbitrary marginal distribu-
tion functions F1(x1), F2(x2), . . . , Fp(xp). Then, the
function

C F x , F x , . . . , F x~ ! ~ ! ~ !@ #1 1 2 2 p p

5 F x , x , . . . , x (1.1)~ !1 2 p

defines a multivariate distribution function, evaluated
at x1, x2, . . . , xp , with marginal distributions F1, F2,
. . . , Fp .

With copula construction in Equation (1.1), we se-
lect different marginals for each outcome. For exam-
ple, suppose we are considering modeling male and
female lifetimes for a joint-life annuity product. Then,
with p52, we might choose the Gompertz distribution
to represent mortality at the older ages, yet with dif-
ferent parameters to reflect gender differences in
mortality. As another example, in Section 4, we con-
sider a bivariate outcome associated with the loss and
the expense associated with administering a property
and casualty claim. There, we could elect to use a
lognormal distribution for expenses and a longer tail
distribution, such as Pareto, for losses associated with
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UNDERSTANDING RELATIONSHIPS USING COPULAS 3

1 F(x ,x ) 5 Prob(X ≤ x , X ≤ x ) 5 1 2 Prob(X . x ) 2 Prob(X . x ) 1 Prob(X . x , X . x )1 2 1 1 2 2 1 1 2 2 1 1 2 2

5 1 2 exp(2lx )(1 2 H (x )) 2 exp(2lx )(1 2 H (x )) 1 exp(2lmin(x , x ))(1 2 H (x ))(1 2 H (x ))1 1 1 2 2 2 1 2 1 1 2 2

5 1 2 (1 2 F (x )) 2 (1 2 F (x )) 1 exp(2l min(x , x )) exp(l(x 1 x ))(1 2 F (x ))(1 2 F (x )).1 1 2 2 1 2 1 2 1 1 2 2

the claim. The copula construction does not constrain
the choice of marginal distributions.

In Section 2 we see that the copula method for un-
derstanding multivariate distributions has a relatively
short history in the statistics literature; most of the
statistical applications have arisen in the last ten
years. However, copulas have been studied in the
probability literature for about 40 years (Schweizer
1991), and thus several desirable properties of copu-
las are now widely known. To begin, it is easy to
check from the construction in Equation (1.1) that F
is a multivariate distribution function. Sklar (1959)
established the converse. He showed that any multi-
variate distribution function F can be written in the
form of Equation (1.1), that is, using a copula repre-
sentation. Sklar also showed that if the marginal dis-
tributions are continuous, then there is a unique
copula representation. In this sense copulas provide
a unifying theme for our study of multivariate distri-
butions. Sections 3 and 5 describe other desirable
properties of copulas.

Given that copulas are fundamental building blocks
for studying multivariate distributions, we now turn
to the question of how to build a copula function for
a problem at hand. Despite Sklar’s result that a copula
function always exists, Example 1.1 shows that it is
not always convenient to identify the copula. Example
1.2 illustrates a useful way of building a copula, using
the method of compounding. We describe this method
of constructing copulas in detail in Section 3.1.

Example 1.1 Marshall-Olkin (1967) Exponential
Shock Model

Suppose that we wish to model p52 lifetimes that we
suspect are subject to some common disaster, or
‘‘shock,’’ that may induce a dependency between the
lives. For simplicity, let us assume that Y1 and Y2 are
two independent (underlying) lifetimes with distri-
bution functions H1 and H2. We further assume there
exists an independent exponential random variable Z
with parameter l that represents the time until com-
mon disaster. Both lives are subject to the same dis-
aster, so that actual ages-at-death are represented by
X15min(Y1, Z) and X25min(Y2, Z). Thus, the mar-
ginal distributions are

Prob X ≤ x 5 F x~ !~ !j j j j

5 1 2 exp 2lx 1 2 H x , for j 5 1, 2.~ ! ~ !~ !j j j

Basic calculations show that the joint distribution is1

F x , x 5 F x 1 F x 2 1~ ! ~ ! ~ !1 2 1 1 2 2

1 exp lmax x ,x 1 2 F x 1 2 F x .~ ! ~ ! ~ !~ !~ !~ !1 2 1 1 2 2

This expression, although intuitively appealing, is not
in the form of the copula construction (1.1) because
the joint distribution function F is not a function of
the marginals F1(x1) and F2(x2). For further discus-
sions in the actuarial literature of this bivariate dis-
tribution, see Frees (1996) and Bowers et al. (1997,
Sec. 9.6).

Example 1.2 Bivariate Pareto Model

Consider a claims random variable X that, given a risk
classification parameter g, can be modeled as an ex-
ponential distribution; that is,

2gxProb X≤x |g 5 1 2 e .~ !

As is well known in credibility theory (see, for exam-
ple, Klugman et al. 1997), if g has a gamma distribu-
tion, then the marginal distribution (over all risk
classes) of X is Pareto. That is, if g is gamma(a,l), then

F(x) 5 Prob X ≤ x~ !
la

a21 2lg5 * Prob X ≤ x |g g e dg~ !
G l~ !

la
2gx a21 2lg5 1 2 * e g e dg

G l~ !
2a5 1 2 1 1 x /l , (1.2)~ !

a Pareto distribution.
Suppose, conditional on the risk class g, that X1 and

X2 are independent and identically distributed. As-
suming that they come from the same risk class g
induces a dependency. The joint distribution is2
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4 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

2 F(x ,x ) 5 1 2 Prob(X . x ) 2 Prob(X . x ) 1 Prob(X . x , X . x )1 2 1 1 2 2 1 1 2 2

2a 2a
lx x a1 2 a21 2lg5 1 2 1 1 2 1 1 1 * Prob(X . x |g) Prob(X . x |g) g e dg1 1 2 2~ ! ~ !l l G(l)

2a 2a
lx x a1 2 2gx 2gx a21 2lg1 25 1 2 1 1 2 1 1 1 * e e g e dg~ ! ~ !l l G(l)

2a 2a 2a
x x x 1 x1 2 1 25 1 2 1 1 2 1 1 1 1 1 .@ #~ ! ~ !l l l

F x ,x 5 F x 1 F x~ ! ~ ! ~ !1 2 1 1 2 2

21/a2 1 1 1 2 F x~ !@~ !1 1

2a21/a .1 1 2 F x 2 1~ ! #~ !2 2

This yields the copula function

C u , u 5 u 1 u 2 1~ !1 2 1 2

2a21/a 21/a .1 1 2 u 1 1 2 u 21@ #~ ! ~ !1 2 (1.3)

With this function, we can express the bivariate distri-
bution function as H(x , x )5C(F (x ), F (x )).1 2 1 1 2 2

Alternatively, we can consider the copula

C u , u 5 C 1 2 u , 1 2 u~ ! ~ !* 1 2 1 2

2a
21/a 21/a5 u 1 u 2 1 2 1~ !1 2

and express the joint survival function as Prob(X1.x1,
X2.x2) 5 C*(S1(x1), S2(x2)), where S512F. Because
our motivating examples in Section 2 concern lifetime
(positive) random variables, we often find it intuitively
appealing to work with survival in lieu of distribution
functions.

Several methods are available for constructing multi-
variate distributions; see Hougaard (1987) and
Hutchinson and Lai (1990) for detailed reviews. Ex-
ample 1.1 illustrates the so-called ‘‘variables-in-com-
mon’’ technique in which a common element serves to
induce dependencies among several random variables.
This article focuses on the compounding method illus-
trated in Example 1.2 for two reasons. First, there is a
long history of using compound distributions for risk
classification in the actuarial science literature, partic-
ularly within the credibility framework. Second, Mar-
shall and Olkin (1988) showed that compounding can
be used to generate several important families of cop-
ulas. Additional discussion of this point appears in Sec-
tions 2 and 3.

Examples 1.1 and 1.2 each describe bivariate distri-
butions through probabilistic interpretations of ran-
dom quantities. It is also useful to explore (in Section

3) a class of functions called ‘‘Archimedean copulas,’’
which arise from the mathematical theory of associa-
tivity. An important special case of this class, due to
Frank (1979), is

au av1 (e 2 1)(e 2 1)
C u, v 5 ln 1 1 . (1.4)~ ! a~ !a e 2 1

Although Frank’s copula does not appear to have a nat-
ural probabilistic interpretation, its other desirable
properties make it well suited for empirical applica-
tions (Nelson 1986 and Genest 1987).

The purpose of this paper is to introduce copulas,
their characteristics and properties, and their appli-
cability to specific situations. Section 2 reviews empir-
ical applications of copulas in analyzing survival of
multiple lives and competing risks. Both are familiar
topics to actuaries. Section 3 discusses properties and
characteristics of copulas. In particular, we show (1)
how to specify a copula, (2) how the association struc-
ture of copulas can be summarized in terms of familiar
measures of dependence, and (3) how simulation of
multivariate outcomes can be easily accomplished
when the distribution is expressed as a copula. Section
4 provides an illustration of fitting a copula to insur-
ance company losses and expenses. Section 5 reviews
additional applications of copulas. We conclude in Sec-
tion 6.

2. EMPIRICAL APPLICATIONS

Copulas are useful for examining the dependence
structure of multivariate random vectors. In this sec-
tion, we describe two biological science subject areas
that are related to actuarial science and that have used
copulas to understand empirical relationships among
multivariate observations.

2.1 Survival of Multiple Lives

In epidemiological and actuarial studies, it is often of
interest to examine the joint mortality pattern of
groups of more than a single individual. This group
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UNDERSTANDING RELATIONSHIPS USING COPULAS 5

could be, for example, a husband and wife, a family
with children, or twins (identical or nonidentical).
There is strong empirical evidence that supports the
dependence of mortality on pairs of individuals. For
example, statistical analyses of mortality patterns of
married couples are frequently made to test the ‘‘bro-
ken heart’’ syndrome. Using a dataset consisting of
4,486 55-year-old widowers, Parkes et al. (1969)
showed that there is a 40% increase in mortality among
the widowers during the first few months after the
death of their wives; see also Ward (1976). Intuitively,
pairs of individuals exhibit dependence in mortality be-
cause they share common risk factors. These factors
may be purely genetic, as in the case of twins, or en-
vironmental, as in the case of a married couple.

The first application of copulas in joint-life models
arose indirectly through the work of Clayton (1978) in
his study of bivariate life tables of fathers and sons.
Clayton developed the bivariate distribution function
given in Equation (1.3) as the solution of a second-
order partial differential equation. Clayton also pointed
out the random effects interpretation of the model that
was subsequently developed by Oakes (1982). See also
Cook and Johnson (1981).

Random effects models are important in biological
and epidemiological studies because they provide a
method of modeling heterogeneity. A random effects
model particularly suited for multivariate survival anal-
ysis is the frailty model, due to Vaupel, Manton and
Stallard (1979) and Hougaard (1984). To describe
frailty models, we first introduce some notation. In sur-
vival analysis, it is customary to consider the comple-
ment of the distribution function, the survival function,
and the negative derivative of its logarithmic trans-
form, the hazard function. Thus, for a continuous ran-
dom survival time T, we define

S(t) 5 Prob(T . t) 5 1 2 F(t)

and

] ln S(t) f(t)
h(t) 5 2 5 .

]t S(t)

Actuaries know the hazard function h(t) as the force
of mortality (see, for example, Bowers et al. 1997,
Chap. 3).

To understand explanatory variables Z in survival
analysis, we can use the Cox (1972) proportional haz-
ards model, which represents the hazard function as

bZh(t, Z) 5 e b(t),

where b(t) is the so-called ‘‘baseline’’ hazard function
and b is a vector of regression parameters. It is

proportional in the sense that all the information
contained in the explanatory variables is in the mul-
tiplicative factor g5ebZ. Integrating and exponentiat-
ing the negative hazard, we can also express Cox’s
proportional hazard model as

t
gS(t |g) 5 exp 2 * h(s, Z)ds 5 B(t) .~ !0

Here,

t
B(t) 5 exp 2 * b(s)ds~ !0

is the survival function corresponding to the baseline
hazard. Frailty models arise when Z, and hence g, is
unobserved. The factor g is called a frailty because
larger values of g imply a smaller survival function,
S(t |g), indicating poorer survival. As demonstrated
in Example 1.2, the marginal distribution for a single
life T is obtained by taking expectations over the po-
tential values of g; that is, S(t)5EgS(t |g).

Oakes (1989, 1994) described how frailties can be
used to model the dependencies among multiple
lives. Other studies, such as Jagger and Sutton
(1991), used a Cox regression model with known ex-
planatory variables Z to account for the dependen-
cies among multiple lives. Multivariate frailty models
are obtained when the investigator does not wish to
attribute, or does not have knowledge of, specific
characteristics that may induce dependencies. For
multivariate frailty models, we assume that ‘‘p’’ lives
T1, T2, . . . , Tp are independent given the frailty g.
That is,

Prob T . t , . . . , T . t |g~ !1 1 p p

5 Prob T . t |g z z z Prob T . t |g~ ! ~ !1 1 p p

5 S t |g z z z S t |g~ ! ~ !1 1 p p

g g5 B (t ) z z z B t .~ !1 1 p p

The joint multivariate survival function is defined as

Prob T . t , . . . , T . t~ !1 1 p p

g

5 E B t z z z B t . (2.1)~ ! ~ !g 1 1 p p$ %

Example 2.1 Hougaard’s Copula Family

To illustrate, an important frailty model was given
by Hougaard (1986), who assumed that the distri-
bution of g could be modeled as a positive ‘‘stable dis-
tribution’’ with Laplace transform Ege 5exp(2sa)2sg
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6 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

and parameter a. Recall that the Laplace transform of
a positive random variable g is defined by

2sg 2stt(s) 5 E e 5 * e dG (t),g g

where Gg is the distribution function of g. This is also
the moment generating function evaluated at -s; thus,
knowledge of t(s) determines the distribution.

With a positive stable distribution for g, using Equa-
tion (2.1) we have

Prob T . t , . . . , T . t~ !1 1 p p

5 E exp g ln B (t ) z z z B (t )$ %~ !g 1 1 p p

a
5 exp 2 2ln B (t ) – – ln B (t ) .z z z$ %~ !1 1 p p

Because

a
S (t ) 5 exp 2 2ln B (t ) ,$ %~ !i i i i

we can write the joint survival function as

Prob T . t , . . . , T . t~ !1 1 p p

a
1/a 1/a

5 exp 2 2 ln S (t ) 1 1 2 ln S (t ) ,z z z@ #$ % $ %~ 1 1 p p !
(2.2)

a copula expression. In particular, for bivariate life-
times with p52, Hougaard proposed examining Wei-
bull marginals so that biB (t)5exp 2a t and S (t |g)5~ !i i i

This yields the bivariate survivor functionbiexp 2a gt .~ !i

Prob T . t , T . t~ !1 1 2 2

a
b b1 25 exp 2 a t 1 a t . (2.3)@ #~ 1 1 2 2 !

This is desirable in the sense that both the conditional
and marginal distributions are Weibull.

Equations (1.2) of Example 1.2 and (2.2) of Example
2.1 show that these frailty models can be written as
copulas. Marshall and Olkin (1988) showed that these
are special cases of a more general result; they dem-
onstrated that all frailty models of the form in Equation
(2.1) can be easily written as copulas. Further, the cop-
ula form is a special type called an Archimedean cop-
ula, which we will introduce in Section 3.

In addition to the Clayton and Oakes studies, other
works have investigated the use of copula models in
studying behavior of multiple lives. Hougaard et al.
(1992) analyzed the joint survival of Danish twins born

between 1881 and 1930. They use the frailty model
arising from a positive stable distribution as well as
Cox’s proportional hazard model. Frees et al. (1995)
investigated mortality of annuitants in joint- and last-
survivor annuity contracts using Frank’s copula
(Equation 1.3). They found that accounting for depen-
dency in mortality produced approximately a 3% to 5%
reduction in annuity values when compared to stan-
dard models that assume independence.

2.2 Competing Risks—Multiple Decrement
Theory

The subject of competing risks deals with the study of
the lifetime distribution of a system subject to several
competing causes; this subject is called multiple dec-
rement theory in actuarial science (see, for example,
Bowers et al. 1997, Chap. 10 and 11). The problem of
competing risks arises in survival analysis, systems re-
liability, and medical studies as well as in actuarial sci-
ence. For example, a person dies because of one of
several possible causes: cancer, heart disease, acci-
dent, and so on. As yet another example, a mechanical
device fails because a component fails. For mathemat-
ical convenience, the general framework begins with
an unobserved multivariate lifetime vector (T1, T2, . . . ,
Tp); each element in the vector denotes the lifetime
due to one of p competing causes. The quantities typ-
ically observed are T5min(T1, T2, . . . , Tp) and the
cause of failure J. To illustrate, in life insurance, T
usually denotes the lifetime of the insured individual
and J denotes the cause of death such as cancer or
accidental death. Several texts lay the foundation of
the theory of competing risks. For example, see Bow-
ers et al. (1997), Cox and Oakes (1984), David and
Moeschberger (1978), and Elandt-Johnson and John-
son (1980).

When formulating the competing risk model, it is
often assumed that the component lifetimes Ti are
statistically independent. With independence, the
model is easily tractable and avoids the problem of
identifiability encountered in inference. However,
many authors, practitioners, and academicians rec-
ognize that this assumption is not practical, realistic,
or reasonable; see Carriere (1994), Makeham (1874),
and Seal (1977).

To account for dependence in competing risk mod-
els, one general approach is to apply copulas. In par-
ticular, the frailty model seems well suited for handling
competing risks. Assuming that causes of death are in-
dependent given a frailty g, we have
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UNDERSTANDING RELATIONSHIPS USING COPULAS 7

TABLE 1
ARCHIMEDEAN COPULAS AND THEIR GENERATORS

Family Generator f(t)
Dependence

Parameter (a) Space Bivariate Copula Cf(u,v)

Independence 2 ln t Not applicable uv

Clayton (1978), Cook-Johnson (1981),
Oakes (1982)

t 2a 2 1 a . 1 21/a
2a 2au 1 v 2 1~ !

Gumbel (1960), Hougaard (1986) a

2 ln t~ !
a ≥ 1

exp
1/aa a

2 2 ln u 1 2 ln v! ~ !~@ #$ %
Frank (1979)

ln
ate 2 1
ae 2 1

2 ` , a , ` au av1 (e 2 1)(e 2 1)
ln 1 1~ !aa e 2 1

Prob T . t |g 5 Prob min T , . . . , T . t~ ! ~ !~ !1 p

5 Prob T . t |g z z z Prob T . t |g~ ! ~ !1 p

g g5 B (t) z z z B (t) .1 p

Thus, similar to Equation (2.1), the overall survival
function is

g

Prob T . t 5 E B (t) z z z B (t) . (2.4)~ ! g 1 p$ %

Example 2.1 (Continued)

For a positive stable distribution for g, the survival
function is

1/a

Prob T . t 5 exp 2 2 ln S (t)$ %~ ! @~ 1

a1/a

1 1 2 ln S (t) ,z z z $ % # !p

similar to Equation (2.2). For bivariate lifetimes with
Weibull marginals, we have

a
b b1 2Prob T . t 5 exp 2 a t 1 a t .~ ! @ #~ !1 2

There have been several applications of frailty mod-
els for studying competing risk situations. Oakes
(1989) discussed the number of cycles of two che-
motherapy regimes tolerated by 109 cancer patients.
Shih and Louis (1995) analyzed HIV-infected patients
by using Clayton’s family, positive stable frailties, as
well as Frank’s copula. Zheng and Klein (1995) con-
sidered data from a clinical trial of patients with non-
Hodgkin’s lymphoma using gamma copula (as in
Clayton’s family). In a nonbiological context, Hou-
gaard (1987) described how dependent competing
risk models using positive stable copulas can be used
to assess machine failure.

3. PROPERTIES OF COPULAS

This section discusses several properties and charac-
teristics of copulas, specifically (1) how to generate
copulas, (2) how copulas can summarize association
between random variables, and (3) how to simulate
copula distributions.

3.1 Specifying Copulas: Archimedean and
Compounding Approaches

Copulas provide a general structure for modeling mul-
tivariate distributions. The two main methods for
specifying a family of copulas are the Archimedean
approach and the compounding approach, the latter
illustrated in Example 1.2.

The Archimedean representation allows us to re-
duce the study of a multivariate copula to a single
univariate function. For simplicity, we first consider
bivariate copulas so that p52. Assume that f is a con-
vex, decreasing function with domain (0, 1] and range
[0, `) such that f(1)50. Use f21 for the inverse func-
tion of f. Then the function

21C (u,v) 5 f f(u) 1 f(v) for u, v [ (0, 1]~ !f

is said to be an Archimedean copula. We call f a gen-
erator of the copula Cf. Genest and McKay (1986a,
1986b) give proofs of several basic properties of Cf,
including the fact that it is a distribution function. As
seen in Table 1, different choices of generator yield
several important families of copulas. A generator
uniquely determines (up to a scalar multiple) an Ar-
chimedean copula. Thus, this representation helps
identify the copula form. This point is further devel-
oped in Section 3.2.

Examples 1.2 and 2.1 show that compound distri-
butions can be used to generate copulas of interest.D
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8 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

TABLE 2
ARCHIMEDEAN GENERATORS AND THEIR INVERSES

Family Generator f(t)

Inverse Generator
(Laplace Transform)

t (s) 5 f21 (s)
Laplace Transform

Distribution

Independence 2 ln t exp (2s) Degenerate

Clayton (1978), Cook-Johnson (1981),
Oakes (1982)

t 2a 2 1 (1 1 s)21/a Gamma

Gumbel (1960), Hougaard (1986) (2 ln t)a exp (2s 1/a) Positive stable

Frank (1979)
ln

ate 2 1
ae 2 1

a21 ln s a[1 1 e (e 2 1)] Logarithmic series distribution
on the positive integers

These examples are special cases of a general method
for constructing copulas due to Marshall and Olkin
(1988). To describe this method, suppose that Xi is a
random variable whose conditional, given a positive
latent variable gi, distribution function is specified by
Hi(x |gi)5Hi(x) , where Hi(z) is some baseline distri-gi

bution function, for i51, . . . , p. Marshall and Olkin
considered multivariate distribution functions of the
form

g g1 pF(x , x , . . . , x ) 5 EK H (x ) , . . . , H (x ) .~ !1 2 p 1 1 p p

Here, K is a distribution function with uniform mar-
ginals and the expectation is over g1, g2, . . . , gp. As
a special case, take all latent variables equal to one
another so that g15g25. . .5gp5g and use the dis-
tribution function corresponding to independent mar-
ginals. Marshall and Olkin (1988) showed that

F x , x , . . . , x )1 2 p

g g5 E H (x ) z z z H (x ) !~g 1 1 p p

21 215 t t F (x ) 1 z z z 1 t F (x ) (3.2)~ !$ % $ %1 1 p p

where Fi is the i-th marginal distribution of F and t(z)
is the Laplace transform of g, defined by t(s)5
Ege2sg.

Laplace transforms have well-defined inverses. Thus,
from Equation (3.2), we see that the inverse function
t21 serves as the generator for an Archimedean copula.
In this sense, Equation (3.2) provides a probabilistic
interpretation of generators. To illustrate, Table 2 pro-
vides the inverse Laplace transform for the generators
listed in Table 1. Here, we see how well-known distri-
butions can be used to generate compound distribu-
tions. Because generators are defined uniquely only up
to scalar multiple, any positive constant in the family

of Laplace transforms determines the same class of
generators. (Indeed, this methodology suggests new
copula families.) Thus, the inverse of a Laplace trans-
form represents an important type of generator for
Archimedean copulas.

To summarize, assume that X1, X2, . . . , Xp are con-
ditionally, given g, independent with distribution
functions Hi(x)g. Then, the multivariate distribution
is given by the copula form with the generator being
the inverse of the Laplace transform of the latent var-
iable g. Because of the form of the conditional distri-
bution, we follow Joe (1997) and call this a mixture
of powers distribution. We remark that

t 2 ln H (x) 5 E exp g 5 F (x)@ # 2 2 ln H (x)i g i@ #$ %i

so that

21H (x) 5 exp .2 t F (x)i @ #$ %i

This provides a way of specifying the baseline func-
tion given the marginal distribution and the distribu-
tion of the latent variable.

For the applications involving lifetimes in Section
2, we found it natural to discuss distributions in terms
of survival functions. Marshall and Olkin (1988)
pointed out that the construction as in Equation (3.2)
could also be used for survivor functions. That is, with
the frailty model Prob and condi-gT .t |g 5B (t)~ !i i

tional independence of T1, T2, . . . , Tp, from Equation
(2.1), we have

Prob T . t , . . . , T . t~ !1 1 p p

g

5 E B (t ) z z z B (t )g 1 1 p p$ %
215 t t S (x )~ $ %1 1

211 z z z 1 t S (x ) (3.3)!$ %p p
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UNDERSTANDING RELATIONSHIPS USING COPULAS 9

As before,

t 2 ln B (t) 5 S (t) 5 1 2 F (t)@ #i i i

and

21B (t) 5 exp 2 t S (t) .i i@ #$ %
If the mixing distribution remains the same, the La-
place transform and hence the generator remain the
same. However, the two constructions yield different
multivariate distributions because

g gProb T ≤ t |g 5 1 2 B(t) Þ 1 2 F t .~ ! ~ !~ !
We follow Marshall and Olkin and first present the
copula construction in Equation (3.2) by using distri-
bution functions because it is useful for all random
variables. However, for positive lifetime random var-
iables, the concept of frailty models is intuitively
appealing; thus, using survival functions in the
construction is preferred for these applications. We
finally remark, unlike the gamma and positive stable
families, that Frank’s copula Cf(u,v) is symmetric
about the point (1/2, 1/2) [for example, Cf(u,v)5
Cf(1/22u, 1/22v)]. Thus, it is invariant to the
choice of F or S512F in the construction (Genest
1987).

3.2 Measures of Association

Recall the copula representation of a distribution
function in Equation (1.1),

F(x , x , . . . , x ) 5 C F (x ), F (x ), . . . , F (x ) .~ !1 2 p 1 1 2 2 p p

With this expression, we see that F is a function of its
marginals and the copula. As pointed out by Genest
and Rivest (1993), this suggests that a natural way of
specifying the distribution function is to examine the
copula and marginals separately. Moreover, the case
of independence is a special form of the copula
C(u1, u2, . . . , up)5u1zu2 z z z up (regardless of the mar-
ginals), and this suggests that we examine the copula
function to understand the association among random
variables. Because we are concerned with correlation
measures, we restrict our consideration to p52.

Schweizer and Wolff (1981) established that the
copula accounts for all the dependence between two
random variables, X1 and X2, in the following sense.
Consider g1 and g2, strictly increasing (but otherwise
arbitrary) functions over the range of X1 and X2. Then,
Schweizer and Wolff showed that the transformed var-
iables g1(X1) and g2(X2) have the same copula as X1

and X2. Thus, the manner in which X1 and X2 ‘‘move

together’’ is captured by the copula, regardless of the
scale in which each variable is measured.

Schweizer and Wolff also showed that two standard
nonparametric correlation measures could be ex-
pressed solely in terms of the copula function. These
are Spearman’s correlation coefficient, defined by

r X , X 5 12E F x 2 1/2 F x 2 1/2~ ! ~ ! ~ !~ !~ !1 2 1 1 2 2$ %

5 12 ** C u,v 2 uv dudv~ !$ %
and Kendall’s correlation coefficient, defined by

t X , X 5 Prob X 2 X* X 2 X* . 0~ ! ~ !~ !1 2 1 1 2 2$ %
2 Prob X 2 X* X 2 X* , 0~ !~ !1 1 2 2$ %

5 4 **C u,v dC u,v 2 1.~ ! ~ !

For these expressions, we assume that X1 and X2 have
a jointly continuous distribution function. Further, the
definition of Kendall’s t uses an independent copy of (X1,
X2),(X *1, X*2) to define the measure of ‘‘concordance.’’
See Section 5 for more details. Also, the widely used
Pearson correlation coefficient, Cov(X1, X2)/(VarX1

VarX2)1/2, depends not only on the copula but also on
the marginal distributions. Thus, this measure is af-
fected by (nonlinear) changes of scale.

Table 3 illustrates the calculation of these correla-
tion measures. The correlations from Frank’s copula
rely on the so-called ‘‘Debye’’ functions, defined as

x kk t
D (x) 5 * dt ,k 0k tx e 2 1

for k51,2. To evaluate negative arguments of the
Debye function Dk, basic calculus shows that

kx
D (2x) 5 D (x) 1 .k k k 1 1

An important point of this table is that there is a one-
to-one relationship between each correlation measure
and the association parameter a. Further, Table 3 al-
lows us to see a drawback of the Clayton/Cook-
Johnson/Oakes and Gumbel-Hougaard copula families.
Because of the limited dependence parameter space
as shown in Table 1, these families permit only non-
negative correlations, a consequence of the latent var-
iable model. However, Frank’s family permits negative
as well as positive dependence.

Correlation measures summarize information in
the copula concerning the dependence, or associa-
tion, between random variables. Following a proce-
dure due to Genest and Rivest (1993), we can also
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10 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

TABLE 3
ARCHIMEDEAN COPULAS AND THEIR MEASURES OF DEPENDENCE

Family Bivariate Copula Cf(u,v) Kendall’s t Spearman’s r

Independence u v 0 0

Clayton (1978), Cook-Johnson (1981),
Oakes (1982)

21/a
2a 2au 1 v 2 1~ !

a

a 1 2
Complicated form

Gumbel (1960), Hougaard (1986)
exp

1/a
a a2 (2 ln u) 1 (2 ln v)@ #$ % 1 2 a21 No closed form

Frank (1979) au av1 (e 2 1)(e 2 1)
ln 1 1~ !aa e 2 1

1 2
4

{D (2a) 2 1}1a
1 2

12
{D (2a) 2 D (2a)}2 1a

use the dependence measure to specify a copula form
in empirical applications, as follows.

Genest and Rivest’s procedure for identifying a cop-
ula begins by assuming that we have available a ran-
dom sample of bivariate observations, (X11, X21), . . . ,
( ). Assume that the distribution function F hasX , X1n 2n

associated Archimedean copula Cf; we wish to iden-
tify the form of f. We work with an intermediate
(unobserved) random variable Zi5F( ) that hasX , X1i 2i

distribution function K(z)5Prob(Zi ≤ z). Genest and
Rivest showed that this distribution function is re-
lated to the generator of an Archimedean copula
through the expression

f(z)
K(z) 5 z 2 .

f ' (z)

To identify f, we:
1. Estimate Kendall’s correlation coefficient using

the usual (nonparametric or distribution-free) es-
timate

21n
t 5 sign[ X 2 X X 2 X ].Σ ~ !~ !n ~ ! 1i 1j 2i 2j2 i,j

2. Construct a nonparametric estimate of K, as fol-
lows:
a. First, define the pseudo-observations Zi 5 {num-

ber of (X ) such that ,X1i and X ,X } /, X X1j 2j 1j 2 2ij

(n 2 1) for i 5 1, . . . , n.
b. Second, construct the estimate of K as Kn(z)5

proportion of Zi's ≤ z .
3. Now construct a parametric estimate of K using the

relationship

f(z)
K (z) 5 z 2 .f f '(z)

For example, refer to Table 1 for various choices
of f and use the estimate tn to calculate an

estimate of a, say an. Use an to estimate f(x), say
fn(x). Finally, use fn(x) to estimate Kf(z), say
Kf (z).

n

Repeat step 3 for several choices of f. Then, com-
pare each parametric estimate to the nonparametric
estimate constructed in Step 2. Select the choice of
f so that the parametric estimate K (z) most closelyfn

resembles the nonparametric estimate Kn(z). Meas-
uring ‘‘closeness’’ can be done by minimizing a dis-
tance such as *[K (z)2Kn(z)]2 dKn(z) or graphically.fn

Graphical representations include (1) plots of Kn(z)
and K (z) versus z, and (2) the corresponding quan-fn

tile plots. See Section 4 for an example.

3.3 Simulation

Actuaries routinely deal with complex nonlinear func-
tions, such as present values, of random variables.
Simulation is a widely used tool for summarizing the
distribution of stochastic outcomes and for commu-
nicating the results of complex models. The copula
construction allows us to simulate outcomes from a
multivariate distribution easily.

The two primary simulation strategies are the Ar-
chimedean and compounding methods for construct-
ing copulas; each has relative advantages and dis-
advantages.

We begin with the Archimedean construction. Our
goal is to construct an algorithm to generate

having known distribution functionX , X , . . . , X1 2 p

F(x1, x2, . . . . , xp)5C ,F (x ), F (x ), . . . , F (x )~ !1 1 2 2 p p

where the copula function is

21C u , u , . . . , u 5 f f u 1 1 f u .z z z~ ! ~ ! ~ !~ !1 2 p 1 p

For this construction, Genest and Rivest (1986b)
and Genest (1987) introduced the idea of simulating
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UNDERSTANDING RELATIONSHIPS USING COPULAS 11

the full distribution of (X1, X2, . . . , Xp) by recursively
simulating the conditional distribution of Xk given X1,
. . . . , Xk21, for k52, . . . , p. This idea, subsequently
developed by Lee (1993), is as follows. For simplicity,
we assume that the joint probability density function
of X1, X2, . . . , Xp exists. Using the copula construction,
the joint probability density function of X1, . . . , Xk is

k]
21f (x , . . . , x ) 5 fk 1 k ]x . . . ]x1 k

f F x 1 1 f F xz z z@ ~ !# @ ~ !#1 1 k k$ %
21(k)5 f f F x 1 1 f F xz z z@ ~ !# @ ~ !#1 1 k k$ %

k
(1) (1)f F x F x .@ ~ !# ~ !P j j j j

j51

Here, the superscript notation (j) means the j-th
mixed partial derivative. Thus, the conditional den-
sity of Xk given X1, . . . , Xk21 is

f (x , . . . , x )k 1 kf (x |x , . . . , x ) 5k k 1 k21 f (x , . . . , x )k21 1 k21

(1) (1)5 f F (x ) F (x )@ #k k k

21(k21)f f F (x ) 1 1 f F (x )@ # z z z @ #1 1 k k$ %
.

21(k21)f f F (x ) 1 1 f F (x )@ # z z z @ #1 1 k21 k21$ %
Further, the conditional distribution function of Xk

given X1, . . . , Xk21 is

F x |x , . . . , x~ !k k 1 k21

xk

5 * f x |x , . . . , x dx~ !k 1 k212`

21(k21)f f F x 1 1 f F xz z z@ ~ !# @ ~ !#1 1 k k$ %
5

21(k21)f f F x 1 1 f F xz z z@ ~ !# @ ~ !#1 1 k21 k21$ %
21(k21)f c 1 f F x@ ~ !#k21 k k$ %

5 ,
21(k21)f c~ !k21

where ck5f[F1(x1)]1 z z z1f[Fk(xk)]. With this distri-
bution function, we can now use the usual procedure
of solving for the inverse distribution function and
evaluating this at a uniform random number; that is,
use F21(U)5Xk.

To summarize, the algorithm is (Lee 1993):

Algorithm 3.1 Generating Multivariate Outcomes
from an Archimedean Copula

1. Generate U1, U2, . . . , Up independent uniform
(0,1) random numbers.

2. Set X15F (U1) and c0 5 0.21
1

3. For k52, . . . . , p, recursively calculate Xk as the
solution of

U 5 F X |x , . . . , x~ !k k k 1 k21

21(k21)f c 1 f F x@ ~ !#k21 k k$ %
5 . (3.4)

21(k21)f c~ !k21

This algorithm was initially introduced in the context
of Frank’s copula for p52. Here, pleasant calculations
show that the algorithm reduces to:

Algorithm 3.2 Generating Bivariate Outcomes from
Frank’s Copula

1. Generate U1, U2 independent uniform (0,1) ran-
dom numbers.

2. Set X15F (U1).21
1

3. Calculate X2 as the solution of
21

2a 2aF (X )2 2e 2 e
2aU1U 5 e 1 1 .2 2aF (X~ !)2 2e 2 1

That is, calculate X25F (U*2) where21
2

2a 2aU1U e 2 e 1 2 U~ !2 *2

U 5 .*2
2aU1U 1 e 1 2 U~ !2 *2

Genest (1987) gave this algorithm.
The algorithm can also be readily used to simulate

distributions from Clayton’s family. From Table 2, we
have f21(s)5(11s)21/a so that

21(1) 21 2(1/a)21f (s)52a (11s) .

This expression with p52 and Equation (3.4) show
that

2(1/a)21
21/a 21/a212a 1 1 F X 2 1 1 U 2 1~ !~ !2 2 1

U 5 .2 1(1/a)21
21/a212a 1 1 U 2 1~ !1

That is, calculate X25F (U*2) where21
2

2a
21/a 2a/(a11)U 5 1 1 U U 2 1 .~ !~ !*2 1 *2

For the Gumbel-Hougaard copula, determining X2

in Equation (3.4) requires an iterative solution.
Although straightforward, this is computationally
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12 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

TABLE 4
SUMMARY STATISTICS OF LOSSES AND EXPENSES

ALAE Loss Policy Limit
Loss

(Uncensored)
Loss

(Censored)

Number 1,500 1,500 1,352 1,466 34
Mean 12,588 41,208 559,098 37,110 217,491
Median 5,471 12,000 500,000 11,048 100,000
Standard Deviation 28,146 102,748 418,649 92,513 258,205
Minimum 15 10 5,000 10 5,000
Maximum 501,863 2,173,595 7,500,000 2,173,595 1,000,000
25th Percentile 2,333 4,000 300,000 3,750 50,000
75th Percentile 12,577 35,000 1,000,000 32,000 300,000

expensive because many applications require large
numbers of simulated values. This drawback leads us
to introducing an alternative algorithm suggested by
Marshall and Olkin (1988) for compound construc-
tions of copulas.

To generate X1, X2, . . . , Xp having a mixture of
powers distribution specified in Equation (3.2), the
algorithm is:

Algorithm 3.3 Generating Multivariate Outcomes
from a Compound Copula

1. Generate a (latent) random variable g having La-
place transform t.

2. Independently of step 1, generate U1, U2, . . . , Up

independent uniform (0, 1) random numbers.
3. For k51, . . . , p, calculate Xk5F (U*k) where21

k

21U 5 t 2g ln U . (3.5)~ !*k k

Recall that the marginal distribution function can be
calculated from the baseline distribution function us-
ing Fk(x)5t . To illustrate for the Gumbel-2 ln H (x)~ !k

Hougaard copula, from Equation (3.5), we have

21/a
21U 5 exp 2 2g ln U .@ #~ !*k k

The algorithm is straightforward for most copulas
of interest that are generated by the compounding
method. Like the conditional distribution approach, it
can be easily implemented for more than two dimen-
sions (p.2). It is computationally more straightfor-
ward than the conditional distribution approach. A
disadvantage is that it requires the generation of an
additional variable, g. For bivariate applications, this
means generating 50% more uniform random variates;
this can be expensive in applications.

4. INSURANCE COMPANY LOSS AND
EXPENSE APPLICATION

This section illustrates methods of fitting copulas to
insurance company indemnity claims. The data com-
prise 1,500 general liability claims randomly chosen
from late settlement lags and were provided by Insur-
ance Services Office, Inc. Each claim consists of an
indemnity payment (the loss, X1) and an allocated
loss adjustment expense (ALAE, X2). Here, ALAE are
types of insurance company expenses that are specif-
ically attributable to the settlement of individual
claims such as lawyers’ fees and claims investigation
expenses; see, for example, Hogg and Klugman (1984).
Our objective is to describe the joint distribution of
losses and expenses.

Estimation of the joint distribution of losses and ex-
penses is complicated by the presence of censoring, a
common feature of loss data (Hogg and Klugman
1984). Specifically, in addition to loss and expense
information, for each claim we have a record of the
policy limit, the maximal claim amount. With the
presence of the policy limit, the loss variable is cen-
sored because the amount of claim cannot exceed the
stated policy limit. For some claims, the policy limit
was unknown, and for these policies, we assumed
there was no policy limit.

Table 4 summarizes the data. Here, only 34 of 1,500
policies have claims that equaled the policy limit and
thus are considered censored. However, the censored
losses cannot be ignored; for example, the mean loss of
censored claims is much higher than the corresponding
mean for uncensored claims. Table 4 also shows that
our sample comprises only claims with positive losses
and expenses. Separate models would be required for
claims with positive losses but no expenses or for claims
with zero losses but positive expenses.

Figure 1 is a scatterplot of loss versus ALAE. The
corresponding correlation coefficient is 0.41. This
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UNDERSTANDING RELATIONSHIPS USING COPULAS 13

FIGURE 1
PLOT OF ALAE VERSUS LOSS.

BOTH VARIABLES ARE ON A LOGARITHMIC SCALE.

THIRTY-FOUR LOSS OBSERVATIONS ARE CENSORED.

THIS PLOT DEMONSTRATES A STRONG RELATIONSHIP

BETWEEN ALAE AND LOSS.

statistic, together with the plot, suggests a strong re-
lationship between losses and expenses.

4.1 Fitting Marginal Distributions

The initial step in our model fitting is to determine
the appropriate marginals. Determining appropriate
parametric distributions for univariate data is well de-
scribed in Hogg and Klugman (1984). For these data,
this step was examined in detail earlier by Klugman

FIGURE 2
FITTED DISTRIBUTION FUNCTIONS OF ALAE.

THE DOTTED CURVE IS THE EMPIRICAL DISTRIBUTION FUNCTION.

THE SMOOTH CURVE IS A FIT USING THE PARETO DISTRIBUTION.

and Parsa (1995). Thus, for simplicity, we present
here only the fit of the univariate marginals using a
Pareto distribution. With parameters l and u, the dis-
tribution function is

ul
F(x) 5 1 2 .~ !l 1 x

The quality of the fit of the marginal distributions can
be examined with a graphical comparison of the fitted
distribution function against their empirical versions,
as displayed in Figures 2 and 3. Because of censoring,
we used the Kaplan-Meier empirical distribution func-
tion for the loss variable.

4.2 Fitting a Copula to the Bivariate Data

To fit the copula, we first identify the form of the cop-
ula in Section 4.2.1 and then estimate it using maxi-
mum likelihood in Section 4.2.2.

4.2.1 Identifying a Copula

We use the procedure developed by Genest and Rivest
(1993) for identifying an appropriate copula, outlined
in Section 3.2. According to the procedure, we exam-
ine the degree of closeness of the parametric and non-
parametric versions of the distribution function K(z).
This procedure is based on estimates of K(z), the dis-
tribution function of pseudo-observations Z5F(X1, X2).
The idea behind the procedure is to compare a

FIGURE 3
FITTED DISTRIBUTION FUNCTIONS OF LOSS.

THE DOTTED CURVE IS A KAPLAN-MEIER EMPIRICAL

DISTRIBUTION FUNCTION. THE SMOOTH CURVE IS A FIT USING THE

PARETO DISTRIBUTION.
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14 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

nonparametric estimate of K(z) to those based on a
specific form of the copula. To compare the two esti-
mates of K(z), we examine quantiles from each esti-
mated distribution. Scatterplots of the two sets of
quantiles are widely known in statistics as quantile-
quantile, or q-q, plots. For identification purposes, we
ignore the mild censoring in the loss variable although
we do accommodate it in the more formal maximum
likelihood fitting in Section 4.2.2.

We now discuss identification for three widely used
copulas, namely, the Gumbel-Hougaard, Frank, and
Cook-Johnson copulas. The form of the copula for each
of these families appears in Table 3. The comparison
of the resulting q-q plots is displayed in Figure 4. Be-
cause of the close agreement between nonparametric
and parametric quantiles, the procedure suggests the
use of the Gumbel-Hougaard copula. The quantiles
based on Frank’s copula are also close to the nonpar-
ametric quantiles, although there is greater disparity at
the higher quantiles, corresponding to high losses and
expenses. We therefore identify both Frank’s and Gum-
bel-Hougaard’s as copulas that we fit more formally in
Section 4.2.2.

4.2.2 Fitting a Copula Using Maximum
Likelihood

Recall that our data consist of losses (X1) and ex-
penses (X2) and that we also have available an indi-
cator for censoring (d), so that d51 indicates the
claim is censored. Parameters were estimated using
maximum likelihood procedures that were pro-
grammed using the SAS procedure IML. In the devel-
opment of the likelihood equation, we use the
following partial derivatives:

]F(x , x )1 2F (x , x ) 5 ,1 1 2 ]x1

]F(x , x )1 2F (x , x ) 5 ,2 1 2 ]x2

and

2] F(x , x )1 2f(x , x ) 5 .1 2 ]x ]x1 2

Similarly, the first partial derivatives for the copula
will be denoted by C1 and C2; the second mixed partial
derivative by C12.

Using a one-parameter copula and Pareto marginals,
we have a total of five parameters to estimate: two each
for the marginals and one for the dependence param-
eter. To develop the likelihood, we distinguish between
the censored and uncensored cases. If the loss variable
is not censored, then d50 and the contribution to the
likelihood function is

f x ,x 5 f x f x C F x , F x . (4.1)~ ! ~ ! ~ ! @ ~ ! ~ !#1 2 1 1 2 2 12 1 1 2 2

If the loss variable is censored, then d51 and the joint
probability is given by

Prob X ≥ x , X ≤ x 5 F (x ) 2 F(x , x ).~ !1 1 2 2 2 2 1 2

Thus, the contribution to the likelihood when the ob-
servation is censored is

f x 2 F x , x~ ! ~ !2 2 2 1 2

5 f x 1 2 C F x , F x . (4.2)~ ! ~ ! ~ !2 2 2 1 1 2 2@ #$ %
Combining Equations (4.1) and (4.2), for a single ob-
servation, the logarithm of the likelihood function is

FIGURE 4
QUANTILE-QUANTILE (Q-Q) PLOTS, CORRESPONDING TO THE PARAMETRIC AND NONPARAMETRIC DISTRIBUTION ESTIMATES OF THE PSEUDO-

OBSERVATIONS DEFINED IN SECTION 3.2. THE DOTTED LINES CORRESPOND TO THE QUANTILES OF NONPARAMETRIC AND PARAMETRIC ESTIMATES OF

THE ARCHIMEDEAN GENERATOR f. THE SMOOTHED LINES CORRESPOND TO THE CASE WHERE THE QUANTILES ARE EQUAL.
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UNDERSTANDING RELATIONSHIPS USING COPULAS 15

log L x , x , d 5 1 2 d log f x , x 1 d log f x~ ! ~ ! ~ ! ~ !1 2 1 2 2 2$
1 log 1 2 C F x , F x .~ ! ~ !@ #~ !2 1 1 2 2 %

(4.3)

The parameter estimates are then determined by
maximizing the likelihood for the entire dataset:

n

log L x , x , d .Σ ~ !1 2i i
i51

Results of the maximum likelihood estimation fitting
the Gumbel-Hougaard copula, whose partial derivatives
are derived in Appendix A, are summarized in Table
5. Here, we see that the parameter estimates of the
marginal distributions are largely unchanged when we
compare the univariate to the bivariate estimation.
Standard errors are smaller in the bivariate fit, indi-
cating greater precision of the parameter estimates.
The estimate of the dependence parameter is signifi-
cantly different from 1; the estimate of a is approxi-
mately 13 standard errors above 1. This provides
strong statistical evidence that losses and expenses are
not independent. Using Table 3 for the Gumbel-Hou-
gaard copula, we can convert the dependence param-
eter into a more familiar measure of association. Thus,
the parameter value of a51.453 corresponds to an ap-ˆ

proximate Spearman’s correlation measure of 31%. A

95% confidence interval for a is therefore given by
a51.96*se(a)51.45351.96(0.034)5(1.386,1.520). Thisˆ ˆ

corresponds to a 95% confidence interval of (28%,
34%) for the Spearman’s correlation.
Results of the maximum likelihood estimation fitting
the Frank copula are summarized in Table 6. Here,
the behavior of parameter estimates and standard er-
rors is similar to the fit using the Gumbel-Hougaard
copula. For our parameterization of Frank’s copula,
the case of independence corresponds to a50. In our
case, the parameter estimate of a523.158 corre-ˆ

sponds to an approximate Spearman’s correlation
measure of 32%, which is close to the estimate using
the Gumbel-Hougaard copula.
It is difficult to compare the fit of the two copulas
directly because they are non-nested models. How-
ever, we did compute Akaike’s Information Criteria
(AIC) for each model, given by AIC5[22 ln (maxi-
mized likelihood)12(5)]/1500. The results are 15.02
and 15.06 for the Gumbel-Hougaard and Frank copula
models, respectively. The smaller AIC value for the
Gumbel-Hougaard model indicates that this model is
preferred.

4.3 Uses of the Bivariate Fit

This section describes two applications using the es-
timated bivariate distribution of losses and expenses.

TABLE 5
BIVARIATE DATA PARAMETER ESTIMATES USING GUMBEL-HOUGAARD’S COPULA WITH PARETO MARGINALS

Bivariate Distribution Univariate Distribution

Parameter Estimate Standard Error Estimate Standard Error

Loss (X1) l1 14,036 1,298 14,453 1,397
u1 1.122 0.062 1.135 0.066

ALAE (X2) l2 14,219 1,426 15,133 1,633
u2 2.118 0.153 2.223 0.175

Dependence a 1.453 0.034 Not applicable Not applicable

TABLE 6
BIVARIATE DATA PARAMETER ESTIMATES USING FRANK’S COPULA WITH PARETO MARGINALS

Bivariate Distribution Univariate Distribution

Parameter Estimate Standard Error Estimate Standard Error

Loss (X1) l1 14,558 1,390 14,453 1,397
u1 1.115 0.065 1.135 0.066

ALAE (X2) l2 16,678 1,824 15,133 1,633
u2 2.309 0.187 2.223 0.175

Dependence a 23.158 0.174 Not applicable Not applicable
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16 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 2, NUMBER 1

4.3.1 Calculating Reinsurance Premiums

After having identified the joint distribution of (X1,
X2), we can examine the distribution of any known
function of X1 and X2, say, g(X1, X2). To illustrate, con-
sider a reinsurer’s expected payment on a policy with
limit L and insurer’s retention R. Then, assuming a
pro-rata sharing of expenses, we have

0 if X , R1

X 2 R1g X , X 5 X 2 R 1 X if R ≤ X , L.~ !1 2 1 2 1X1$ L 2 R
L 2 R 1 X if X ≥ L2 1L

The expected payment Eg(X1, X2) could be calculated
using numerical integration when the joint density of
losses and expenses is available. However, simulation
is a simpler, numerical evaluation tool. The procedure
for simulation is described in Section 3.3.

The idea with simulation is to generate a sequence
of bivariate data (x , x ) from the bivariate distribu-1 2i i

tion model. The procedure for the Gumbel-Hougaard
copula is summarized in Algorithm 3.3, using Equa-
tion (3.6) for Equation (3.5). In the procedure, the
inverse of the marginal distribution functions is
needed. In the Pareto case, it is not difficult to verify
that F21(x)5l[(12x)21/u21].

The simulation steps outlined in Algorithm 3.3, us-
ing the Gumbel-Hougaard copula, are repeated a large
number of times. Let nsim be the number of simula-
tions performed so that we generate the sequence of
sample (x , x ), i51, . . . , nsim. Thus, the estimated1i 2i

value for the reinsurer’s expected payment is given by
nsim

1
ĝ* L, R 5 g x , x ,Σ~ ! ~ !1i 2i

i51nsim

with standard error

nsim
1

2 2ˆg(x , x ) 2 g* L, RΣ ~ !1i 2i
i51nsimˆse g* L, R 5 .~ !~ ! = nsim

We performed a simulation study of size nsim5
100,000; the results are summarized in Table 7.

The results in Table 7 provide the adjusted premi-
ums the reinsurer would have assessed to cover costs
of losses and expenses according to various policy
limits and ratios of insurer’s retention to policy limit.
On a crude basis, these results appear to make sense.
For example, from the summary statistics in Table 4,
the average policy limit is 559,098 with an average of
losses plus expenses of 53,796. Without any reinsur-
ance, our results indicate an adjusted premium of
49,367, with a standard error of 733, for a policy limit
of 500,000. Furthermore, the results are intuitively
appealing because as expected we observe (1) higher
premium for larger policy limits and (2) lower pre-
mium when the ratio R /L is higher, that is, insurer
retains larger amount of losses.

Because it is common practice to assume inde-
pendence, we provide Table 8, which gives ratios of
dependence to independence reinsurance premiums.
The dependence assumption is based on the Gum-
bel-Hougaard estimation results, while the independ-
ence assumption is based on the estimation results
when the joint distribution is assumed to be the prod-
uct of the marginals. In previous sections, we argue
that the estimation results using dependence are sta-
tistically significant. Table 8 shows that substantial
mispricing could result if the unrealistic assumption
of independence between losses and expenses is
made. A ratio below 1.0 from the table suggests an
overvalued reinsurance premium; a ratio above 1.0
suggests undervalued premiums. According to the

TABLE 7
SIMULATION-BASED REINSURANCE PREMIUMS (SIMULATION STANDARD ERRORS ARE IN PARENTHESIS)

Ratio of Insurer’s Retention to Policy Limit (R/L)

Policy Limit (L) 0.00 0.25 0.50 0.75 0.95

10,000 15,636 (640) 11,232 (480) 7,220 (320) 3,498 (160) 684 (32)
100,000 34,264 (655) 17,965 (493) 10,003 (328) 4,425 (164) 819 (33)
500,000 49,367 (733) 17,457 (544) 9,234 (359) 4,007 (179) 739 (36)

1,000,000 55,683 (818) 16,762 (597) 8,740 (390) 3,716 (193) 672 (38)
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UNDERSTANDING RELATIONSHIPS USING COPULAS 17

TABLE 8
SIMULATION-BASED RATIOS OF DEPENDENCE TO INDEPENDENCE

REINSURANCE PREMIUMS

Ratio of Insurer’s Retention
to Policy Limit (R/L)

Policy Limit (L) 0.00 0.25 0.50 0.75 0.95

10,000 0.80 0.95 1.02 1.07 1.10
100,000 0.89 1.24 1.36 1.44 1.50
500,000 0.92 1.31 1.40 1.47 1.52

1,000,000 0.93 1.31 1.39 1.47 1.53

table, undervalued premiums result from higher re-
tention by the reinsured. This undervaluation is more
important for higher policy limits. The greatest over-
valued premiums are for large retention levels and
policy limits. This is intuitively plausible; pricing in
the tail of the distribution is very sensitive to model
misspecification.

4.3.2 Estimating Regression Functions

As described in Section 1, the regression function is
the most widely used tool for describing multivariate
relationships. To illustrate in the context of losses and
claims, we examine situations in which it is useful to
estimate the expected amount of expenses for a given
level of loss. Copulas can help us understand the full
joint distribution and thus be used to address some
important applications described in Sections 2, 4.3.1,
and 5. We can also use copulas to define regression
functions, as follows.

To be specific, let us assume an Archimedean form
of the copula as in Section 3.3 so that the conditional
distribution of Xk given X1, . . . , Xk21 is

21(k21)f c 1 f F x~ !k21 k k@ #$ %
F x |x , . . . , x 5 ,~ !k k 1 k21

21(k21)f c~ !k21

where ck5f{F1(x1)}1 z z z1f{Fk(xk)}. Basic results
from mathematical statistics show that the regression
function can be expressed as

E X |x , . . . , x~ !k 1 k21

`

5 * 1 2 F x |x , . . . , x dx@ ~ !#k 1 k210

0

1 * F x |x , . . . , x dx .~ !k 1 k212`

In certain situations, this expression is convenient to
evaluate. For example, assuming k52 and using uni-
form marginals and Frank’s copula, Genest (1987)
gave the regression function

2a 2ax 2a 2ax1 2 e xe 1 e e 2 1~ ! ~ !
E X |X 5 x 5 .~ !2 1

2ax 2a 2axe 2 1 e 2 e~ !~ !

In general, however, the calculation of the regres-
sion function is tedious. As an alternative, copulas are
well-suited to the concept of ‘‘quantile’’ regression.
Here, in lieu of examining the mean of a conditional
distribution, one looks at the median or some other
percentile (quantile) of the distribution. Specifically,
define the p-th quantile to be the solution xp of the
equation:

p 5 F x |x , . . . , x .~ !k p 1 k21

For the case k52, we have

p 5 F x | X 5 x 5 C F x ,F x . (4.5)~ ! @ ~ ! ~ !#2 p 1 1 1 1 1 2 p

The first partial derivative for the case of the Gumbel-
Hougaard copula is derived in Appendix A. For the
case of Frank copula, the first partial derivative is
given by

au ave e 2 1~ !
C u,v 5 . (4.6)~ !1

a au ave 2 1 1 e 2 1 e 2 1~ !~ !

For a complete derivation of partial derivatives of the
Frank’s copula, see also Frees et al. (1996).

Thus, for a specified proportion p and amount of
loss x1, we can find the percentile of the correspond-
ing expenses by solving Equation (4.5). For the case
of the Gumbel-Hougaard copula, we use Equation
(A.2) to get the p-th percentile of the expense level,
which is given by

21x 5 F (v ),p 2 p

where vp is the solution to the following equation:

a21 C F x , v~ !~ !1 1 pln F (x )1 1 5 p .
F x~ !1 1~ !ln C F x , v~ !~ !1 1 p

For various percentiles, Figure 5 graphically dis-
plays the result of regression curves that provide
estimates of expenses conditional on the amount of
loss using the Gumbel-Hougaard copula. We super-
imposed these regression curves on the scatterplot of
losses and expenses. This plot allows a manager to
estimate expenses for a prespecified loss amount. By
providing several percentiles, the manager can choose
the degree of conservatism that is appropriate for the
business decision at hand.
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FIGURE 5
SCATTERPLOT OF ALAE VERSUS LOSS

WITH QUANTILE REGRESSION CURVES SUPERIMPOSED

5. ADDITIONAL APPLICATIONS OF
COPULAS

We now discuss three different subject areas useful to
the actuary in which copulas have been applied: sto-
chastic ordering, fuzzy logic, and insurance pricing.
Stochastic ordering refers to relationships among dis-
tribution functions of random variables. Fuzzy logic is
an approach for dealing with uncertainty, analogous to
probability theory. All actuaries are familiar with in-
surance pricing, which involves premium calculation.

5.1 Stochastic Ordering

In actuarial science and the economics of decision-
making, the comparison of the attractiveness of various
risks is usually of interest; therefore the subject of sto-
chastic orderings is of prime importance. To illustrate,
we say the random variable X1 stochastically domi-
nates the random variable X2 with respect to a class of
functions, say U, if for any function u[U, we have

Eu X ≥ Eu X .~ ! ~ !1 2

Often, u is the utility-of-wealth function that defines
risk preferences of decision-makers. As special cases,
we consider the well-known classes of first (FSD) and
second (SSD) stochastic dominance. In FSD, the class
U is taken to be the class of increasing utility func-
tions. In SSD, U is the smaller class of increasing, con-
cave utility functions, applicable to risk-averse
decision-makers; see Kaas et al. (1994), Heilman and
Schroter (1991), and Gooavaerts et al. (1982).

Copulas are used in the analysis for the demand of
insurance coverage studied by Tibiletti (1995). The

problem is to find the optimal insurance coverage for
a decision-maker when a proportion of the wealth is
uninsurable. Suppose that X1 is the amount of unin-
surable asset and X2 is the insurable loss with 0≤x2≤
m; that is, m is the maximum value of the insurable
asset. In a two-period model, define the final wealth
to be

Z 5 X 1 m 2 X 1 d X 2 p . (5.1)~ !1 2 2

Here, d is the coinsurance rate and p is the premium
rate. In this insurance setup, the questions typically
explored are: (1) what coinsurance rate d maximizes
E(Z) and (2) when do certain ‘‘beneficial’’ changes
that increase expected utility affect optimal coverage?
Tibiletti explored beneficial changes such as (1) a
shift in the distribution of either X1 or X2, (2) a change
in the dependence between X1 and X2, and (3) a
change in both (1) and (2). Because dependence
comes into play, copulas provide a natural tool in this
situation. Most of the theorems described and proved
use conditions that involve a certain dependence or-
dering called more concordance. If (X1, X2) and (Y1,
Y2) are pairs with associated copulas Cx and Cy, then
the pair (X1, X2) is said to be more concordant than
(Y1, Y2) if Cx(a,b)≥CY(a,b) for all (a,b) [0,1]2.[

The more concordant ordering is just one of several
types of dependence ordering used to order multi-
variate distributions. See Tchen (1980), Kimeldorf
and Sampson (1987, 1989), and Metry and Sampson
(1991) for alternative orderings. For example, another
type is the so-called more regression dependent or-
dering. Here, the random vector (X1, X2) is said to be
more regression dependent than (Y1, Y2) if for any
x '1.x1, we have

Pr(X ≤ x |X 5 x ')2 2 1 1 ≥ 1
Pr(Y ≤ y |Y 5 x ')2 2 1 1

whenever we have

Pr(X ≤ x |X 5 x )2 2 1 1 ≥ 1.
Pr(Y ≤ y |Y 5 x )2 2 1 1

See Bilodeau (1989). Dependence ordering is partic-
ularly useful for determining the range of possible de-
pendence in multivariate random variables. Other
areas in which stochastic orderings are useful are
probability theory, reliability, and operations re-
search; see Mosler and Scarsini (1991).

5.2 Fuzzy Sets

Like probability theory, fuzzy set theory deals with
uncertainty. To start, let U be a non-empty set whose
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UNDERSTANDING RELATIONSHIPS USING COPULAS 19

subsets are of primary interest; in fuzzy set theory, it
is called the universe of discourse. A fuzzy set is de-
fined to be a pair (E, µE) where E,U and µE:U→
[0, 1]. For any x in U, µE(x) denotes the degree to
which x belongs to the fuzzy set, almost like a prob-
ability.

Operations, such as unions and intersections, on
fuzzy sets are common. To illustrate, if we have two
fuzzy sets (A, µA) and (B, µB), then their union is the
fuzzy set (C, µC) where µC(x)5max[µA(x), µB(x)] and
their intersection is the fuzzy set (D, µD) with µD

(x)5min[µA(x, µB(x)]. Other operations on fuzzy sets
are performed using triangular norms. Triangular norms
were considered originally in the context of probabilistic
metric spaces and provide the link to copulas.

Following Ostaszewski (1993) and Klement (1982a,
1982b), a triangular norm (t-norm for short), T is a
mapping T :[0, 1]2 → [0, 1] with the following proper-
ties: (1) boundary condition: T(x, 1)5 x; (2) monoton-
icity: T(x, y)≤T(u, v) whenever x≤u, y≤v; (3)
commutativity: T(x, y)5T(y, x); and (4) associativity:
T(T(x, y), z)5T(x, T(y, z)). In Schweizer and Sklar
(1983), several results are given that relate triangular
norms and copulas. Many copulas can serve as trian-
gular norms, as the following examples illustrate.

Example 5.1 Frechet Bounds

T(x, y) 5 min(x, y) and T(x, y) 5 max(x 1 y 2 1, 0).

Example 5.2 Independence

T(x, y) 5 xy.

Example 5.3 Frank

x y(h 2 1)(h 2 1)
ln 1 1

h 2 1
T(x, y) 5

ln h

where h . 0, h Þ 1.
Therefore, by considering familiar copulas, as

well as newly constructed copulas, we can define new
operations that can be performed on fuzzy sets. Fuzzy
set theory has been applied in specific areas of inter-
est to many actuaries such as risk economics, interest
theory, and underwriting/classification of risks. See
Ostaszewski (1993), LeMaire (1990), and Young
(1993) for descriptions of these applications.

5.3 Insurance Pricing

The calculation of a premium to be assigned to an
insurance risk X is a fundamental job of the actuary.
Recently, Wang (1996) developed a principle that
exhibits several desirable properties of a premium
principle. Wang (1997) used the concept of a distor-
tion function and extended this, using copulas, to a
portfolio of dependent risks.

Let X be an insurance risk with survival function
S(x)5Pr(X.x). A class of premium principles can be
defined by p(X)5* g[S(z)]dz, where g, called the dis-`

0

tortion function, is increasing with g(0)50 and g(1)
51. In the special case of the function g(t)5t1/h with
h≥0, we have the class of proportional hazard (PH)
transforms.

For the bivariate case, consider a random vector
(X1, X2) with distribution function F(x1, x2)5
C[F1(x1), F2(x2)]; then the function

;
F(x1, x2)5g[F(x1,

x2)] is another joint distribution function with mar-
ginals g(F1) and g(F2). The associated copula is there-
fore

;
C(u1, u2)5g[C(g21(u1), g21(u2))]. Some illustra-

tions of distortion functions follow.

Example 5.4 Power Distortion Function

Here, we have g(t)5 t1/h, where h≥0. The independ-
ence structure is preserved under this distortion func-
tion. To see this, note that if C(u1, u2)5u1u2, then
;
C(u1, u2) 5g[C(u )]5u1u2.h h, u1 2

Example 5.5 Exponential Distortion Function

Here, we have

2ht1 2 e
g(t) 5 ,

2h1 2 e

where h.0. Again, beginning with the independence
copula C(u1, u2)5u1u2, it is straightforward to show
that we can generate Frank’s family of copulas

u u1 2(h 2 1)(h 2 1)
1 1

h 2 1;
C(u , u ) 5 ln .1 2 ln h

Using the concept of copulas, Wang (1997) extends
the PH measure to a portfolio of risks. In many situ-
ations, for a portfolio of risks, the proposed measure
is useful because individual risks are considered de-
pendent. Wang justified dependence of individual
risks by stating that they are ‘‘influenced by the same
underlying market environment.’’
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6. SUMMARY AND CONCLUSIONS

In analyzing the impact of future contingent events,
actuaries are faced with problems involving multi-
variate outcomes. In this paper, we review the prob-
lems of (1) estimating distributions of joint lifetimes
of paired individuals, useful in the analysis of survi-
vorship insurance protection, and (2) investigating
mortality experience, for the actuary who needs to
distinguish among causes of death. We introduced,
and provided a solution for, the problem of depend-
ence between an insurer’s losses and expenses. Fail-
ures of ignoring dependencies can lead to mispricing.
Thus, it is important for actuaries to be able to ade-
quately model multivariate outcomes.

The tool used to study multivariate outcomes is the
copula function; it couples univariate marginals to the
full multivariate distribution. The biological frailty
models and the mathematical Archimedean models
can motivate copulas. A statistical mixture of powers
model serves as a bridge between these two sets of
families.

Because copulas are parametric families, standard
techniques such as maximum likelihood can be used
for estimation. Other statistical tools have been re-
cently developed to help fit copulas. We described a
graphical tool to identify the form of the copula. We
discussed how copulas could be used to simulate multi-
variate outcomes, an important tool for actuaries. We
also developed the connection between copulas and
the regression function, a widely used tool for sum-
marizing what we expect based on conditional distri-
butions.

This article has focused on the connection between
copulas and statistics, the theory of data. Yet, much
of the development of copulas has historically arisen
from probability theory. To recognize this connec-
tion, we briefly reviewed topics in applied probability
theory pertaining to copulas that are of the greatest
interest to actuaries: stochastic ordering, fuzzy set
theory, and insurance pricing.

Our knowledge of copulas has been rapidly devel-
oping recently. Many of the articles cited in this re-
view paper were written in the 1990s. In another
recent survey paper, Kotz (1997) cites three confer-
ences in the last five years that were largely devoted
to copulas. Copulas offer analysts an intuitively ap-
pealing structure, first for investigating univariate dis-
tributions and second for specifying a dependence
structure. Copulas offer a flexible structure that can
be applied in many situations. We hope that this

article encourages actuaries to seek new applications
for this promising tool.
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APPENDIX A

GUMBEL-HOUGAARD COPULA
AND ITS PARTIAL DERIVATIVES

In this appendix, we derive the formulas needed to
evaluate the likelihood in Equation (4.3) in the case
in which we apply the Gumbel-Hougaard copula as
given in Table 1. First, we re-express the Gumbel-
Hougaard copula as follows:

a
a a

2 ln C u, v 5 2 ln u 1 2 ln v .~ ! ~ ! ~ !@ #
For simplicity, we denote C(u, v) by C. Now, take the
partial derivative with respect to u of both sides of the
equation to get:

a21 a21(2 ln C) ]C (2 ln u)
5 . (A.1)

C ]u u

Solving for ]C /]u, we have:

a21]C ln u C
5 . (A.2)~ !]u ln C u

Applying symmetry, we get:

a21]C ln v C
5 . (A.3)~ !]v ln C v

From Equation (A.1), we can take the partial
derivative with respect to v to get:
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a21 2(2 ln C) ] C
C ]u]v

a21]C ]C (2 ln C)
212 (a 2 1)(2 ln C) 1 1 5 0.@ #2]u ]v C

Rearranging terms yields the second partial derivative
of the Gumbel-Hougaard copula:

2] C 1 ]C ]C
215 (a 2 1)(2 ln C) 1 1 . (A.4)@ #

]u]v C ]u ]v

Equations (A.2), (A.3), and (A.4) are used to evaluate
the log-likelihood given in Equation (4.3).

APPENDIX B

TABLE OF ONE-PARAMETER FAMILY OF COPULAS

Family General Form of Copula
Parameter
Constraint Kendall’s Tau Spearman’s Rho

Ali-Mikhail-Haq uv [1 2 a(1 2 u)(1 2 v)]21 21 ≤ a ≤ 1 23a 2 2 2 1
2 1 2 ln (1 2 a)~ ! ~ !a 3 a

Complicated form

Cook-Johnson [u2a 1 v2a 2 1]21/a a ≥ 0 a

a 1 2
Complicated form

Farlie-Gumbel-
Morgenstern

uv[1 1 a(1 2 u)(1 2 v)] 21 ≤ a ≤ 1 2
a

9
1

a
3

Frank au av1 (e 2 1)(e 2 1)
ln 1 1

a@ #a (e 2 1)
a Þ 0

1 2
4

[D (2a) 2 1]1a
1 2

12
[D (2a) 2 D (2a)]2 1a

Gumbel-Hougaard
exp 1/aa a2[(2ln u) 1 (2ln v) ]$ % a ≥ 1 1 2 a21 No closed form

Normal
(Bivariate) H 21 21F u , F v~ ! ~ !~ !

where H is the bivariate normal
distribution function with cor-
relation coefficient a and F21 is
the inverse of a univariate normal
distribution function.

21 ≤ a ≤ 1 2
arcsin (a)

p
6 a

arcsin~ !p 2

Plackett 1
21(a 2 1) 1 1 (a 2 1)(u 1 v) 2$2

21 1 (a 2 1)(u 1 v)@~ !
1/2

1 4a(1 2 a)# %

a ≥ 0 No closed form (a 1 1) 2a ln a
2

2(a 2 1) (a 2 1)
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