

Elacmistiry

Lesson	Topic	Pages in the notes
Introduction	Tips for best learning and why chemistry is important!	
1	The story of the atom	1-2
2	Elemental, dear Watson!	3-4
3	Modeling clay orbitals	5-6
4	A noble quest	7-10
5	Why share electrons?	11-12
6	Game show review	
7	Element vs mixture vs compound	15-16
8	What is radioactivity?	17-18
9	Going bananas	
10	Edible experiments	19-20
11	States of matter	21-22
12	Matter batter	
13	Physical reactions	23-24
14	Fizzing experiments	25-26
15	What's a reaction?	
16	Chemical reactions	27-29
17	More chemical reactions	30
18	Carbon, the building block of life	31-32
19	Toasters and cooking mysteries	33-34
20	Lemon battery	35-36
21	Game show review	
22	Where do fossil fuels come from?	37-39
23	What is fire really?	40
24	Why do leaves change color?	41-42
25	The chemistry of lava	43
26	The chemistry of acids and bases	44

Have questions? Contact jenny@science.mom

Lesson	Topic	Pages in the notes
27	Game show review	45
28	Chemistry of swimming pools	46
29	Photosynthesis	$47-48$
30	Frankenseeds	49
31	All about sugars	$50-51$
32	Why can't you eat books?	
33	Game show review	52
34	Lipids	53
35	Plankton	$54-55$
36	Proteins	56
37	Why things glow in the dark	57
38	From cells to colonies	58
39	Game show review	59
40	Nitrogen cycle	
41	Water reclamation	60
42	Water chemistry	61
43	DIY water filter	
44	Fireworks and safety	
45	Final gameshow	

Supply List for Hands-on Activities:

Lesson 3 - Modeling Clay Orbitals

- Toothpicks
- Modeling clay or play dough (7 different colors)

Lesson 10 - Edible Experiments

- Granulated Sugar (at least 7 cups)
- Kool-aid packets
- Cake pop sticks or string
- A ruler
- 2 pint-size mason jars with lids OR cups and rubber bands
- Coffee filters or paper
- 2 Microwavable popcorn packets

Lesson 14 - Fizzing Experiments

- 6 Alka-Seltzer tablets
- 6 bottles of soda in plastic containers with narrow tops. Any size and type will work, but I recommend 16 oz coke bottles (because Coke is slightly more carbonated than other sodas). You'll use the bottles twice in this experiment and reuse two of them again in the Dec $4^{\text {th }}$ water filtration experiment.
- Baking soda
- 3 packages of Pop Rocks candy
- 6 Balloons (standard 9 inch size)
- A funnel (to help get baking soda inside the balloon)
- Food Coloring
- Vinegar
- Vegetable oil (a whole bottle)
- Safety glasses

Lesson 20 - Lemon or Vinegar Batteries

- Citrus fruit such as lemons OR a potato OR vinegar and an empty
ice cube tray
- An LED diode
- Copper penny, wire, or copper sheets
- Galvanized nail or zinc sheets
- Alligator clips
- Scissors or knife

Lesson 30 Frankenseeds

- Cardboard egg carton(s)
- Paper towels
- An empty bread or produce bag
- At least 6 types of seeds from the kitchen (could include rice, beans, lentils, chia seeds, walnuts, sunflower seeds, almonds, peanuts, flax seeds quinoa, or seeds from inside foods like apples, peas, avocados, pears, oranges, kiwis, or cucumbers)

Lesson 43 - DIY Water Filter

- Two plastic 12 or 16 oz bottles (can reuse the ones from Sept 25)
- Scissors (you might want an adult's help to cut the bottles)
- Sand
- Gravel
- Activated charcoal
- Coffee filters
- A small square of cotton fabric or a couple of cotton balls

The story of she ATOM

 WHAT ARE THINGS REALLY MADE OF?

SOLID SPHERE	PLUM PUDDIN	PLANETARY	BOHR
$\begin{gathered} 1803 \\ =\text { JOHN DALTON } \end{gathered}$	$\text { - } \begin{gathered} 1904 \\ \text { J.J. THOMPSON } \end{gathered}$	$=\begin{gathered} 1911 \\ \text { RUTHERFORD } \end{gathered}$	NIELS BOHR
ELEMENTS ARE MADE OF DIFFERENT ATOMS	ELECTRONS ARE NEGATIVELY CHARGED	POSITIVE CHARGE IN THE NUCLEUS	ELECTRONS HAVE DISTINCT ENERGY LEVELS
THE ATOM ISN'T THE SMALLEST PARTICLE	HAD NO NUCLEUS	DIDN'T PREDICT ELECTRON BEHAVIORS	DID NOT EXPLAIN LARGER ATOMS

Welcome to the Elemental Cafe

 How to order an element:1. Choose the number of protons*
2. Make it an isotope! Adjust the number of neutrons
3. Make it an ion!**

Adjust the number of electrons

* NUMBERS ABOVE 90 ARE NOT SERVED.
** LIMITED AVAILABILITY.

Daily Special
CARBON 14
6 PROTONS
8NEUTRONS
6 ELECTRONS
Remarkably
stable!

The PTERIODIC Rable

PRETTY MUCH THE COOLEST CHART EVER

Rendsoon Activity

MODELING CLAY ORBITALS!

Don't have modeling clay? No problem! Make play dough using this recipe:

PLAY DOUGH

1 cup flour
1/3 cup salt
3/4 cup water
3 Tbsp lemon juice
1 Tbsp cooking oil
Food coloring
Mix the flour and salt together in a bowl. Heat the water to boiling and add the oil and lemon juice. Then mix all the ingredients together. For best results, mix in a pot over the stovetop until mixture is thick (about 1 minute).

Let sit and cool for a few minutes before kneading. Add another spoonful of flour if the dough is too sticky. Kool-aid drink packets can be used instead of food coloring.

(0) 0 WHERE AN ELECTRON IS MOST LIKELY TO BE

MODELING CLAY ORBITALS CONTINUED...

INSTRUCTIONS:

Shape the colors of clay that represent neutrons and protons into small spheres and put them together to make the nucleus. Then cover the nucleus in layers of clay to represent the orbitals. Use the images below to guide you in making models of a hydrogen, helium, lithium, carbon, fluorine, and neon atom. Partially-filled orbitals can be represented by moulding half of the orbital. Use toothpicks to attach the p-orbitals.

[^0]A FULL SHELL OF ELECTRONS IS LIKE A HAPPY TURTLE - UNLESS IT GETS TOO BIG.

An \qquad with a full shell is stable. It is not interested in reacting with other elements. But if it gets too large, then that "turtle" is no longer very happy, even though it has a full shell.

The elements with \qquad shells of electrons are in the column called the noble gases. Next to the noble gases are the \qquad . If these elements gain one more electron, then they have a full shell. If the lose
one electron, then they have a full shell. Both groups or families of elements are very \qquad . They want to \qquad with other elements and fill their shells!
FILL IN THE

reactive	alkali	element	full
metals	halogens	periodic	bond

Your notes: \qquad
\square $\underline{ }$
\qquad
\qquad
\qquad

The elements in this family are called the "Noble gases." At room temperature, they are all are colorless, odorless, and tasteless. They hardly ever form bonds or react with anything! Can you draw lines to match each element with it's fact box?

The elements in this family are called the "halogens." At room temperature, the first two (fluorine and chlorine) are gasses with strong unpleasant smells. Breathing too much of them is toxic and they are all flammable and corrosive (will destroy or damage other substances). Can you draw lines to match each element in this family with its fact box?

Artwork by MATA DAD! :

Electrons really like to be in pairs. Fluorine, which is super reactive, has nine electrons, leaving one of them unpaired. Neon, a nonreactive noble gas, has ten electrons, each of them paired in different "shells" or orbitals around the nucleus.

But if sodium gives it's lonely electron to chlorine, then they're both happy. They've formed an ionic bond! Other atoms solve the same problem by sharing electrons.

SODIUM CHLORIDE

One oxygen +2 hydrogens $=\mathrm{H}_{2} \mathrm{O}$ A single oxygen atom Two hydrogen atoms	

COVALENT BOND: A CHEMICAL BOND WHERE ELECTRONS ARE SHARED BETWEEN TWO ATOMS. SOMETIMES THE ELECTRONS ARE SHARED EQUALLY. AND OTHER TIMES ONE ATOM (WE'RE TALKING ABOUT YOU. OXYGEN!) WILL BE A BIT GREEDY.

Your notes: \qquad
\qquad
\qquad
\qquad

Choose four elements to study. Research them and draw cards for them on the blank templates on the next page (you can print more pages to make more if you'd like!) Be sure to look up the chemical symbol and atomic number of your element. Research how your element behaves at room temperature and give it a hazard rating too. Then draw an avatar. It can look like anything! Be creative and have fun designing your cards.

Flement vs MAxtiore vs Compound

FILL IN THE BLANKS USING THESE WORDS:

1 Hydrogen								2
3 4 Lithium			5	6	7 Nitrogen	8	9 Fluorine	10
			13	14	15 Phosphorus	16	17	18 Argon
28 Ni Nickel	29		31	32	33 Arsenic	34	35	36
46 Palladium	47	48	49	50 Tin	51 Sb Antimony	52 Tellurium	53 Iodine	54 Xenon
78 Platinum	79 Au Gold	80	81 Thallium	82	83	84	85 At Astatine	86

What is RADIOACTLYITY?

	HEY WATER. I'M FEELING TERRIBLE MY NUCLEUS IS UNSTABLE AND I'M ABOUT TO DECAY.		

Unstable atoms decay. They split apart to form new elements. You might think that an : equal number of protons and neutrons would : be the most stable situation, but look at this graph and you'll see that's not the case! Hydrogen is most stable with no neutrons. Larger elements, like gold, need many more neutrons than protons.

Your notes:

			$\begin{aligned} & \mathscr{0} \\ & \stackrel{\Delta}{0} \\ & \stackrel{0}{0} \\ & .0 \\ & \underline{E} \end{aligned}$					
Cos								
NOT HARMFUL						\uparrow WILL DAMAGE YOUR DNA \checkmark		

Your notes:

Mandsoon Activity

EDIBLE EXPERIMENTS - ROCK CANDY!
MATERIALS:

ROCK CANDY

2 pint sized mason jars
(Or other heat-proof containers)
1 cup water
$31 / 2$ cups sugar
2 Kool-Aid packets
(1) Prepare the sticks or string by getting them wet and rolling them in dry sugar.
(2) Bring the water to a boil, then add the sugar and stir well. Reduce the heat and continue cooking until the solution turns clear and all the sugar dissolves.
(3) Pour the powder from one Kool-Aid packet into each mason jar.
4) Very carefully, pour the sugar solution into the mason jars and stir well to make sure that the KoolAid mixes in.
(5) Use the clothes pins or coffee filter to suspend the stick in the center of the jar.
(6) Let the jars sit for 2 to 8 days. Crystal formation takes time, be patient!

The science behind the treat:

When sugar dissolves into water it forms a MIXTURE - the sugar is still there and the water is still there. New molecules have NOT been formed. But the sugar molecules are attracted to the water and visa versa. When the water is HOT, it can hold more sugar than when it is cool. If you add as much sugar as the water can "carry" when it's hot, then as it cools the sugar will "come out" of the water and you'll see crystals form. If the sugar crystals grow slowly, you end up with larger crystals. If the sugar crystals grow quickly, they're smaller.

Troubleshooting tips:

What if there are no crystals on your stick? First, did you "seed" it by getting it wet and rolling it in dry sugar before-hand? This really helps! Second, sometimes the crystals take DAYS (up to 7 or 10) to form. If your first batch isn't working, you can try again and increase the amount of sugar (add an extra cup). The hardness of your water and measuring error can make a difference. If you don't see crystals after 14 days, probably best to try again with a fresh batch and add some extra sugar this time.

Do you think you could also make salt crystals using the same recipe? Why or why not?

How did your crystals turn out? Did you see a difference between the size and shape of the crystals in different jars? How long did it take before your rock candy started growing?

LABLE THE ARROWS WITH THESE WORDS:

sublimation freezing

 evaporation melting condensation depositionSolids keep their shape and volume. Liquids take the shape of their container, but the volume will stay the same. Gasses are super flexible! They will expand to fill whatever space they are in. Usually, solids are more dense that liquids, and liquids are more dense than gasses, but there is one compound where this rule doesn't hold! Solid water is less dense than liquid water. This is why ice floats.

YOU CAN TRY THIS YOURSELF BY MAKING A SCALE! ATTACH TWO UNPOPPED BAGS OF POPCORN TO EACH SIDE OF A RULER AND BALANCE IT. THEN POP ONE OF THE BAGS AND REATTACH IT. DOES THE RULER TIP MORE TO ONE SIDE OR THE OTHER? WHICH SIDE IS HEAVIER?

Count how many of each atom there are in each of the boxes. Record your observations in the charts below!

Your notes:

Liquids are rare and actually kind of weird

Draw your favorite moment from class or write a cool fact!

Color the thermometers to show when the substance will exist as a solid, liquid, or gas: (Hint: CO_{2} doesn't exist as a liquid on Earth unless you increase the pressure a lot!)

MATERIALS:

6 BOTTLES OF SODA IN PLASTIC CONTAINERS WITH NARROW TOP

BAKING SODA

A MEASURING SPOON

6 BALLOONS

EYE PROTECTION

First, blow up each of the balloons once or twice to stretch them out, letting the air back out afterward.

Record your observations here:

1	Place a balloon over the top of the bottle so that it is firmly in place. Put on eye protection. Then shake the bottle and record what happens to the balloon.

2 | Use the funnel to pour 2 TBL of baking soda in the |
| :--- |
| balloon. Attach the balloon securely around the mouth |
| of the soda bottle and then tip the ballon so that the |
| baking soda pours from the balloon into the bottle. |

Repeat the procedure with the Pop Rocks in a new balloon added to a new bottle of soda. Record your observations.

Mix baking soda and Pop Rocks together in a new balloon and put it over a new bottle of soda. Record your observations.

With the last two bottles, experiment! You get to decide what to try:

Cheraical
Be@@fions
FILL IN THE BLANKS USING THESE WORDS:

| products chemical reactants |
| :---: | :---: |
| physical \quad molecules |

In a \qquad reaction, new molecules are formed. The molecules that existed BEFORE the reaction are called the \qquad . The molecules that exist AFTER the reaction are called the \qquad . In a \qquad reaction, matter might change its shape or state, but no new \qquad are formed.

ENDOTHERMIC REACTION

If complex molecules are like carefully balanced rock stacks that want to turn into rock heaps, then how do the stacks get built in the first place? It takes energy! If energy is put INTO a
\qquad
the \qquad have a higher energy state than the reactants, this is an
\qquad reaction. It absorbs \qquad . Evaporating water or dissolving ammonium chloride in water are examples of these "energy-requiring" reactions. When these reactions happen, the temperature \qquad !

FILL IN THE BLANKS USING THESE WORDS:

rises	reaction	drops	energy
products	endothermic	determines	
reactants	exothermic	releases	

If a reaction PRODUCES energy, and the products have a lower energy state than the \qquad , this is an
\qquad reaction. It ___ energy. A burning match and rusting metal are examples of these "energy-producing" reactions. When these reactions happen, the temperature
 !

INSTRUCTIONS:

Prepare two lemons or more (The more you have the stronger your battery is. For getting an LED light to light up, we recommend at least two. Potatoes or vinegar in an ice cube tray can be used instead of lemons.)
(1) Squeeze and roll the lemons for several minutes. The individual segments of the lemon need to break up enough that a current can run from one end to the other.
(2) Make two slits on either side of the lemon and insert the penny or copper into one slit and the galvanized nail or zinc into the other. Make sure that enough of the metal is sticking out of the lemon that you'll be able to attach the alligator clips or wire. Repeat with the remaining lemons.
(3) To build the circuit between the lemons, attach one alligator clip around the zinc from the first lemon and connect it to the copper in the next lemon. If using multiple lemons, continue this pattern with each of the lemons.

For electricity to flow through the wires, the circuit needs to form a loop. If you connect the copper in the first lemon to the zinc in the last lemon, then you will have an electric current flowing through the wires - but this current is so small you won't be able to feel it or see it.
4 Attach the ends to the LED light or clock you are trying to power. Touch the wire attached to the first penny or copper to the long leg of your LED light. Simultaneously touch the wire attached to the nail of the last lemon to the short leg of the LED light. If you need help differentiating the long leg from the short look for a "flat spot" on the bottom edge of light. That is where you will find the short leg.

If your first attempt doesn't work, try adjusting the number of lemons or vinegar cells you are using.

What happens if you try powering the light with 1 lemon versus 2 ?

What would happen if you had attached the copper wire from one penny to another penny and one nail to another nail instead of following the coin-nail-coin-nail pattern?

What else do you think would serve as a good materials for this experiment? Are there any other conductors (the alligator clips or copper wire) or electron sources (copper and zinc) that you could use?

Sometimes it can be tricky to get a lemon battery to work. Did you run into any trouble with your experiment? If so, what did you try?

FILL IN THE BLANKS USING THESE WORDS:

| lightheat
 filaments
 energy | reactions | proteins |
| :---: | :---: | :---: | :---: |

When the toaster is turned on, \qquad passes from the outlet to the toaster in the form of electricity. The electric current passes through thin \qquad that are uniformly spaced around the toaster slot. The filaments are specially designed to
\qquad up when electricity passes through them. They get so hot that they bright red! The electrical energy has been converted into heat and
\qquad . The steady supply of heat causes \qquad
\qquad to happen on the surface of the bread. The heat causes \qquad and to combine together, forming new molecules that change the color and flavor of the bread, turning it into delicious toast.

Your notes: \qquad
\qquad
\qquad
\qquad

oxygen	backbone e	electrons	graphite
	abundant	t unpaired	carbon

Carbon is the second most \qquad element in the human body. (The most abundant element is \qquad .) It's the \qquad of all the molecules that cells are made of. Because it has four \qquad that are \qquad , carbon likes to form \qquad bonds with other atoms. Soft black pencil lead called \qquad is
made of carbon. The hard clear crystal of a diamond is made of \qquad too.

But sometimes it only has three bonds:

LOOK OUT! THAT'S CYANIDE, WHICH IS VERY POISONOUS.

Carbon really just has two forms: carbon dioxide (inorganic) and everything else (organic). When organic carbon is eaten or burned, energy is released and the carbon is converted into carbon dioxide. When algae or plants perform photosynthesis, carbon dioxide is converted back into an organic form. The same carbon atoms can travel in a huge circle from gas to organic matter to gas and back again. This is called the carbon cycle.

STATES OF DINO-MATTER

You've probably seen jokes that credit dinosaurs as the source of gasoline, but this isn't quite accurate. Fossil fuels like petroleum, oil, and natural gas come from organic matter that lived during the Carboniferous period, which occurred several million years before the first dinosaurs walked on Earth. The carbon in gasoline once existed in plants, algae, invertebrates, and fish, but not dinosaurs.

How long will fossil fuels last?

The answer is 50 years or forever, depending on who you ask.
On this thing more people agree: the more fuel we burn, the warmer the planet becomes.

During the Carboniferous period, fungi hadn't yet developed the ability to break down cellulose, the main ingredient of wood. Without these decomposers, an enormous amount of plant material accumulated.

Your notes: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

You have joined a team of stratigraphers and paleontologists who are studying the layers of rock and fossils of this site!

Your job is to complete the timeline and rock layer chart by studying the information available. What do the fossils in each layer tell you about each period of time? According to the timeline, what fossils would you find in each missing layer?

Q Cut out the rock layers and timeline boxes below. Can you paste them over the correct question marks?

Ammonites and trilobites are abundant in the shallow waters.

Ammonites and trilobites have gone extinct.

Which is the oldest layer? \qquad

What layers indicate that water was present? What evidence do you have to support this?

Why weren't mammal bones found in layer B?

Cut out the rock layers and timeline boxes on the other side of this paper and see if you can match them over the correct question marks!

FILL IN THE BLANKS USING THESE WORDS: oxygen combustion water hydrocarbons carbon

Fire is the result of a chemical reaction called \qquad . Three things must be present for fire: \qquad , fuel, and heat. When a fuel like wood meets oxygen, the in the wood combine with oxygen to form \qquad dioxide
and \qquad . Water is one of the main ingredients of smoke. It is also the main ingredient of clouds. If a forest fire gets large enough, it can produce a pyrocumulus cloud: a cloud so big that it makes rain and lightning.

Your notes: \qquad
\qquad
\qquad
\qquad
\qquad

This is an engineering activity from our 2020 class. These notes and a video are included as a bonus/optional resource.

INSTRUCTIONS:

1
First, arrange a small pile of "large particle size" material in the center of your
Tupperware container. Slowly pour in $1 / 2$ cup of water on one side of your levee and observe what happens. Does the water stay on one side of the levee or does it leak through to the other side?

Next, prepare your "small particle size" material. If using flour and cocoa powder, mix one cup of flour with 1 tbsp of cocoa powder and $1 / 2$ cup hot water. Add the water slowly and mix well, kneading it into a
 stiff dough.

Form half of your dough into a levee and arrange some small objects on the other side to represent the town. If desired, you can press some of the large particle-size material into the sides of the levee to reinforce it.

Slowly pour water on the side of the Tupperware that is opposite of your town and observe. It should be keeping all the flood waters away from the town!

Make your levee fail. You could create a small hole with a toothpick, or keep adding water until the water pours over the top.

Dry out your container and use the other half of the dough to make a new levee!

A levy is more than a big pile of dirt, although at first glance that's pretty much what it looks like!

For a levy to work well, it has to be made out of the right material and have the correct slope. In general, finer materials such as clay and silt will do a better job of holding back water than coarse materials like sand, gravel, or rocks.

There are two main ways that levies can fail: one is by being overtopped (the water flows over the top of the levee and then begins to erode it) The other is by breaching (basically a hole forms in the levee and then a big portion of it breaks). Before a levee breaches, there will often be a "sand boil." Water will begin flowing through a weaker spot in the levee and out the other side.

If you live in the United States, you might think that cities along the Mississippi River are the only ones that have levies. But there are levees in all 50 states and more than 40% of the US population lives in a county with at least one levee. When they work, we hardly notice them. When they fail, the flooding can be catastrophic.

Build a levee continued...
Would your flour levee hold the water back indefinitely/forever or would the water eventually leak through? What could you do to make this levee stronger?

Which slope would make the strongest levee? Super steep, medium, or broad? Explain why:

\qquad
\qquad
\qquad

Pretend you are in charge of building two real-life levees, what are some different considerations to take into account for designing an urban vs rural levee? Would you need to you do anything differently for the urban levee (protects a city area with stores, houses, and other buildings) versus an agricultural levee (protects fields)?
\qquad
\qquad
\qquad
\qquad

What are some other natural earth process that affect humans? What kind of designs and solutions have we come up with to cope with them?

Oxygen and silicon are the most abundant elements in lava.

They combine to form silica, and the amount of silica determines what type of lava you have!

Lots of silica produces pale
 rocks like rhyolite. When melted, this type of lava is super thick and tends to be explosive, like the eruption of Mount St Helens.

Low silica makes dark basalt rock and is relatively runny when melted, like the slowly oozing pahoehoe lava in Hawai'i.

Element
The second most abundant element on Earth after oxygen. Very rarely found in pure form, it loves to bond with oxygen. Widely used in electronics, especially computer chips.

How hot is lava?

It all depends on the type of rock and what minerals it contains. Liquid rock (usually called lava) can be as cool as $700^{\circ} \mathrm{C}$ and as hot as $1,200^{\circ} \mathrm{C}$. That's $1300-2200^{\circ}$ Fahrenheit!

Your notes: \qquad

FILL IN THE BLANKS USING THESE WORDS:

Your notes: \qquad

The chemistry of swimming pools is fascinating! To keep a pool safe for people but inhospitable to bacteria and algae, the pH , salts, water hardness, and chlorine levels have to be just right.

As UV light shines down, water evaporates, and people swim in the water, chemical reactions happen and everything changes! You don't need a degree in chemistry to keep your pool healthy - but you do need to check its chemicals frequently to maintain the right balance!

Draw your favorite moment from class or write a cool fact!

Your notes: \qquad

THE CHEMICAL EQUATION FOR PHOTOSYNTHESIS

Your notes: \qquad
\qquad

\square
A lot of people think that plants grow out of soil - that atoms in the soil becomes the plant. Actually, most of the plant comes from AIR. More than 98% of the plant's mass comes from carbon dioxide and water.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Choose six types of seeds from your kitchen and make predictions about which ones will sprout and which ones will not. If you expect that they will sprout, draw pictures of what you expect your plants to look like. Will they have two small round leaves or will they look more like a blade of grass? Will the seed split when it germinates? What shape will the leaves have?

Cut your egg carton in half so that you have two containers, each with six pockets.

Moisten two paper towels with water. Place a wet paper towel along the inside of each of the egg carton halves. Then put your seeds in the cartons. Arrange the cartons to be as identical as possible with three types of each seed in each pocket.

Next get two more paper towels wet and place them inside two ziplock bags. Place three of each of your seeds on these paper towels as well.

Cover the egg cartons with empty produce bags or bread bags to ensure that they stay moist. Place one in the fridge and one by a window.

Tape one of your plastic bags to a window so that it gets some sunlight. Place the other plastic bag in a different location. You can choose to put it in the fridge (cold and dark) or to place it somewhere that has less light.
Check on your seeds everyday and record your observations. Make sure the paper towels do not dry out (add water as needed) and that the seeds do not get too wet (they should not be covered in water). After one week, move the seeds that were in the fridge to a location with light and warmer temperatures. After 2 weeks compare your predictions to the results that you observed.

HALLOWEEN, THEIR SEEDS WOULD BE GREAT TO USE IN YOUR EXPERIMENT!

Label your 6 types of seeds A through F. Two or three daya after you plant your seeds, start tracking whether or not they have germinated. Put an x in the box on the first day you see germination (a small rootlet coming from the seed). Draw a leaf on the first day you see green cotyledons or leaves growing from your seed! After two weeks, move the seeds from your fridge to a windowsill. Keep them moist and keep tracking their progress (another piece of paper will be needed to continue your chart).

CARTON FROM THE WINDOWSILL:

A
B
C
D
E
F

SUN	MON	TUE	WED	THURS	FRI	SAT

CARTON FROM THE FRIDGE:

How long did the seeds take to sprout? Which seeds sprouted and which seeds did not? Why do you think the seeds did not sprout?

Why do plants need water?
Why do plants need air?
Why do plants need soil?

Your notes: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

I'M GLUCOSE! AN ENERGETIC CIRCLE OF CARBON

Can you spot the difference between starch and cellulose?

String glucose together like this, and you get starch - A big ingredient in things like potatoes and corn and rice and wheat.

String glucose together like this, and you get cellulose-the main ingredient in things like leaves and straw and wood.

A termite can eat a piece of wood and get energy from it. A cow can eat grass and get energy from that. But if you eat wood or grass it's called fiber. Your body can't digest it and it passes straight on through. Have you ever wondered why? Why can you live for weeks on a diet of potatoes, but not newspapers or twigs?

Cellulose and starch are both polymers made of the same building unit: glucose. The difference between them is HOW the glucose molecules are linked together. In starch, all the molecules are facing the same way. We call this an alpha linkage. In cellulose, every other glucose is flipped upside down. We call this a beta linkage. When you eat starch, your body can break that alpha linkage apart so each of your cells can eat the glucose. But beta linkages are tricky. They can only be broken by bacteria and fungi. NOT A SINGLE ANIMAL can do it. So then how in the world do termites eat wood? How do horses cows, goats, and sheep eat grass? (Look at the next page to find out!)

Your notes: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Termite

Termites have special bacteria living in their stomachs that digest cellulose for them, breaking it apart into glucose. Give a termite an antibiotic, and it would starve to death no matter how much wood it ate. The termite can only digest wood with the help of its special "termite gut microbes."

The Herbivores

Herbivores also digest grass with the help of bacteria. Some herbivores (cows) have 4 stomachs to provide even better homes for those important little microbes. Others, like the camel and hippopotamus, have 3 stomachs. And horses have just 1, plus a long "water gut" that provides the perfect place for the bacteria to do their work.

Why fiber is important

We can't digest cellulose, but does that mean we don't want to eat it? Not so fast! If you were able to digest absolutely everything you ate, well, that would be a bit of a problem. How would you get rid of things your body didn't want, like extra cholesterol in your blood? If you have enough fiber, the fiber binds to the extra cholesterol and takes it out with the trash. If you don't have enough fiber, the cholesterol is reabsorbed into the bloodstream. Too much cholesterol can cause a heart attack. And that's just one of the many benefits of having enough fiber in your diet.

Your notes: \qquad

FILL IN THE BLANKS USING THESE WORDS:

oils	carbon		hydrogen
	fats	hydrophobic	determines

Lipids are fats and \qquad . Chemically, they are very long strands of carbon and \qquad . How long the strand is and what types of bonds it has (single or double) \qquad what type of oil or fat it is. But all \qquad and oils are mostly made of just two atoms: \qquad and hydrogen. Because these long strands don't have any charged areas, they are \qquad which means water fearing. This is why oil and water don't mix together!

Your notes: \qquad

Your notes: \qquad
\qquad
\qquad
\qquad

These notes and a video are included as a bonus/optional resource.

In a tuber like a potato, sweet potato, turmeric, or ginger, there are small "eyes" or nodes where a new shoot and root can grow. If you cut a potato or other tuber and place toothpicks in it so that it is half submerged in water, a shoot and roots will grow from the node.

Oprional Bonus Acrivity

This is an engineering activity from our 2020 class.
These notes and a video are included as a bonus/optional resource.

A pineapple is a "sorosus." That's greek for heap. It's a cluster of berries that all grew together! Each bract is one fruit.

CHEMISTRY IS EVERYWHERE!

How does a nerve cell learn to send signals, or a blood cell to carry oxygen? How does one ant tell the rest of the colony where to find food? The answer to both questions comes down to chemistry! Chemical reactions power the life of the cell, and control how it communicates with other cells. And it's not just cells that communicate with chemicals insect colonies do too!

Your notes: \qquad
\qquad
\qquad
\qquad

曷 most of our alr

Nitrogen is an essential element used to make \qquad and
DNA. Every \qquad and plant needs it, and 78\% of Earth's \qquad is
nitrogen. So you might think that it would be easy to get, but the nitrogen in the air is N_{2}. It's two atoms bound with a very strong
\qquad bond and that bond is very hard to break! No animals can do it. No plants can do it. Only \qquad can
change atmospheric nitrogen into a form that \qquad and animals can use. We call this "fixing" nitrogen. FILL IN THE BLANKS ABOVE USING THESE WORDS:

bacteria triple	proteins plants	animal atmosphere

Your notes: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

W@arer Beclarnarton

Your notes: \qquad
$工$

DIY water filter

MATERIALS:

A PLASTIC BOTTLE (16 OR 12 OUNCES)

COTTON BALLS OR A PIECE OF COTTON FABRIC

WATER

$1 / 2$ CUP GRAVEL

INSTRUCTIONS:
Carefully use scissors or knife to cut off the bottom of the water bottle to create a tall funnel.

2 Trim one of the coffee filters into four smaller circles.

Place one or two cotton balls on top of two of the coffee filter circles. Carefully place them in the neck of the water bottle. If they flip and turn sideways simply turn the bottle upside down and shake them back out and then try again. It may help to use a chopstick or wooden skewer or straw.

4 Once you have your coffee filter circles and cotton balls in place, put the remaining coffee filter circles on top to make a "coffee filter cotton ball sandwich." This is the lowest layer of filtration. Next, carefully pour $1 / 4$ cup of activated charcoal onto a coffee filter and lower it into the bottle. Then fold the coffee filter over the top of the charcoal to completely enclose it.

Run a little bit of water through the filter to help the two lower layers compress and make sure that they are pressed against the sides of the bottle.

Next add $1 / 2$ cup of sand, then add the final layer of $1 / 2$ cup of gravel.

Experiment by running different liquids through your filter. Start with relatively clean water such as the leftover water from cooking vegetables. If you run it through your filter, does it still smell like vegetables or have color to it? Or did the filter clean the water? Next, add some food coloring to your water or go outside and get some mud. See how your filter does cleaning that water.

Warning! Only drink water that you know is safe to drink!
While this filter is similar to modern filtration systems, it is small enough that contaminants can overwhelmed it and "sneak" through.

Your observations: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FILL IN THE BLANKS USING THESE WORDS:

safety	chemical	reactions

Fireworks are controlled \qquad . These explosive devices delight us with their bright colors on holidays around the world, and they're also a good reminder of the importance of \qquad precautions. Can chemistry be a lot of fun? Absolutely. Can a little knowledge be a dangerous thing? Sometimes! Make sure you think ahead about what might happen during a reaction. If your future chemistry experiment will produce a gas, be extra careful because \qquad might build up. Always wear safety glasses, and make sure to clean up after yourself when your experiments are done! Keeping your laboratory space clean and organized isn't just good manners. It keeps you and your equipments \qquad .

[^1]
of our course... Hopefully the beginning of many more adventures in science!

We hope you enjoyed this chemistry course! These doodle notes were all drawn by Science Mom (with help from Math Dad, Science Daughter, and Science Moms Liza, Krista, and Emily). If you enjoyed this course, we think you'd also enjoy Theodore Gray's three books: Elements, Reactions, and Molecules.

Last but not least, we have two "go the extra mile" activities, which you'll see on the next few pages. If you complete either of these activities, take a picture of your work and send it to us at jenny@science.mom or tag us on social media.

Twitter: @jennyballif
Facebook: @TheScienceMom
Instagram: @the.science.mom

Work hard, grow smart, and stay curious!
-Science Mom

MAKE A FULL DECK OF ELEMENTAL TRADING CARDS

Remember the element trading cards from page 13 and 14 ? You made 4 of them, now here's a super challenge. Can you create a FULL DECK with all 118 known elements?

Print out extra copies of these templates or make your own! If you complete this epic challenge, email us. We'd love to see your work!

Subatomic Particles

Jenny Ballif

8

see. Neu-tronsin the nu-cle-us have nocharge at all. E-le-ctronsin their or - bi-tals are

Ions and Isotopes

(

for your eyes only!

Hello Special Agent. Something very valuable has been stolen from the vault of the Bank of Big Bucks! We need your help to decode information about the object, location, and sneaky spy so that it can be retrieved.

Here is a binary code that uses the number zero to represent a white square, and the number one to represent a black square. Fill in the grid accordingly to create an image of the stolen object!

THE BINARY CODE:

Row one: 00000000000000000
Row two: 00011111111111000
Row three: 00100000100000100
Row four: 01010001010001010
Row five: 10001010001010001
Row six: 0111111111111110
Row seven: 00101000000010100
Row eight: 00010000000001000
Row nine: 00001000000010000
Row ten: 00000100000100000
Row eleven:00000010001000000
Row twelve: 00000001010000000
Row thirteen: 00000000100000000
Row fourteen: 00000000000000000

Row 1:
Row 2:
Row 3:
Row 4:
Row 5:
Row 6:
Row 7:
Row 8:
Row 9:
Row 10:
Row 11:
Row 12:
Row 13:
Row 14:

Wonderful! Now that you know what you are looking for, you need to figure out where it is being hidden. The location has been encoded in "alphabet grid" format. Take a look at the grids below. The first letters in each space are represented by the line around it. The second letters get an additional dot included. For example: The "I" looks like a square, and "J" looks like a square with a dot in it. "S" looks like a V, and "T" looks like
 a \vee with a dot in it.

Last, find the spy who stole the object from the vault. Their description has been encrypted using reverse alphabet coding. We have started the cypher for you by including the original alphabet. To complete the cypher start at the end with letter Z, and write an A under it. Next write a B under the letter Y, then a C under the letter X. Continue this pattern until you finish by writing a Z under the letter A. Once you are done you can decode!
Ex. XZG = CAT, SZKKB = HAPPY

GSV HKB:
Mznv: ZOVC HNRGS
Atv: URUGB
Vbvh: TIVVM
Szri: IVW
GzttIl: HSZIP

THE SPY:
Name: \qquad
\qquad
Age: \qquad
Eyes: \qquad
Hair: \qquad
Tattoo: \qquad

[^0]: Nonmetals: These Elements do not conduct electricity. 1,6,7,8,15,16,34 Alkali Metals: All of these react explosively with water. $3,11,19,37,55,87$ Alkali Earth metals: These all also reactive elements and especially like to react with oxygen. 4,12,20,38,56,88
 \square Transition metals: These are good conductors of heat and electricity.
 And there are a lot of them! $21,22,23,2425,26,27,28,29,30,39,40$,
 $41,42,43,44,45,46,47,48,72,73,74,75,76,77,78,79,80$
 \square Metals: These are great conductors heating electricity and in their solid
 form they can are shiny and ductile. 13, 31, 49, 50, 81, 82, 83

[^1]: Your notes:

