

Linux Kernel Programming -> Netlink Sockets -> Agenda

➢ How to Do this Course ?

➢ Getting Started with Writing Linux Kernel Modules (LKM)

➢ Introducing - The Netlink Sockets

➢ Theory, Architecture and Design

➢ Basics - The Netlink Message Structures and Types

➢ User Space to Kernel Space Interaction

➢ Kernel Space to User Space Interaction

➢ Kernel to Multiple User Space Processes Interaction

➢ Event Notification from Kernel Space To User Space

Agenda

➢ You are good with C programming

➢ Good with basic DS such Linked List, Trees etc

➢ Audience is not novice or beginner,

therefore fast paced course, without loss of information

➢ Must have basic experience with socket programming

➢ Zero Kernel Programming knowledge

➢ Able to Google right questions and right doubts

➢ Mature Audience

➢ Zeal to Learn and Excel

Pre-requisites

Assumptions

Src Codes : https://github.com/sachinites/UdemyCourseOnNetlink

https://github.com/sachinites/UdemyCourseOnNetlink

Linux Kernel Programming -> How to do this Course ?

How to do kernel Programming Based Courses ?

➢ Install Ubuntu as a Virtual Machine using any Virtualization software (VMWare Workstation / Virtual Box)

➢ You VM will freeze if kernel crash

➢ Solution : Reboot VM

➢ Debugging : kprintf

➢ Install exactly same version of ubuntu as I am running (Mandatory)

➢ No compilation errors

➢ No unnecessary head scratching and time waste

➢ We all are in sync and on same page

➢ My codes will run on your machine and your codes will run on mine

➢ Lot of help present on internet especially for ubuntu

➢ We all shall be looking same kernel source code

➢ Tools :

➢ GCC compiler

➢ Use Github

Linux Kernel Programming -> Hello World Linux Kernel Modules

➢ Setting up the Development Environment

➢ Image to use : http://releases.ubuntu.com/19.04/ubuntu-19.04-desktop-amd64.iso

➢ AMD or Intel Don’t matter, Image is compatible with both !

➢ 64 bit system

➢ Browsing Kernel Source Code – Locally Or from Web

➢ Run uname –r on terminal, it will show kernel version

vm@ubuntu:/usr/src$ uname -r

5.0.0-36-generic [5 kernel version, 0 – Major number, 0 – Minor Number, 36 – Bug fix number]

Web link : https://elixir.bootlin.com/linux/v5.0/source/include/linux

Download : https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/linux/5.0.0-32.34/linux_5.0.0.orig.tar.gz

gzip -d linux_5.0.0.orig.tar.gz

tar -xvf linux_5.0.0.orig.tar (Browse the code using cscope tool)

➢ Make your own notes – whatever you feel like

➢ Github is the best place for note making and preserving all your source codes

➢ You should be able to revise after couple of years if you happen to work in system programming domain

http://releases.ubuntu.com/19.04/ubuntu-19.04-desktop-amd64.iso
https://elixir.bootlin.com/linux/v5.0/source/include/linux
https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/linux/5.0.0-32.34/linux_5.0.0.orig.tar.gz

Linux Kernel Programming -> Hello World Linux Kernel Modules

➢ Installing Linux Kernel Headers

➢ Kernel Header File is required to compile Kernel Code that we shall be going to write in this course

vm@ubuntu:/usr/src$ uname -r

5.0.0-36-generic

vm@ubuntu:/usr/src$ ls -l

total 160

-rw-r--r-- 1 root root 145342 Oct 24 21:07 'download_script.php?src_id=9679'

drwxr-xr-x 25 root root 4096 Oct 22 06:58 linux-headers-5.0.0-32

drwxr-xr-x 8 root root 4096 Oct 22 06:58 linux-headers-5.0.0-32-generic

drwxr-xr-x 25 root root 4096 Nov 14 06:27 linux-headers-5.0.0-36

drwxr-xr-x 8 root root 4096 Nov 14 06:27 linux-headers-5.0.0-36-generic << required !!

If not present, run the below cmds :

sudo apt update

sudo apt install linux-headers-$(uname -r)

Linux Kernel Programming -> Hello World Linux Kernel Modules

➢ What is Linux Kernel Module (LKM)

➢ Modules are pieces of code that can be loaded and unloaded into the kernel upon demand

➢ They extend the functionality of the kernel without the need to reboot the system Or recompiling the Linux kernel

➢ Eg : Almost all Device Drivers are written as Linux Kernel Module

➢ Linux Kernel is shipped with hundreds of kernel modules with them

➢ The LKM, when loaded, becomes a part of linux kernel

➢ Load kernel module : sudo insmod <lkm.ko>

➢ Unload LKM : rmmod <lkm>

➢ Check loaded LKMs : lsmod

➢ Lets Code . . .

➢ Download :

git clone https://github.com/sachinites/UdemyCourseOnNetlink

https://github.com/sachinites/UdemyCourseOnNetlink

Linux Kernel Programming -> Hello World Linux Kernel Modules

➢ Summary

➢ This is Quick short Demo on how to write LKMs, Compile, load and run !

Kernel

… App1 App2 AppN

Computer Architecture

… CPU Memory Devices

Application Layer

User space

OS

Kernel space

Hardware Layer

Device drivers

Netlink Skts

IOCTLS

Device files
System Calls

IPC

Linux Kernel Programming -> Various Communication Mediums in the System

Linux Kernel Programming -> Sockets – A unified interface

➢ Netlink Sockets are especially created to facilitate clean bidirectional communication between user space and kernel space

➢ Other Techniques can also be used for US <-> KS communication, but they were not invented for this purpose

➢ Eg : Ioctls, device files, System calls

➢ A Socket based technique was developed to build the unified interface using which user space applications (USA) can interact

with various kernel subsystems

int skt_fd = socket (AF, Socket Type, Protocol ID)

➢ Thus, socket interface is unified – depending on arguments passed, we set up communication properties – whom to

communicate, what to communicate, how to communicate

➢ Introducing Netlink Sockets

These 3 arguments determine :

1. Socket Address Family

2. Communication Type : Datagram based Or Stream Based

3. Protocol used for communication

Linux Kernel Programming -> The Netlink Sockets UseCases

Kernel . . .

… App1 App2 AppN

Socket Interface (bunch of System Calls)

(socket , accept, bind, send, recv, close etc)

Kernel

Subsystems
Kernel

Subsystems

Kernel

Subsystems

Network

(Network

Sockets)

Unix

Domain

Sockets

Netlink

Sockets

Linux Kernel Programming -> The Netlink Sockets UseCases

Kernel . . .

… App1 App2 AppN

Socket Interface (bunch of System Calls)

(socket , accept, bind, send, recv, close etc)

Network

(Network

Sockets)

Unix

Domain

Sockets

Netlink

Sockets

Routing/

TCP-IP Stack
Firewall /

IpTables

ARP Tables,

Interface

Properties etc

Linux Kernel Programming -> Other Netlink UseCases

➢ Configure Run time Linux Kernel Configuration parameters from User-space

➢ Configure kernel Routing Sub-system

➢ L3 Routing Table, ARP, Fire-walls, IP-Tables etc

➢ Fetch or configure NIC (Network Interface Cards) information such as MAC, IP addresses, MTU etc

➢ Extracting Memory usage, Process related information

Linux Kernel Programming -> Netlink Project

Kernel Space

User Space Appln

Dest Mask Gw OIF

10.1.1.1 24 11.1.1.1 eth0/6

Kernel Routing Table Mgr Subsystem

Kernel Space

• In this project, we shall be discussing the

communication between USA and Routing

Table Mgr Kernel Subsystem as an example

• USA Actions :

• Perform CRUD Operations

• KS Actions

• We will write LKM which will behave as

Routing Table Mgr residing in kernel

space.

• It shall process CRUD orders coming

from application

• Same Netlink Communication semantics

applies to other kernel subsystems

Linux Kernel Programming -> Netlink Project

➢ In this Course, We shall explore Netlink Socket Based Communication between US & KS by developing USA

which interact with our LKM which is in-charge of our Routing Subsystem of Kernel

➢ Once we understand how Netlink Based communication work using one sub-system as example, we can use our

knowledge to develop USA which can interact with any kernel subsystems – The principles and rules of

communications are same, what changes are only type of Netlink Messages exchanged

➢ Along the way, we shall also learn TLV based communication, event-based notifications

➢ Time to write our first Netlink Program … ! ☺

Linux Kernel Programming -> Netlink Sockets -> Netlink Msg Format

➢ USA and KS exchange Netlink msgs in well defined format

➢ Any Netlink msg going from USA to KS or from KS to USA must be as per Netlink standard msg format

➢ A Typical Netlink Msg is laid out in Memory as below :

➢ Netlink Msg Format

Netlink Msg Hdr Padding Payload

struct nlmsghdr {

u32 nlmsg_len; /*Total length of msg = nlhdr + padding + payload*/

u16 nlmsg_type;

u16 nlmsg_flags;

u32 nlmsg_seq;

u32 nlmsg_pid;

};

16B
nlmsg_len

Linux Kernel Programming -> Netlink Sockets -> Netlink Msg Format

➢ Netlink Msg Format

Netlink Msg Hdr Padding Payload Netlink Msg Hdr Padding Payload
. . .

➢ Both parties, can exchange Multiple Netlink msg units cascaded one after the other

Linux Kernel Programming -> Netlink Sockets -> Netlink Msg Hdr -> Netlink Msg Types

➢ Netlink Msg Hdr -> Netlink Msg Types

nlmsg_len

nlmsg_type nlmsg_flags

nlmsg_seq

nlmsg_pid

nlmsg_type

4 standard types are defined in /usr/include/linux/netlink.h

NLMSG_NOOP : When the other party recvs this msg, it does nothing except it replies

with NLMSG_DONE telling the sender that all is fine (= Is all ok ?)

NLMSG_ERROR : When the party recvs this msg as a reply to the msg sent previously,

it means that other party failed to perform requested action (= negative feedback)

NLMSG_DONE : This is the last Netlink msg in the cascade of multiple Netlink msg units

NLMSG_OVERRUN : Currently not used in linux kernel anywhere

Note : Besides above, User can define his own msg types which should be >= 16

Our LKM (Kernel Routing

Table Manager)

User Space Appln

Linux Kernel Programming -> Netlink Sockets -> Netlink Msg Hdr -> Netlink Msg flags

➢ Netlink Msg Hdr -> Netlink Msg flags

nlmsg_len

nlmsg_type nlmsg_flags

nlmsg_seq

nlmsg_pid

nlmsg_flags

> These flags are set in Netlink msg to convey additional information to the recipient

> Multiple flags could be set using bitwise AND/OR operators

flags Use

NLM_F_REQUEST The Netlink msg contains a request. Should be set for each Netlink

Msg going from USA to KS, if not kernel replies back with invalid

argument EINVAL error. This US as Master, and kernel as Slave.

NLM_F_CREATE USA asking kernel subsystem to create a resource or

configuration

NLM_F_EXCL Used together with NLM_F_CREATE, USA asking kernel to

return an error with if the configuration/resource already exists

NLM_F_REPLACE USA wants to replace an existing

configuration in the kernel-space subsystem

NLM_F_APPEND USA application requesting KS to add more data to existing

configuration, for example adding some data to existing linked

list

NLM_F_DUMP USA requesting KS to send itself all the data of particular type.

KS replies with multipart cascaded Netlink msgs to such request

from USA

NLM_F_MULTI This flag is set to tell the recipient that there is NEXT Netlink

msg following to this one !

NLM_F_ACK If set, USA is requesting the KS to reply back with the

confirmation msg of the USA’s request. KS replies with

NLMSG_NOOP Or NLMSG_ERROR msg type

Our LKM (Kernel Routing

Table Manager)

User Space Appln

Linux Kernel Programming -> Netlink Sockets -> Communication Model

➢ Netlink Communication Model

➢ From Netlink Flags, you should get an idea that Netlink based communication :

➢ USA application is generally the requester – the master who is placing order

➢ Kernel is generally the request Entertainer – the slave who acts on application’s order/request

➢ Most of the time, it is USA which initiate the communication with KS

➢ In case of event-based notification, it is kernel which initiate the

communication

Our LKM (Kernel Routing

Table Manager)

User Space Appln

Linux Kernel Programming -> Netlink Sockets -> Netlink Msg Hdr -> Sequence Number

➢ Netlink Msg Hdr -> Sequence Number

nlmsg_len

nlmsg_type nlmsg_flags

nlmsg_seq

nlmsg_pid

Sequence number

➢ When USA sends a Netlink request msg to KS, it must set a unique number to

this request if USA sets NLM_F_ACK flag

➢ When KS replies back with confirmation msg to USA, it sets the same sequence no

which was specified in the request msg sent from USA

➢ This helps the USA to correlate which Netlink reply is for which Netlink request in

case USA has issues multiple Netlink Requests to Kernel and awaiting reply

User Space Appln

Our LKM (Kernel Routing

Table Manager)

Linux Kernel Programming -> Netlink Sockets -> Netlink Msg Hdr -> Port Id

➢ Netlink Msg Hdr -> Port Id

nlmsg_len

nlmsg_type nlmsg_flags

nlmsg_seq

nlmsg_pid

Port ID

➢ Set by the USA while sending Netlink msg to KS

➢ It must be unique to the USA, therefore good practice to use process id

➢ Kernel Use this info to reply back to the correct application in user space

➢ This value is set to zero for Netlink msgs Originating from KS to USA
USA1

Our LKM (Kernel Routing

Table Manager)

USA3USA2

Linux Kernel Programming -> Netlink Sockets -> NetLink Hello World

➢ Netlink Hello World

➢ We shall write a Netlink Hello World User Space and Kernel LKM to demonstrate the Netlink Socket based communication

➢ We shall design our USA which forks a separate thread to receive data, and send data to KS in main thread only

➢ We will still use same typical steps involved in socket programming :

➢ Creating socket

➢ specifying src and dst address

➢ bind()

➢ sendmsg and recvmsg

➢ Close

➢ I shall explain the new APIs that we shall encounter right in the code walk

➢ In the next Section, we shall begin a new project and incrementally add new code as we learn more new concepts , So

Let us start with building our first very basic Netlink program . . .

Linux Kernel Programming -> Netlink Sockets -> The GREET Example

Netlink Program

User Space

userspace.c

Kernel Space

netlinkLKM.c

➢ Compile separately

➢ We shall write a GREET Example, in which USA and LKM simply exchange “Hello How are you !” kind of message

➢ Once we setup the basic communication infrastructure in place, we shall begin our Netlink Project

Linux Kernel Programming -> Netlink Sockets -> The GREET Example -> Writing greetNetlinkLKM.c

Kernel . . .

… App1 App2 AppN

Socket Interface (bunch of System Calls)

(socket , accept, bind, send, recv, close etc)

Netlink

Sockets

Routing/

TCP-IP Stack
Firewall /

IpTables

ARP Tables,

Interface

Properties etc

➢ Netlink Protocol Number

➢ A unique ID called Netlink

Protocol number is assigned to

Each Netlink capable kernel

Subsystem

➢ For example, see

linux/netlink.h

Our own Kernel

Subsystem (LKM)

We need to choose a

Unused unreserved

Netlink Protocol number

Linux Kernel Programming -> Netlink Sockets -> The GREET Example -> Writing greetNetlinkLKM.c

➢ Getting Started with Writing our Netlink LKM

➢ Steps :

➢ Register init and cleanup functions

➢ Initialization struct netlink_kernel_cfg

➢ Netlink Socket Creation

➢ Netlink Socket Destruction

➢ Receiving User space message

➢ Processing User space msg

➢ Replying to User space

APIs :

Linux Kernel Programming -> Netlink Sockets -> The GREET Example -> Writing greetNetlinkLKM.c

User Space

userspace.c

Kernel Space

greetNetlinkLKM.c

➢ When Kernel Space receives data from USA via Netlink,

data is received in a data structure called socket buffer

struct sk_buff; defined in include/linux/skbuff.h

➢ Kernel Uses this data structure extensively for multiple purposes:

➢ For transferring messages from one kernel Subsystem to another

➢ For receiving Network Packet

➢ Packet movement upwards and downwards in the layers of

TCP/IP Stack (Linux Implementation of OSI Model)

➢ Etc

➢ This is large data structure; we shall be discussing it only in

the context of Netlink Socket Communication

➢ struct sk_buff *skb_in;

User space data is received in skb_in->data;

length of data : skb_in->len

Linux Kernel Programming -> Netlink Sockets -> The GREET Example -> Writing Userspace.c

Writing Netlink Userspace Program

Linux Kernel Programming -> Netlink Sockets -> The GREET Example -> Writing Userspace.c

User Space

userspace.c

Kernel Space

greetNetlinkLKM.c

➢ Now we shall begin writing Userspace Netlink program

➢ This Userspace program will do the following :

➢ Create a Userspace Netlink Socket

➢ Start a separate Netlink msg receiver thread

➢ Ask the user for input to send GREET msg to kernel

➢ Send GREET Netlink msg to kernel LKM using protocol no 31

➢ recv kernel reply GREET_REPLY msg via receiver thread

userspace.c

Create thread

Wait for kernel

Msgs, recv and process

Ask user Input and

Send msgs to kernel space

Main thread

Linux Kernel Programming -> Netlink Sockets -> The GREET Example -> Writing Userspace.c

int

send_netlink_msg_to_kernel (int sock_fd, /*Netlink Socket FD*/

char *nl_payload, /*msg to be sent to kernel*/

uint32_t msg_size, /*msg size in Bytes*/

int nlmsg_type /*msg type = GREET*/

uint16_t flags); /*NLM_F_* Flags*/

API to send Msg to LKM from Userspace

Linux Kernel Programming -> Netlink Sockets -> The GREET Example -> Writing Userspace.c

Step 1 : Prepare struct nlmsghdr with payload msg to be sent

Step 2 : Wrap the message inside struct iovec iov

Step 3 : Wrap the iovec inside struct msghdr outermsghdr;

memset (&outermsghdr, 0, sizeof(struct msghdr));

outermsghdr.msg_name = (void *)&dest_addr; /*Whom you are sending this msg to*/

outermsghdr.msg_namelen = sizeof(dest_addr);

outermsghdr.msg_iov = &iov;

outermsghdr.msg_iovlen = 1;

Step 4 : sendmsg (sock_fd, &outermsghdr, 0);

Netlink Msg Hdr Padding Payload

(void *)

iov_base

(size_t)

iov_len

struct sockaddr_nl dst_addr;

dest_addr.nl_family = AF_NETLINK;

dest_addr.nl_pid = 0; /*If kernel is Dest*/

Linux Kernel Programming -> Netlink Sockets -> The GREET Example -> Writing Userspace.c

Main()

sock_fd = create_netlink_socket

(NETLINK_TEST_PROTOCOL)

bind()

start_kernel_data_receiver_thread ()

pthread_create ()

Menu

1. Greet Kernel

2. Exit

Separate Thread Flow

Block indefinitely until

msg is recvd from KS

recvmsg (sock_fd)

Process msg

send_netlink_msg_to_kernel()

Linux Kernel Programming -> Netlink Sockets

Remaining Section of The course …

Netlink Attributes - The concept of TLVs

The Netlink Project

Multicast with Netlink Sockets

The Concept of TLVs

➢ TLV – Type Length Value

➢ TLV is a mechanism of packaging the data in a TYPE LENGTH VALUE order

➢ Benefits :

➢ Flexible, easy to add and remove data

➢ Not tied to pre-defined Structure

➢ Ignore the Data which is not recognized

➢ Process the data which is recognized

➢ If you are already familiar with TLV, Jump to assignment section straightaway

➢ Example :

➢ Data which shows 3 TLVs are packed together

#define NAME_TLV_CODE 1 >> String format , Unit Data length 32B

#define WEBSITE_TLV_CODE 2 >> String format, Unit Data length 64B

#define EMP_ID_TLV_CODE 3 >> Integer format, Unit Data length 8B

TLV Code point gives two information :

> Data type of Value (String, integer , float, ip-address . . .)

> Length of 1 Unit of Data

TYPE = 1

LENGTH = 32

“Abhishek Sagar”

TYPE = 2

LENGTH = 64

www.csepracticals.com

TYPE = 3

LENGTH = 8

52437

T

L

V

1B

1B

Variable..

TLV Overhead

= 2B

The Concept of TLVs

➢ Parsing TLV Buffer

#define NAME_TLV_CODE 1 >> String format , length 32B

#define WEBSITE_TLV_CODE 2 >> String format, length 64B

#define EMP_ID_TLV_CODE 3 >> Integer format, length 8B

TYPE = 1

LENGTH = 64

“Abhishek Sagar”

TYPE = 2

LENGTH = 128

www.csepracticals.com

TYPE = 3

LENGTH = 24

52437

“Shivani”

www.facebook.com

52438

52439

char *tlv_buffer = <pointer to the start of TLV buffer>

uint32_t total_size = 222B

uint8_t type = *tlv_buffer;

uint8_t len = *(tlv_buffer + 1);

int units = len/get_unit_data(type);

char *name = (tlv_buffer + 2);

for (int i = 0; i < units; i++){

char *name = (tlv_buffer + i * get_unit_data(type));

printf (“Name = %s\n”, name);

}

tlv_buffer += len;

tlv_buffer += TLV_OVERHEAD;

/*Read next TLV and go on*/

Caution : Take care that you don’t overshoot TLV buffer, track how much buffer you have scanned

int

get_unit_data_size(uint8_t tlv_type)

{

switch(tlv_type){

case NAME_CODE_TLV:

return 32;

case WEBSITE_TLV_CODE:

return 64;

case EMP_ID_TLV_CODE:

return 8;

default:

return 0;

}

}

The Concept of TLVs

TYPE = 1

LENGTH = 64

“Abhishek Sagar”

TYPE = 2

LENGTH = 128

www.csepracticals.com

TYPE = 3

LENGTH = 24

52437

“Shivani”

www.facebook.com

52438

52439

Assignment : Write a TLV Iterative macros, and make your life easy

#define ITERATE_TLV_BEGIN(start_ptr, type, length, tlv_ptr, buffer_size)

#define ITERATE_TLV_END(start_ptr, type, length, tlv_ptr, buffer_size)

How to use :

char *tlv_buffer = <pointer to the start of TLV buffer>

uint32_t total_size = 222

uint8_t type, uint8_t len;

char *val;

ITERATE_TLV_BEGIN(tlv_buffer , type, len, val, total_size){

switch(type){

case NAME_TLV_CODE:

process ‘val’;

break;

case WEBSITE_TLV_CODE:

process ‘val’;

break;

. . .

default: /*Do nothing */

}

} ITERATE_TLV_END(start_ptr, type, length, tlv_ptr, buffer_size)

Macro :
Read all TLVs in a buffer

Sequentially

Gives the T L V for each

TLV in buffer to programmer

For processing

Take care to not overrun

TLV buffer

Programmer don’t have to

Worry about adjusting and

Jumping pointers with-in a

TLV buffer

Linux Kernel Programming -> Netlink Sockets -> Netlink Project

Kernel Space

User Space Appln

Dest Mask Gw OIF

10.1.1.1 24 11.1.1.1 eth0/6

Kernel Routing Table Mgr Subsystem

Kernel Space

➢ We will create a Netlink User space and

Kernel space LKM as a project

➢ We shall Implement a Routing Table

Manager, the routing table resides in

kernel space

➢ User space Program send instruction to

RTM LKM, RTM in turn perform actions on

Routing Table

➢ Lets kick start the project straightaway,

We shall add more complexity to it as

We progress

➢ us_rtm.c – user space program

➢ ks_rtm_lkm.c – kernel module

Linux Kernel Programming -> Netlink Sockets -> Netlink Project

➢ Operation 1 Specification

➢ Synopsis : Creating a New Routing Table in KS

➢ Functionality :

➢ User Space Instructs the KS LKM to create a new Routing Table with Name name

➢ Netlink Msg US -> KS

➢ Nlmsg_type = NLMSG_RT_NEW_CREATE = 21

➢ Flags = NLM_F_ACK | NLM_F_REQ | NLM_F_CREATE

➢ Attribute :

➢ TYPE : 1

➢ LENGTH : 32B

➢ Value : String name

➢ KS Action

➢ If msg recvd of type NLMSG_RT_NEW_CREATE

➢ If NLM_F_REQ flag not set, ignore the message silently

➢ If Table do not exist && NLM_F_CREATE flag set

then create a new table

➢ If NLM_F_ACK flag is set, send ACK to US otherwise stay silent

➢ If Table already exists, Send Error Code -100 to US

➢ US on Receiving an ACK or ERROR code, notify the user by printing

Success

Failure, error code -100

nlmsg_len

1
ACK | REQ |

CREATE

X = 0

nlmsg_pid

TYPE = 1

LENGTH = 32

“main_routing_table”

1B

1B

32B

nlmsg_len

NLMSG_DONE 0

X

0

ACK MSG

nlmsg_len

NLMSG_ERROR 0

X

0

ERROR MSG

100 4B

US -> KS Instr.

Linux Kernel Programming -> Netlink Sockets -> NetLink Attributes

➢ Netlink Attribute

➢ We have setup a basic Netlink Socket Based Communication between our USA and KS

➢ Netlink protocol require the communication parties to make use of TLV format in order to

exchange data

➢ These TLVs are appended after the Netlink msg header

Netlink Msg Hdr Padding Payload

1 2 3 44 TLV units →

Variable Sizes

Each TLV unit has three parts : Type (2B) , Length (2B), Value (Variable data)

Linux Kernel Programming -> Netlink Sockets -> NetLink Attributes

➢ Netlink Attribute

struct nlattr {

__u16 nla_len;

__u16 nla_type;

};

32 2 sabhi 64 3 Address 4 4 32Example :

32B 64B 4B

TLV Code Meaning

2 Name, so use char [32]

3 Address, so Use char[64]

4 Age of the person, so Use int

The recipient need to be programmed to

how to interpret the TLV Codes,

else skip the unknown TLV Code point

➢ Thus, USA and KS exchange Netlink Data strictly in the below format :

Linux Kernel Programming -> Netlink Sockets -> NetLink Attributes

➢ Netlink Attribute

Netlink Msg

Hdr1

TLV1

TLV2

TLV3

Netlink Msg

Hdr2

TLV4

.

.

.

Linux Kernel APIs Provides us various macros

to work with Netlink Headers, and TLVs

We shall discuss those macros directly in

Programs !

