

Unit 11: Reactivity of metals

HKDSE Syllabus

Reactivity of metals

Students should learn

- reactions of some common metals(sodium, calcium, magnesium, zinc, iron, lead, copper, etc.) with oxygen/air, water, dilute hydrochloric acid and dilute sulphuric acid
- metal reactivity series and the tendency of metals to form positive ions
- displacement reactions and their interpretations based on the reactivity series
- prediction of the occurrence of reactions involving metals using the reactivity series
- relation between the extraction method of a metal and its position in the metal reactivity series

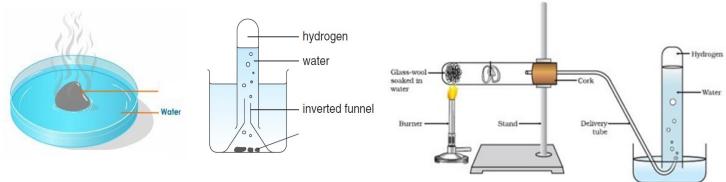
Students should be able to

- describe and compare the reactions of some common metals with oxygen/air, water and dilute acids
- write the word equations for the reactions of metals with oxygen/air, water and dilute acids
- construct a metal reactivity series with reference to their reactions, if any, with oxygen/air, water and dilute acids
- write balanced chemical equations to describe various reactions
- use the state symbols (s), (l), (g) and (aq) to write chemical equations
- relate the reactivity of metals to the tendency of metals to form positive ions
- describe and explain the displacement reactions involving various metals and metal compounds in aqueous solutions
- deduce the order of reactivity of metals from given information
- write balanced ionic equations
- predict the feasibility of metal reactions based on the metal reactivity series
- relate the extraction method of a metal to its position in the metal reactivity series

Points for this unit

1. Reactions betw	veen metals with: a)	b)	c)	
2. Explaining		(M.R.S.)		
3	reaction (置換反)	應) and writing		equation
4	of metal oxide (Extra	ction)		

2020 RS Education www.dse.video Ron Lam

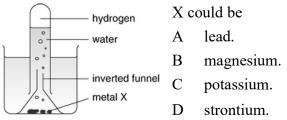

A. Reactions with Oxygen, Water and acid

1. Metal + Oxygen

Metal	Heat needed to start	Observation	Word and chemical equations (General: Metal + Oxygen -> Metal oxide)
	reaction		(Seneral Premi - Shjgen - Premi Shlue)
		Burns vigorously with a flame. powder formed.	+> K _(s) + O _{2(g)}
	Medium	Burns vigorously with a flame. powder formed	Sodium + oxygen -> Sodium oxide $Na_{(s)} + O_{2(g)} \longrightarrow$
		1 flame 2 powder	Calcium + Oxygen -> Calcium oxide $Ca_{(s)} + O_{2(g)} \longrightarrow$
		white flame White powder formed	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		White powder formed	Aluminium + Oxygen -> Aluminium oxide $Al_{(s)}+ O_{2(g)} \longrightarrow$
		powder when hot, powder when cold	Zinc + Oxygen -> Zinc oxide $Zn_{(s)} + O_{2(g)} \longrightarrow$
	Strong	Black powder formed	Iron+ Oxygen -> Iron(III) oxide $Fe_{(s)} + O_{2(g)} \longrightarrow$
		powder when hot, powder when cold	Lead + Oxygen -> Lead oxide $Pb_{(s)} + O_{2(g)} \longrightarrow PbO$
		Black powder formed	Copper + Oxygen -> $\frac{\text{Copper(II)}}{\text{Cu}_{(s)}}$ oxide $Cu_{(s)} + O_{2(g)} \longrightarrow CuO$
	Very strong	Red powder formed	Mercury + Oxygen -> $\underline{Mercury(II)}$ oxide $Hg_{(s)} + O_{2(g)} \longrightarrow HgO$
	Do NOT burn		NO reaction

2. Metal + Water

Metal	Observation	Word and chemical equations (General: Metal + Oxygen -> Metal oxide)
	Metal + Water → N	Metal hydroxide + hydrogen gas
	1, into a silvery ball and darts around.	Potassium +water ->+
	2. Burns with a flame	$K_{(s)} + H_2O_{(l)}$
	1, into a silvery ball and darts around.	Sodium +water ->+
	2 flame can be seen.	$Na_{(s)} + H_2O_{(l)} \longrightarrow$
	1	Calcium + Water -> Calcium hydroxide+hydrogen
	2. Colourless gas bubbles	
	3suspension	$\operatorname{Ca}_{(s)} + \operatorname{H}_2\operatorname{O}_{(1)} \longrightarrow \operatorname{Ca}(\operatorname{OH})_{2(\operatorname{aq})} \operatorname{H}_{2(\operatorname{g})}$
	Metal + Steam →	Metal oxide + hydrogen gas
	Cold water :	$Mg_{(s)} + H_2O_{()} \longrightarrow$
	Hot water: react very slowly	
	Steam: reacts much faster.	$Mg_{(s)} + H_2O_{()} \longrightarrow$
	Same as but less vigorous	$Al_{(s)}+ H_2O_{\bigcirc} \longrightarrow Al_2O_{3(s)}+ H_{2(g)}$
	Same as but less vigorous	$Zn_{(s)} + H_2O_{\bigcirc} \longrightarrow ZnO_{(s)} + H_{2(g)}$
	(Remark: colour of oxide:	
	when hot, when cold)	
	Same as but less vigorous	$Fe_{(s)} + H_2O_{()} \longrightarrow Fe_2O_{3(s)} + H_{2(g)}$
		1
	1	
	1	
	1	
	1	


3. Metals + Acid +

Metal	Observation	Word and chemical equations			
	1. Metal dissolves and give out a lot of heat. ($Ca_{(s)} + HCl_{(aq)} \longrightarrow$ $Mg_{(s)} + HCl_{(aq)} \longrightarrow AlCl_{3(aq)} + H_{2(g)}$ $Zn_{(s)} + HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$ $Fe_{(s)} + HCl_{(aq)} \longrightarrow FeCl_{3(aq)} + H_{2(g)}$			
	Reacts very	$Pb_{(s)} + HCl_{(aq)} \longrightarrow PbCl_{2(aq)} + H_{2(g)}$			

1. The oxide of a metal is orange when it is hot but yellow when it is cold. The metal is

A calcium. B lead. C potassium. D zinc.

2. Hydrogen is produced when metal X reacts with water in the set-up shown below:

3. Which of the following metals can react with cold water readily to give hydrogen?

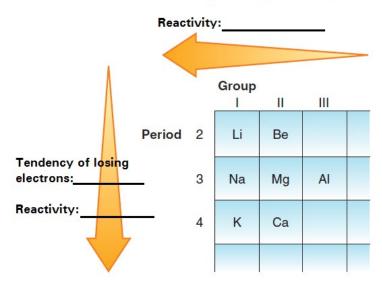
(1) Calcium (2

- (2) Magnesium
- (3) Zinc

- A (1) only
- B (2) only
- C
- (1) and (3) only
- D (2) and (3) only

В.	Exp	laining	the the	Metal	reactivity	y Series
----	-----	---------	---------	-------	------------	----------

All metals ______ electrons to form positive ions (_____) during reaction.


Metal atom _____ Metal ion + electron

Atoms of reactive metals lose outermost shell electrons to form cations readily.

Metal reactivity series	Reactivity	Tendency of losing electron
	Most/least reactive	Highest/lowest tendency

	Most/least reactive	<u>Highest/lowest</u> tendency

Conclusion: More reactive metal is <u>more/less</u> readily to lose <u>electrons</u>.

Tendency of losing electrons:

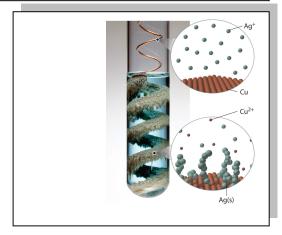
Factor affecting the tendency of losing outermost shell electrons

1._____

HKDSE Chemistry Topic 3 Metals

C. Displacement reaction(置換作用) and ionic equation

A more reactive metal A (Higher in M.R.S.) will displace a less reactive metal B (Lower in M.R.S.) from a solution of a compound of metal B.


Experiment 1

Add copper to an aqueous solution of silver nitrate.

Chemical equation:

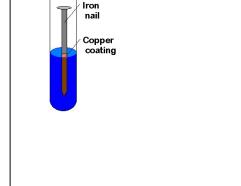
An ionic equation is the equation which **ONLY** includes the ions formed or changed in the reaction

Ionic equation

Observations: 1. Copper		
2	deposits on the	surface
3. The colour of	of solution turns from	to

Tips for writing ionic equation: Delete the chemical species which does NOT change in or ___ after the reaction.

Experiment 2


Add iron to an aqueous solution of copper(II) nitrate.

Chemical equation:

Ionic equation

Observations: 1. Iron ______ deposit on the ____ surface

3. The colour of solution turns from ______ to ____

Experiment 3

Add potassium to an aqueous solution of copper (II) nitrate.

Experiment 4

Add lead to an aqueous solution of magnesium nitrate.

D. Reduction of metal oxide

	(氧化作用): Gain of oxygen to a substance
Metal	← Metal oxide

Metal	Reactivity of metal	Stability of their compounds (in Ore)	Extraction method	Chemical equations involved
	Most/least reactive	Most/least stable		Example: $NaCl(\underline{\hspace{0.5cm}})$ $Al_2O_3(\underline{\hspace{0.5cm}})$
			Heating with Examples of reducing agent (R.A.):	Step1: ZnS +
			R.A. can take up and the metal oxide back to	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Most/least reactive	Most/least stable		Ag ₂ O +

Conclusion:				
Compounds of a metal	in the reactivity series have	stability.		
Thus, the reduction of the oxide of the metal is harder.				

Exercises

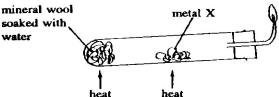
91 MC 08

X, Y and Z are metals. Y can displace X from a solution of the nitrate of X. Oxides of X and Y can be reduced by hydrogen but not the oxide of Z. Which of the following arrangements represents the correct descending order of reactivity of the metals?

A. Z > Y > X

B. X > Y > Z

C. Z > X > Y


D. X > Z > Y

91 MC 02

Rubidium (Rb) is a group I element below potassium in the Periodic Table. Which of the following statements about rubidium is correct?

- A. Rubidium forms an acidic oxide.
- B. Rubidium is more reactive than potassium.
- C. Rubidium can be obtained from its oxide by reduction with carbon.
- D. The formula for rubidium chloride is RbCl₂.

92 MC 31

In the above experiment, a gas is evolved and burns at the jet. Metal X is probably

A. zinc.

B. aluminium

C. magnesium

D. copper

95 MC 18

Metal X reacts with dilute hydrochloric acid to liberate hydrogen, but metal Y and metal Z have no reaction with the dilute acid. The oxide of metal Y decomposes on heating but the oxide of metal Z does not. Which of the following arrangements represents the order of increasing reactivity of the three metals?

A. X < Y < Z

B. Y < Z < X

C. X < Z < Y

D. Z < Y < X

89 3(b) The results of experiments with iron and three other metals X, Y, Z and their oxides are summarized in the following tables:

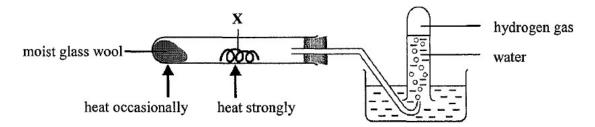
summarized in the fone wing tables.					
Metal Experiment	Iron	X	Y	Z	
Action of metal on iron(II) sulphate solution	No immediate reaction	Iron is deposited	A gas is evolved	No reaction	

Metal oxide Experiment	Fe_2O_3	ХО	Y ₂ O	Z_2O
Action of heat on metal oxide	No reaction	No reaction	No reaction	Metal Z is formed

- (i) What was the gas evolved in the reaction of Y with iron(II) sulphate solution? Write an equation for the reaction involved. (State symbols should be given.)
- (II) Arrange the four metals in descending order of activity, and briefly explain your answer.

2015 DSE 1A

- 2. Which of the following processes would NOT give oxygen?
 - heating mercury(II) oxide strongly A.
 - electrolysis of dilute sulphuric acid B.
 - fractional distillation of liquefied air C.
 - D. passing steam over heated magnesium


2016 DSE

- Consider the following information concerning metal Y: 3.
 - Y reacts vigorously with water. (1)
 - (2)Y forms an oxide with chemical formula Y_2O .
 - An atom of Y has five occupied electron shells. (3)

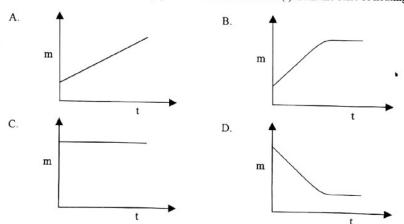
Y may be

HKDSE Chemistry

- silver (Ag). A.
- B. caesium (Cs).
- strontium (Sr). C.
- D. rubidium (Rb).
- 9. Which of the following processes would NOT produce metal?
 - A. heating zinc oxide
 - B. heating copper(II) oxide with carbon
 - C. electrolysis of molten lithium chloride
 - D. heating iron(III) oxide with carbon monoxide
- Consider the following experimental set-up: 4.

Which of the following would NOT be X?

- A. iron
- В. zinc
- C. copper
- D. magnesium
- Water pipes used to carry drinking water are commonly made of copper instead of iron. Although lead-2. containing solder can be used to join these water pipes, such use is prohibited.
 - (a) Suggest one chemical property of copper that makes it more suitable than iron for making water pipes. Explain your answer.


(2 marks)

2020 RS Education www.dse.video 9 Ron Lam

- (b) (i) Suggest one reason of adding lead to soldering materials.
 - (ii) Explain why lead-containing solder is prohibited in joining these water pipes.

2018 DSE

A certain mass of a sample of $Ag_2O(s)$ is strongly heated in a test tube. Which of the following shows the relationship of the mass of the contents (m) in the test tube with time (t) from the start of heating?

- 7. Which of the following statements concerning iron and magnesium is correct?
 - Iron is ductile but magnesium is not.
 - B. Iron corrodes less readily than magnesium.
 - C. The abundance of magnesium is higher than that of iron in the earth crust.
 - D. Both magnesium and iron can have more than one oxidation number in their oxides.
- 9. X, Y and Z are different metals. When they are placed separately in NaCl(aq), only Y gives colourless gas bubbles. When each of their oxides is heated strongly, only the oxide of X gives a colourless gas. Which of the following shows the decreasing order of reactivity of these three metals?
 - $A. \qquad Y > Z > X$
 - B. X > Y > Z
 - C. Y > X > Z
 - D. Z>Y>X

Reactivity series of metal

Metals	
K 鉀	
Na 鈉	
Ca 鈣	
Mg 鎂	
Al 鋁	
Zn 鋅	
Fe 鐵	
Pb 鉛	
Cu 銅	
Hg 汞	
Ag 銀	
Au 金	

Metals

Metals	
	ĺ
	İ
	İ
	l
	l
	İ
	l
	l

Metals

Ron Lam