
Why Subnet?

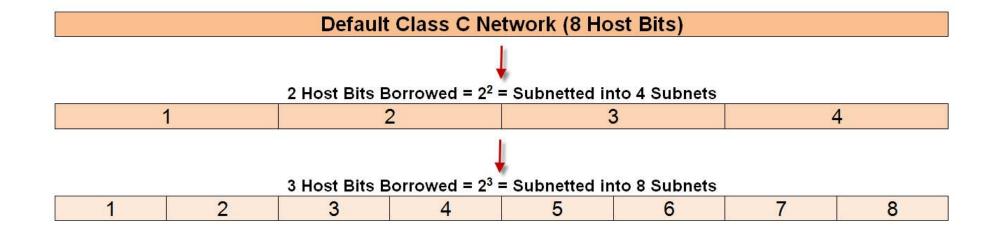
- Using default Class A, B and C subnets (called Classful IP Addressing) is inefficient:
 - Wastes unused IP Addresses (Public IP Addresses)
- Allows you to create multiple logical networks that exist within a single Class A, B, or C network.
 - break a major network down into multiple smaller sub-networks, i.e. subnets!
- Allows for more efficient routing via router summarization.

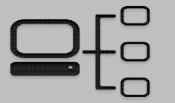
Fixed Length Subnetting

 We will begin learning about fixed length subnetting, known as a fixed-length subnet mask (FLSM)

Process of Subnetting

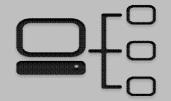
- We borrow host bits to create more subnetworks (subnets) from a Class A, B, or C network.
- When you borrow hosts bits:
 - You create additional sub-networks, i.e. subnets
 - You also decrease the amount of host IP addresses available to use


How to Create Subnets


- Borrow bits from the host portion of an IP address
 - Each bit we borrow is equal to 2¹ Subnets
 - Borrow 1 Bit = $2^1 = 2$
 - Borrow 2 Bits = $2^2 = 4$
 - Borrow 2 Bits = $2^3 = 8$
 - Etc.

Creating Subnets Visualized

Subnetting Questions


- To Create a Subnet, Answer the Following Questions:
 - How many subnets are needed?
 - How many hosts do you need per subnet?

Class C Possible Subnets

Binary (N.N.N.H)	Decimal	CIDR	# Subnets (2 ^x)	Block Size (2 ^y)	# Hosts (2 ^y - 2)
N.N.N.00000000	255.255.255.0	/24	2 ⁰ = 1	2 ⁸ = 256	$2^8 - 2 = 254$
N.N.N.10000000	255.255.255.128	/25	2 ¹ = 2	2 ⁷ = 128	$2^7 - 2 = 126$
N.N.N.11000000	255.255.255.192	/26	$2^2 = 4$	2 ⁶ = 64	$2^6 - 2 = 62$
N.N.N.11100000	255.255.255.224	/27	2 ³ = 8	2 ⁵ = 32	$2^5 - 2 = 30$
N.N.N.11110000	255.255.255.240	/28	2 ⁴ = 16	2 ⁴ = 16	$2^4 - 2 = 14$
N.N.N.11111000	255.255.255.248	/29	2 ⁵ = 32	2 ³ = 8	$2^3 - 2 = 6$
N.N.N.11111100	255.255.255.252	/30	2 ⁶ = 64	$2^2 = 4$	$2^2 - 2 = 2$

Class B Possible Sunets

Binary (N.N.H.H)	Decimal	CIDR	# Subnets (2*)	Block Size (2 ^y)	# Hosts (2 ^y - 2)
N.N.00000000.00000000	255.255.0.0	/16	2° = 1	2 ¹⁶ = 65,536	$2^{16} - 2 = 65,534$
N.N.10000000.00000000	255.255.128.0	/17	2 ¹ = 2	2 ¹⁵ = 32,768	$2^{15} - 2 = 32,766$
N.N.11000000.00000000	255.255.192.0	/18	$2^2 = 4$	2 ¹⁴ = 16,384	$2^{14} - 2 = 1,.382$
N.N.11100000.00000000	255.255.224.0	/19	2 ³ = 8	2 ¹³ = 8,192	$2^{13} - 2 = 8,190$
N.N.11110000.00000000	255.255.240.0	/20	2 ⁴ = 16	2 ¹² = 4,096	$2^{12} - 2 = 4,094$
N.N.11111000.00000000	255.255.248.0	/21	2 ⁵ = 32	2 ¹¹ = 2,048	2 ¹¹ - 2 = 2,046
N.N.111111100.00000000	255.255.252.0	/22	2 ⁶ = 64	2 ¹⁰ = 1,024	$2^{10} - 2 = 1,022$
N.N.11111110.00000000	255.255.254.0	/23	2 ⁷ = 128	2 ⁹ = 512	2 ⁹ – 2 = 510
N.N.111111111.00000000	255.255.255.0	/24	2 ⁸ = 256	2 ⁸ = 256	$2^8 - 2 = 254$
N.N.11111111.10000000	255.255.255.128	/25	2 ⁹ = 512	2 ⁷ = 128	$2^7 - 2 = 126$
N.N.111111111.11000000	255.255.255.192	/26	2 ¹⁰ = 1,024	2 ⁶ = 64	$2^6 - 2 = 62$
N.N.1111111111100000	255.255.255.224	/27	2 ¹¹ = 2,048	2 ⁵ = 32	$2^5 - 2 = 30$
N.N.1111111111110000	255.255.255.240	/28	2 ¹² = 4,096	2 ⁴ = 16	$2^4 - 2 = 14$
N.N.111111111111000	255.255.255.248	/29	2 ¹³ = 8,192	2 ³ = 8	$2^3 - 2 = 6$
N.N.1111111111111100	255.255.255.252	/30	2 ¹⁴ = 16,384	$2^2 = 4$	$2^2 - 2 = 2$

Class A Possible Subnets

Binary (N.H.H.H)	Decimal	CIDR	# Subnets (2 ^x)	Block Size (2 ^y)	# Hosts (2 ^y - 2)
N.00000000.00000000.00000000	255.0.0.0	/8	2 ⁰ = 1	2 ²² = 16,777,216	2 ²² – 2 = 16,777,214
N.10000000.00000000.00000000	255.128.0.0	/9	2 ¹ = 2	2 ²³ = 8,388,608	2 ²³ – 2 = 8,388,606
N.11000000.00000000.00000000	255.192.0.0	/10	$2^2 = 4$	2 ²² = 4,194,304	$2^{22} - 2 = 4,194,302$
N.11100000.00000000.00000000	255.224.0.0	/11	2 ³ = 8	2 ²¹ = 2,097,152	$2^{21} - 2 = 2,097,150$
N.11110000.00000000.00000000	255.240.0.0	/12	2 ⁴ = 16	2 ²⁰ = 1,048,576	$2^{20} - 2 = 1,048,574$
N.11111000.00000000.00000000	255.248.0.0	/13	2 ⁵ = 32	2 ¹⁹ = 524,288	2 ¹⁹ – 2 = 524,286
N.11111100.00000000.00000000	255.252.0.0	/14	2 ⁶ = 64	2 ¹⁸ = 262,144	$2^{18} - 2 = 262,142$
N.11111110.00000000.00000000	255.254.0.0	/15	2 ⁷ = 128	2 ¹⁷ = 131,072	2 ¹⁷ – 2 = 131,070
N.11111111.00000000.00000000	255.255.0.0	/16	2 ⁸ = 256	2 ¹⁶ = 65,536	2 ¹⁶ – 2 = 65,534
N.11111111.10000000.00000000	255.255.128.0	/17	2 ⁹ = 512	2 ¹⁵ = 32,768	2 ¹⁵ – 2 = 32,766
N.11111111.11000000.00000000	255.255.192.0	/18	2 ¹⁰ = 1,024	2 ¹⁴ = 16,384	2 ¹⁴ – 2 = 1,.382
N.11111111.11100000.00000000	255.255.224.0	/19	2 ¹¹ = 2,048	2 ¹³ = 8,192	2 ¹³ – 2 = 8,190
N.11111111.11110000.00000000	255.255.240.0	/20	2 ¹² = 4,096	2 ¹² = 4,096	2 ¹² – 2 = 4,094
N.11111111.11111000.00000000	255.255.248.0	/21	2 ¹³ = 8,192	2 ¹¹ = 2,048	2 ¹¹ - 2 = 2,046
N.11111111111111100.00000000	255.255.252.0	/22	2 ¹⁴ = 16,384	2 ¹⁰ = 1,024	$2^{10} - 2 = 1,022$
N.1111111111111110.00000000	255.255.254.0	/23	2 ¹⁵ = 32,768	2 ⁹ = 512	$2^9 - 2 = 510$
N.11111111111111111100000000	255.255.255.0	/24	2 ¹⁶ = 65,536	2 ⁸ = 256	$2^8 - 2 = 254$
N.11111111111111111110000000	255.255.255.128	/25	2 ¹⁷ = 131,072	2 ⁷ = 128	$2^7 - 2 = 126$
N.11111111111111111111000000	255.255.255.192	/26	2 ¹⁸ = 262,144	2 ⁶ = 64	$2^6 - 2 = 62$
N.111111111111111111100000	255.255.255.224	/27	2 ¹⁹ = 524,288	2 ⁵ = 32	$2^5 - 2 = 30$
N.111111111111111111110000	255.255.255.240	/28	2 ²⁰ = 1,048,576	2 ⁴ = 16	2 ⁴ – 2 = 14
N.11111111.11111111.11111000	255.255.255.248	/29	2 ²¹ = 2,097,152	2 ³ = 8	$2^3 - 2 = 6$
N.111111111111111111111111111111111111	255.255.255.252	/30	2 ²² = 4,194,304	2 ² = 4	$2^2 - 2 = 2$

Subnet Calculation Table (2h)

Host Bits Borrowed	2 ^x	Number of Subnets Created
1	2 ¹	2
2	2 ²	4
3	2 ³	8
4	2 ⁴	16
5	2 ⁵	32
6	2 ⁶	64
7	2 ⁷	128
8	2 ⁸	256
9	2 ⁹	512
10	2^{10}	1,024
11	2 ¹¹	2,048
12	2 ¹²	4,096

Subnet Hosts & Addresses Calculation Table (2^h)

Host Bits Left	2 ^h	Hosts / Subnet (2 ^h – 2)	Addresses / Subnet (2h)
1	2 ¹	θ	2
2	2 ²	2	4
3	2 ³	6	8
4	2^4	14	16
5	2 ⁵	30	32
6	2 ⁶	62	64
7	2 ⁷	126	128
8	2 ⁸	254	256
9	2 ⁹	510	512
10	2 ¹⁰	1,022	1,024
11	2 ¹¹	2,046	2,048
12	2 ¹²	4,094	4,096