Skill: Locating Roots Approximately

Questions

Attempt these questions independently showing full and clear solutions. Check each answer as you go.

1. By drawing suitable sketches, state the number of roots to the following equations. Furthermore, state the sign of each root.
a. $x^{2}=2 x+1$
b. $x^{3}=9-x$
c. $\sqrt{x+2}=x^{2}-3$
d. $\sin x=e^{-x} \quad(|x| \leq \pi)$
e. $x \ln (x-1)=1$
f. $2 \cos x=-3 \quad(|x| \leq \pi)$
g. $\left|e^{x}-4\right|-1=0$
2. Use the change of sign method to show that the following equations have roots in the given interval:
a. $\sin x-2 x+1=0$
b. $e^{x}=5-x$
in the interval $(0.8,0.9)$
in the interval $(1,2)$
c. $x^{\frac{1}{3}}=7-x$
d. $\cos 2 x+x=0$
in the interval $(5,6)$ in the interval $(-1,0)$
3. Consider $f(x)=\frac{1}{x}$
a. Sketch $y=f(x)$ for $x \in \mathbb{R}$.
b. Calculate $f(1)$ and $f(-1)$.
c. Why does your answer to (b) NOT imply that a root lies in the interval $(-1,1)$.
4. Prove that the equation $x^{2}+8 x-5=\sqrt{x}$ has root $x=0.671$ correct to 3 s.f.
5. Prove that the equation $\sin x=\frac{1}{2} x$ has root $x=1.895$ correct to 4 s.f.
6. Prove that the equation $e^{\frac{1}{5} x}=\frac{1}{x}$ has root 0.845 correct to 3 d.p.
7. Prove that the equation $\sec x=\frac{1}{x^{2}}$ has root $x=0.82$ correct to 2 d.p.
