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IMPACT OF COUNTERPARTY RISK ON THE

REINSURANCE MARKET
Carole Bernard* and Mike Ludkovski†

ABSTRACT

We investigate the impact of counterparty risk (from the insurer’s viewpoint) on contract design
in the reinsurance market. We study a multiplicative default risk model with partial recovery and
where the probability of the reinsurer’s default depends on the loss incurred by the insurer. The
reinsurer (reinsurance seller) is assumed to be risk-neutral, while the insurer (reinsurance buyer) is
risk-averse and uses either expected utility or a conditional tail expectation risk criterion. We show
that generally the reinsurance buyer wishes to overinsure above a deductible level, and that many
of the standard comparative statics cease to hold. We also derive the properties of stop-loss in-
surance in our model and consider the possibility of divergent beliefs about the default probability.
Classical results are recovered when default risk is loss-independent or there is zero recovery rate.
Results are illustrated with numerical examples.

1. INTRODUCTION

During the recent financial crisis, counterparty risk, credit risk, and systemic dependency between
financial firms have become front-page news. A similar story played out in the reinsurance industry
with reinsurers’ default risk rising exactly at the time when reinsurance was most needed. Potential
scenarios of large-scale natural catastrophes, nondiversifiable shifts in longevity, and systemic shocks
to the reinsurance industry all contribute to this phenomenon. In this paper we investigate the impact
of counterparty risk on the optimal insurance design in the reinsurance market. We propose a new
one-period model to solve the optimal risk sharing when there is a probability that the reinsurer defaults
on his or her contract obligations and only partly reimburses the promised insurance indemnity. Cru-
cially, we assume that this counterparty risk is related to the losses of the reinsurance buyer. Indeed,
when the reinsurance buyer has a big loss, the reinsurer is not only responsible for making a large
indemnity payment, but is also likely affected by similar losses from other reinsurance buyers. Thus,
large losses are commonly due to a systemic factor and cause undiversifiable stress on the reinsurer’s
capital.

To capture systemic effects, we assume negative stochastic dependency in the sense of Capéraà and
Lefoll (1983) between the loss incurred by an insurance company X and the fraction 0 � � � 1 of
indemnity actually paid out by the reinsurer (after default). We term default any event where � � 1
and the promised indemnity is not fully paid. This means that conditional on X, � is a nonincreasing
function. While we assume that large X makes it more likely that � � 1, we do not introduce any
direct structural model of such cause and effect. Thus, our model is complementary to the recent study
of Biffis and Millossovich (2010), who investigate reinsurer default that is explicitly caused by the
payments of the indemnity and the consequent nonperformance of the reinsurer’s net assets. We believe
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88 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 16, NUMBER 1

that a typical reinsurance company has many policyholders, so it is unlikely that default is directly
triggered by the payment of one particular indemnity.

In our model counterparty risk is interpreted as a form of ‘‘background risk’’ for the reinsurance
buyer. Several previous papers have already studied the effects of background risk on risk-sharing agree-
ments; see, for instance, the survey in Schlesinger (2000) and, more recently, Dana and Scarsini (2007).
However, most existing literature assumes that the background risk is additive and relies on very special
cases of dependence (such as Gaussian correlation or certain copula structures). In contrast, reinsur-
ance default risk must be multiplicative and requires more general dependence structures. The early
work by Doherty and Schlesinger (1990) considered a three-state model of insurance under counter-
party risk with total default and was later extended to partial default by Mahul and Wright (2007).
More sophisticated models of independent default risk were analyzed in Mahul and Wright (2004) and
Cardenas and Mahul (2006). Finally, Cummins and Mahul (2003) considered a loss-dependent coun-
terparty risk but with total default. We extend this strand of literature by incorporating loss-dependent
probability of default, as well as partial recovery in the event of contract nonperformance. More gen-
erally, we extend Dana and Scarsini (2007) to the case when the background risk is multiplicative and
not additive, and we underline that the presence of multiplicative background risk can be more complex
than additive risk. This was also noted in another context by Franke et al. (2006).

As in aforementioned papers, we show that it is generally optimal for a risk-averse insurer (facing
default risk of the reinsurer) to lower the reinsurance demand by increasing the optimal deductible
level, while at the same time increasing the marginal insurance rate over the deductible. If there is
partial recovery in case of default, there is an increase in protection of the tail risk, so that the optimal
shape of the contract involves marginal overinsurance but the optimal premium is lower. However, in
general, the overall shape of optimal contracts may be very complex and include decreasing indemni-
fication, overinsurance, and counterintuitive comparative statics. Thus, most of the standard properties
of optimal indemnities are rendered false. We document all these effects and illustrate them with
numerical examples. We also show that partial recovery can lead to very different indemnities compared
to total default, highlighting the need for proper modeling of recovery rates.

To connect our model with more realistic insurance contracts, we also investigate the properties of
optimal stop-loss reinsurance in our setting. While we demonstrate that within the classical expected
utility framework stop-loss indemnities are suboptimal and continue to have counterintuitive compar-
ative statics, they can be tractable when using the increasingly popular conditional tail expectation
(CTE) and Value-at-Risk (VaR) criteria. Namely, we derive explicit formulas for the impact of counter-
party risk on the optimal deductible levels under the CTE/VaR risk measures. These results are then
compared to the work of Cai and Tan (2007) done in the absence of counterparty risk. We find that
counterparty risk again lowers the insurance demand by increasing the optimal deductible level.

In Section 2 we first set up the problem and the model for the dependency between realized losses
and counterparty risk. Section 3 then investigates the effects of counterparty risk on the deductible
level if a stop-loss indemnity is bought in the case of expected utility maximization and of risk mini-
mization (where risk is measured through VaR or CTE). Through examples we show evidence that a
deductible indemnity may not be optimal, and we derive general properties of the optimal risk sharing
in the reinsurance market in the presence of counterparty risk in Section 4. Section 5 considers the
model where the reinsurer ignores his or her own default risk, related to the setting of Cummins and
Mahul (2003). All proofs are given in the Appendix.

2. FRAMEWORK

In this section we present the optimal insurance design, the assumptions of the model, and how coun-
terparty risk is modeled.

2.1 Optimal Insurance Design
Consider an insurance company with initial endowment W. We assume a one-period setting. Let �
denote the premium paid by the insurer to the reinsurance company at the beginning of the coverage
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 89

period. Let X denote the aggregate loss of the insurance company during this period and I(X) the
reinsurance indemnity paid by the reinsurer at the end of the coverage period. We will refer to the
reinsurer as the ‘‘seller’’ and to the insurer as the ‘‘buyer.’’ The loss X is bounded almost surely by

We suppose that the reinsurance contract is subject to counterparty risk, that is, with a smallx̄.
probability the seller will not be able to pay entirely the promised benefits I(X) to the insurance
company.

We model this problem as follows. Let � represent the ‘‘recovery rate.’’ In case of default of the
seller, it is the percentage of the indemnity that the seller can pay. The reinsurance buyer thus receives
�I(X), where

� � 1 with prob. p,�� � �(0, 1) with prob. 1 � p.

The above equation implies that the random variable � has a mixed distribution, with a point mass at
1 of size p and a continuous distribution over [0, 1) with density equal to f(x) � (1 � p)g(x), where
g(x) is a density for the given recovery distribution �(0, 1) over [0, 1). Most commonly we will assume
that � takes on just two values, �(�) � {�0, 1}, with 0 � �0 � 1 representing the recovery rate in the
case of nonperformance. While certainly not realistic, this case is already sufficiently rich (and in
particular much more complex than total default �0 � 0) to be of theoretical interest. Moreover, given
significant difficulties in empirically estimating recovery rates, it is common in financial practice to
assume constant recovery rates in case of default.

We assume that the buyer is a von Neumann–Morgenstern utility maximizer with utility function U.
Thus, the buyer is maximizing the expected utility of his or her final wealth:

�[U(W � � � X � �I(X))].

We suppose that U(�) satisfies Inada’s conditions, that is, U(0) � 0, U is continuously differentiable
and strictly increasing, U� is strictly decreasing (so that the buyer is risk averse), limx↘0U�(x) � ��,
and limx↗��U�(x) � 0. We also assume that the seller is risk neutral and that he or she simply maximizes
his or her expected profit at the end of the period. In other words, the seller accepts to sell the
reinsurance contract if the premium is enough to cover the expected costs. Let C represent the min-
imum profit (expressed as an expected value) that the seller wants to achieve by selling reinsurance to
this buyer.

We assume that the seller is risk-neutral and shares the same view as the buyer about the default
risk. The participation constraint can then be written as

C � �[� � �I(X)],

where C is a minimum expected profit. Equivalently, one has

�[�I(X)] � K, (1)

where K � � � C. The expected profit of the seller is classically measured through a linear safety
loading � as

�
K � .

1 � �

Our problem consists of finding the optimal reinsurance arrangement x I(x) such that the ex-�→
pected utility of final wealth of the buyer is maximized. Additional standard constraints are that
indemnities are positive and that they cannot exceed the actual loss (to avoid moral hazard),
0 � I(x) � x. Such assumptions were adopted by most papers on optimal insurance since the pioneering
works of Arrow (1963, 1971) and Raviv (1979); see also Eeckhoudt et al. (2005). To summarize, the
optimal reinsurance contract solves the following optimization problem:
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90 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 16, NUMBER 1

max{�[U(W � � � X � �I(X))]}: (A)
I,�

0 � I(x) � x,��[�I(X)] � K.

When � � 1 and there is no counterparty risk, the above problem reduces to the standard model of
insurance design, whereby optimal indemnity is a stop-loss policy. Otherwise, Problem A can be seen
as an extension of Cummins and Mahul (2003), where the default may happen partially instead of a
total default, and as an extension of Doherty and Schlesinger (1990) and Mahul and Wright (2007),
where the loss X can take more than two values.

Our objective in this paper is to solve Problem A over all possible reinsurance indemnities I(�) and
all possible premium levels �. This optimal reinsurance problem is commonly solved via a two-step
procedure. The first step is to find the optimal form of the reinsurance contract I�(�) while keeping
the reinsurance premium � fixed. The second step is to find the optimal premium level �. This is the
technique adopted in many references in the literature, including Raviv (1979) and Gollier (1987,
Problem 5.a), who notes that an ‘‘insurance policy is characterized by the premium � paid by the
insured and by a coverage function I(X) specifying the reimbursement of the insurer for each possible
loss X.’’

However, solving the first step of Problem A is usually challenging because it is an optimization over
an infinite dimensional space. In Section 3 we therefore initially solve the second step of the problem
when the indemnity shape I(�) is already given. Our objective is to understand the impact of counter-
party risk on the reinsurance demand measured by the amount of reinsurance purchased. We investi-
gate simple indemnities, such as the stop-loss contract I(x) � (x � d)� which depends on a single
parameter, the deductible level d. Finding the optimal deductible is equivalent to finding the optimal
premium because there is a bijection between � and d. In Section 4 we then solve the full Problem A
by fixing � and solving for the corresponding optimal contract I�(�). The second step of optimizing
over premiums can then only be performed numerically; see, for example, Figure 2 in Section 4.4,
where the expected utility is represented as a function of the premium �.

In Problem A, the insurance buyer and the insurance seller share the same beliefs about the default
risk of the seller and the distribution of the recovery rate. We will discuss the presence of asymmetric
information and its effects on the solution to Problem A in Section 5.

2.2 Dependency Modeling
In the optimal insurance design Problem A, there are two random variables: the aggregate loss amount
X and the percentage of the indemnity paid to the buyer at the end of the period �. Economic con-
siderations imply that there is dependency between these two variables. When the insurance company
suffers from major losses in a given period, it is likely due to some significant natural disaster. In this
case, other insurance companies also incur large losses, and the seller (who reinsures multiple buyers)
is much more likely to default. Such a cascade effect would happen during a major hurricane, earth-
quake, or worldwide financial crisis. Therefore, � is more likely to be small (in particular less than 1)
when X becomes very big.

DEFINITION 2.1

A random variable � is stochastically decreasing (respectively stochastically increasing) in another
random variable X if

�x → �[ f(�) �X � x]

is nonincreasing (respectively nondecreasing) for every nondecreasing function f for which expectations
exist. We denote by � ↓st X (resp. � ↑st X) when � is stochastically decreasing (resp. increasing) with
X.
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 91

By the above considerations, for the remainder of the paper we assume �↓st X. The concept of ‘‘sto-
chastically increasing’’ or ‘‘stochastically decreasing’’ risks could be useful in many other actuarial
contexts to model dependency with a very general approach. For example, there is positive dependence
among the risks of getting sick within a household (because of infectious diseases), between the risks
of losing a job when two people are working in the same company or same field, between the mortality
of husband and wife, or between the risk of water damage and fire for a given building. Note that this
is not a symmetric relationship, and � ↓st X is different from X ↓st �.1

A somewhat different version of our problem is to consider � ↓st I(X), which emphasizes the link
between the payment of a high indemnity and the default risk of the reinsurer. The latter concept was
explored in Biffis and Millossovich (2010), who studied the default risk of a reinsurer using a ‘‘structural
model’’ in which default is predicated by a large I(X). In our model we focus on the default risk due
to potential systematic catastrophes that cause the reinsurer to have an exceptionally high aggregate
loss. Thus, when the reinsurer goes bankrupt it is not only due to the payment of one high indemnity,
but also due to systemic factors. For instance, when a natural catastrophe occurs, X is large and so
are the payments of the indemnities to other buyers that are not independent anymore. Moreover, a
large X might also affect other market players or the financial market, leading to a knock-on effect on
reinsurer’s investments or cascading defaults of other reinsurer’s counterparties and undermining its
net assets.

3. STOP-LOSS REINSURANCE WITH COUNTERPARTY RISK

It is well known that stop-loss insurance is optimal in the standard expected utility framework (Arrow
1963). However, the analysis in Section 4 will show that in general stop-loss reinsurance is no longer
optimal under counterparty risk. Instead, the buyer prefers a disappearing deductible structure (where
there is ‘‘marginal overinsurance’’ in the sense that 	I(x)/	x 	 1). Note that there is no overall
‘‘overinsurance’’ since the optimal indemnity is constrained to satisfy I(x) � x. For legal and moral
hazard reasons, practical contracts rarely allow for marginal overinsurance. Instead, it is observed that
nearly all empirical reinsurance contracts are either of the stop-loss I(x) � (x � d)� or coinsurance
with deductible I(x) � 
(x � d)� (with or without upper-limits) types. In this section we investigate
the properties of the optimal stop-loss/coinsurance levels of such contracts.

The simplest nontrivial model where the recovery rate � takes on two values and the loss X has a
Bernoulli distribution was considered by Doherty and Schlesinger (1990) and Mahul and Wright (2007).
It was shown that already in this context most of the classical comparative statics need not hold. We
extend these results to more elaborate loss distributions in Section 3.1. From a different direction, Cai
and Tan (2007) studied optimal stop-loss levels (without default risk) when the buyer measures losses
through the Value-at-Risk (VaR) and Conditional Tail Expectation (CTE) risk criteria. Such risk mea-
sures are attractive in the reinsurance context since they focus on catastrophic losses and are insen-
sitive to modeling assumptions about small X. In Section 3.2 we extend their methods in the presence
of counterparty risk.

3.1 CRRA Utility
Because in the model of Doherty and Schlesinger (1990) X is two-valued, it is not sufficiently rich to
distinguish between different functional forms of insurance, such as co-insurance, stop-loss, etc. Ac-
cordingly, we have carried out extensive numerical experiments in the generalized model where X has
either a discrete or a continuous distribution. For concreteness, we considered (1) a discrete uniform
X � DU(0, (2) binomial X � and (3) uniform X � loss distributions withx̄), Bin(x̄, p), Unif(0, x̄)

� 10. We assumed that � � {�0, 1}, and the conditional default probability was taken as hyperbolic:x̄

� c
p(x) � �(� � 1 �X � x) � . (2)

c � x

1 As noted by Dana and Scarsini (2007), ‘‘stochastic increasingness’’ is an asymmetric dependence relationship unlike the concepts of ‘‘affili-
ation’’ or ‘‘association.’’
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92 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 16, NUMBER 1

The larger is X, the more likely the seller is to default. The utility function was the commonly used
constant relative risk aversion (CRRA) power utility U(x) � x�/�, � � 1.

We postulated that the indemnity was of stop-loss type, I(x) � (x � d)� for some d 
 0, and that
the premium was computed via a linear safety loading �, � � (1 � �)�[�I(X)]. We then optimized
over d the resulting expected utility:

x̄

sup � [p(x)U(W � � � x � d) � (1 � p(x))U(W � � � x � � (x � d) )]F (dx)0 � X
00�d�x̄

with
x̄

�
� � � (1 � �)[p(x)(x � d) � (1 � p(x))� (x � d) ]F (dx).� 0 � X

0

For discrete X, the above are finite sums, while for continuous X, the chosen functional forms allow
for closed-form expressions for � and �[U(W � � � X � �(X � d)�)]. In either case, this is a simple
one-dimensional optimization that can be straightforwardly implemented in any software package, yield-
ing the optimal deductible level as a function of model parameters. Below we summarize the observed
comparative statics.

Effect of the risk loading �. In the absence of default, if � � 0, then it is optimal for the buyer to buy
full insurance (Mossin 1968). In the presence of default, the graph of optimal stop-loss with respect
to � is increasing but starts at a positive value when � � 0. This confirms observations in Doherty and
Schlesinger (1990) and Mahul and Wright (2007), who show that in the presence of default risk for
the seller it might be optimal to buy less than full insurance even if there is no cost (pure premium).
When � is sufficiently large, d* � and no insurance is purchased.x̄

Effect of the risk aversion � and initial wealth W. Recall that in the absence of default, the more risk-
averse is the buyer, the lower the stop-loss (see, for example, Schlesinger 1981). This monotonicity is
not always observed in the case when there is a possible default. In particular, similar to Doherty and
Schlesinger (1990) we find that for very risk-averse buyers, � d*(�) is decreasing when � sufficiently�→
negative. Similarly, d* may be nonmonotone in initial wealth W. We recall that for CRRA utility as W
becomes large, the effective risk aversion with respect to a fixed risk X is decreasing, so this behavior
is similar to the impact of �.

Effect of recovery rate �0 and probability of default p(x). Larger recovery rates alleviate the counterparty
risk, and therefore intuitively we expect that d(�0) is decreasing. However, in fact, d(�0) is convex
and increasing for �0 close to 1. This occurs because the relative risk tolerance (difference between
u�(W � � � x � I(x)) and u�(W � � � x � �0I(x)) is decreasing in �0, and therefore for large �0, the
buyer is paying increasing attention to the risk loading � compared to the counterparty risk. However,
in all our studies larger p(x) (smaller probability of default) does lower optimal deductible levels.
Curiously, when p(x) � c/c � x and c 0, the probability of default converges to 1 but the optimal�→
stop-loss remains strictly less than Therefore, buying some insurance is desirable even when proba-x̄.
bility of performance is very small. As p(x) 1, ∀x, counterparty risk disappears, and the optimal�→
deductible converges to that in the absence of default.

3.1.1 Other Indemnity Structures
To further understand the structure of insurance with counterparty risk, we tried other policies, namely,
(a) capped stop-loss, I(x) � (x � d)� � m for deductible d and maximum payout m, and (b) co-
insurance above a deductible, I(x) � 
(x � d)� for 
 � ��. For each case we repeated the above
studies by finding optimal (d*, m*) and (d*, 
*), respectively. Our numerical experiments showed that
for CRRA utility it was never optimal to impose a cap, that is, m* � x̄.
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 93

Conversely, we found that proportional marginal overinsurance (
* 	 1) is often preferred over a
straight deductible, which is consistent with the general results obtained in Section 4. Optimal over-
insurance was generally mild, with 
* � 1.1, for nearly all parameter combinations we tried. Compared
to having a straight stop-loss, the possibility to overinsure allows one to increase the deductible level,
thus giving enhanced focus on the largest losses that are most important for the buyer.

The results in this section are somewhat sensitive to the distribution of X and the utility function
U, though the observed lack of monotonicity in most model parameters is rather general. We conclude
that little can be said about optimal stop-loss levels in such a general case. One difficulty comes from
the lack of explicit expression of the optimal stop-loss level in the presence of default. Another one
stems from the nontrivial interaction between counterparty risk and the expected utility framework;
accordingly in the next subsection we consider coherent risk measures that allow more transparent
treatment of default risk.

3.2 Conditional Tail Expectation
In this subsection we consider a continuous loss distribution FX. The CTE (also known as the conditional
or tail VaR) is a well-known risk measure that satisfies the axioms of Artzner et al. (1999) and can be
viewed as generalizing the popular VaR. We recall that for a continuous random variable X,

�
� 1

CTE (X) � �[X �X 	 q (X)] � � S (z) dz, 1� X
q (X ) 1�

where a (1 � )-quantile q1�(X) of the risk X is defined for our purposes as

q (X) � inf{x � S (x) � }.1� X

Recall also the VaR VaR(X) � q1�(X) measure of risk and the fact that the CTE can be viewed as
the average of VaR�(X) over 0 � � � . In this subsection we assume that the buyer measures his or
her risk through the VaR/CTE of the retained losses but must also contend with counterparty risk.
Because VaR/CTE are cash additive, CTE(X � a) � CTE(X) � a for any a � �, the initial wealth is
irrelevant, and the problem reduces to

inf {CTE (X � �I(X)) � �}. (3)
I(�)

We continue to assume linear safety loading, � � (1 � �)�[�I(X)], constant recovery rate, � �
{�0, 1} with 0 � �0 � 1, and stop-loss contracts, I(X) � X � d)�. In this setting (3) reduces to the
one-dimensional optimization:

inf {CTE ((1 � �)X � �(X � d)) � (1 � �)�[�(X � d) ]}. (4) �
d
0

Problem 4 was considered in Cai and Tan (2007) for the case without counterparty risk, � � 1. Cai
and Tan showed that the optimal solution in that case is

�
�1 �1d̂ � S ((1 � �) ), (5)X

if (1 � �) � �1 and � �� otherwise.d̂
For a fixed sensitivity level , define the two levels � viaa ā

� �� (1 � p(x))F (dx) �� ; � F (dx) �� .X X
a ā

Note that is simply a (1 � )-quantile of X. Depending on the deductible level d, three cases areā
possible regarding the retained loss Z X � �(X � d)�:

�
�

1. d � The right tail of Z is composed entirely from default losses above the deductible.a.
2. � d � The right tail of Z is composed from the deductible and default losses above.a ā.
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3. d 	 The right tail of Z is composed from uncovered losses above covered losses at the deductibleā. ā,
level, and default losses.

Generally, we expect that p(x) is close enough to 1 such that the unconditional probability of default
(1 � p(x))FX(dx) is less than ; in that case � 0 and the first case is ruled out.�� a0

For any deductible level d, define V(d) � VaR(X � �(X� d)�) and C(d) � CTE(X � �(X � d)�).
Then we find

V(d) � max(a, min(d, ā)), (6)

and using R(x) {(1 � �0)x � �0d}(1 � p(x)),
�
�

�1 � R(x)F (dx), d � a;X
a

� �1
C(d) � � R(x)F (dx) � d  � � (1 � p(x))F (dx) , a � d � ā; (7)� � �	X X

d d
d �
1 � xF (dx) � � {dp(x) � R(x)}F (dx) , d 
 ā.� 	X X

ā d

Moreover, the corresponding premium is given by

�

�(d) � (1 � �) � {(x � d)p(x) � � (x � d)(1 � p(x))}F (dx). (8)0 X
d

The optimization problem is now to find that minimizes IC(d) C(d) � �(d) and IV(d) V(d) �
� �

d � �*
�(d), respectively. We observe that �(�) is a decreasing convex function of d, while V(�) is an increasing
piecewise linear function. Moreover, C(�) is increasing linear on [0, increasing convex ona], [a, ā],
and increasing concave on �). While C(�) is defined piecewise, it can be checked that it is in fact[ā,
continuously differentiable on ��.

The next proposition gives the solution for the CTE risk criterion.

Proposition 3.1
If (1 � �) � �1, then C(d) � �(d) has a unique global minimum at � � given implicitly byCa d ā*

� 1 � �01 � � � � (1 � �) (1 � p(x)) � (1 � �)p(x) F (dx). (9)�� � 	0 XCd *

Otherwise, no insurance is purchased and � ��.Cd*
For the VaR criterion, V(d) is not differentiable at or leading to an additional corner case. Wea ā,

again verify that when (1 � �) 	 �1, V(d) � �(d) is decreasing throughout, and hence � �.Vd*
Otherwise, we have the following proposition.

Proposition 3.2
Suppose (1 � �) � �1. Then

1. If � � (1 � �0)/1 � (1 � �0), then �Vd a.*
2. Else, either � �� or � � , and solvesV V Vd a d ā d** *

�

1 � (1 � �) � {p(x) � � (1 � p(x))}F (dx). (10)0 XVd*

As immediate corollaries from (9) and (10) we have the following comparative statistics.
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 95

• If the risk loading � increases, then increases; as in the classical case, large risk loading increasesd*
the deductible. Furthermore, when � � 0, 	 0 is strictly positive and full insurance is no longerCd*
optimal.

• If the recovery rate �0 increases, or if the compliance probability p(x) increases uniformly on any
[x0, �), then decreases while increases. The latter phenomenon contradicts anecdotal evidenceC Vd d* *
that higher counterparty risk discourages reinsurance buyers. This counterintuitive effect of recovery
rate �0 and default probability p(x) on may suggest that VaR is not a good risk measure to useVd*
when analyzing defaultable insurance demand.

• If the sensitivity level  decreases, then unambiguously increases, so smaller  makes the buyerCd*
more sensitive to default risk and reduces demand for reinsurance. However, if � 	 (1 � �0)/
1 � (1 � �0), then is given in (10) and is not impacted by changing the VaR level  (else, �V Vd d* *

increases).a

The next proposition, proven in Appendix A.3, compares the optimal deductible levels.

Proposition 3.3
Suppose that and are finite. Then we have 
C V C V ˆd d d max(d , d).* * * *

Thus, compared to no-default risk or when using the coarser VaR criterion, a CTE-minimizing buyer
will purchase less stop-loss insurance. Note that it is possible that � � while � ��. To see moreC Vd d* *
transparently the relationship between and consider the case where p(x) � p0 is a constant,C V ˆd , d , d,* *
independent of x. Direct computation shows that in such a setting, optimal deductibles are given by
the quantiles

1C �1d � S ,� �X �1* 1 � � � (1 � p )(1 � � )( � (1 � �))0 0

1V �1d � S ,� �X* (1 � �)(1 � (1 � p )(1 � � ))0 0

so that the second term in the denominators is precisely the difference with � (1/(1 � �)). We�1d̂ SX

also note that in this case � �V Cˆd d d .* *

3.2.1 Illustration
To numerically illustrate the above results, we consider X � Exp(m) and p(x) � �(� � 1 �X � x) �
p0 � (1 � p0)e��x. In that case the integrals in (9) and (10) can be evaluated explicitly, and we find

mV V�md �(m��)d1 � (1 � �)(� (1 � p ) � p )e � (1 � �)(1 � � )(1 � p ) e , (11)0 0 0 0 0 m � �

1 � � C0 �md1 � � (1 � �) � (1 � p ) � (1 � �)p e�� � 	0 0 0

1 m C�(m��)d� 1 � � � (1 � � )(1 � p ) e . (12)� � 0 0 m � �

For comparison we recall from Cai and Tan (2007) that � ((1 � �)�1) � 1/m log((1 � �)) or�1d̂ SX

1 � is optimal without default risk. This is exactly a special case of (12) when p0 � 1.�md̂(1 � �)e
Figure 1 shows the fraction (quantile) of all losses covered by the reinsurance as a function of

the recovery rate �0 and the loss sensitivity  of the reinsurance buyer. In the absence of default,
� (1 � �)�1 of losses are above the deductible and hence subject to reinsurance. Lower recoveryˆS (d)X

rates or increased tail sensitivity reduce reinsurance demand, that is, lower We observe in FigureCS (d ).X *
1 that the impact is most dramatic when  � 0.05.
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Figure 1
Comparative Statics for Optimal Deductible Level for CTE Risk Metric
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Note: In this example X � Exp(m), p0 � 0, p(x) � e��x, � � 0.2 with m � 0.01 and � � 0.0005. We show the percent of losses that are above
the deductible, as a function of the recovery rate 0 � �0 � 1 and CTE level 0.01 �  � 0.15. In the absence of default,CS (d ),X *

� 1/(1 � �), which is the value in the upper-right corner of the figure.ˆS (d )X

3.3 Other Insurance Structures
We may also consider the case where there is co-insurance above the deductible, I(x) � 
(x � d)�,
with 0 � 
 � 1. For brevity, we describe only the resulting changes in the main case (2) of the CTE
criterion. For any b 	 d, the total probability that losses exceed b is

� �

�(b) �� � (1 � p(x))F (dx) � � p(x)F (dx),X X
b�
� d/1�
� b�
d/1�
0 0

which correspond to default on the event {(1 � 
�0)X � 
�0d 	 b} or seller compliance on the event
{(1 � 
)X � 
d 	 b}. Therefore, let b(d; 
) be such that �(b(d; 
)) � . Then the second line of (7)
becomes

�1
C(d; 
) � � {(1 � � 
)x � � 
d}(1 � p(x))F (dx)� 0 0 X

b(d;
)�
� d/1�
� 0 0

�

� � (
d � (1 � 
)x)p(x)F (dx)] ,	X
b(d;
)�
d/1�


with

�

�(d; 
) � (1 � �) � {
(x � d)p(x) � � 
(x � d)(1 � p(x))}F (dx).0 X
d

The total quantity to be minimized is now IC(d; 
) � C(d; 
) � �(d; 
). Numerical experiments suggest
that IC(d; 
) is decreasing in 
 for 
 � (0, 1) and the buyer would like to overinsure. If 
 	 1, then
retained losses are not monotone in original losses, and finding the quantiles of X � �I(X) becomes
even more complicated. These observations highlight the fact that the straight stop-loss indemnity is

D
ow

nl
oa

de
d 

by
 [

C
hu

la
lo

ng
ko

rn
 U

ni
ve

rs
ity

] 
at

 0
5:

15
 0

2 
Se

pt
em

be
r 

20
17

 



IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 97

not optimal in the presence of counterparty risk. In the next section we derive general properties of
the shape of the optimal reinsurance contract.

4. THEORY

We first give some general properties of the optimal indemnity solving Problem A and discuss some
special cases for a better understanding of the impact of counterparty risk on the optimal risk sharing
in the reinsurance market.

4.1 Characterization of the Optimal Reinsurance Policy
To solve Problem A we adopt the variational formulation and apply conditioning. Given a premium �
and � 	 0, we first solve the following auxiliary problem for the optimal indemnity using a state-by-
state optimization:

max {�[U(W � � � x � �y) �X � x] � �y�[� �X � x]}. (13)
0�y�x

Thanks to the concavity of U, the objective function to be maximized is a concave function of y. The
optimum over the real line is characterized by the zero of the first derivative with respect to y. Denote
by the optimal solution, then is equal toI*(x) I*(x)� �

I*(x) � max(min( y , x), 0), (14)� �,x

where y�,x is the unique solution to

�[�U�(W � � � x � �y ) �X � x] � ��[� �X � x] � 0. (15)�,x

Note that (15) has a unique solution because of the Inada conditions given in Section 2.1 and because
U is strictly concave, and therefore the first derivative is strictly decreasing and continuous with respect
to y.

Proposition 4.1
If there exists � 	 0 such that given by (14) satisfies the constraint �[� (X)] � K, then isI*(x) I* I*(x)� � �

an optimal solution to Problem A.
The dependence structure between X and � has an important impact on the optimal risk sharing

given by (14), allowing for complex shapes of and possibly decreasing indemnities. This is veryI*(x)�

different from existing literature on optimal insurance design. This particularity stems from the fact
that when � ↓st X, the function

�(x, y) → �[U(W � � � x � �y) �X � x]

is generally not supermodular,2 and therefore we cannot guarantee that there exists a nondecreasing
optimal solution of Problem A using supermodularity (as was done, for example, by Bernard and Tian
[2009] in other contexts). This is a major difference between the presence of an additive and a mul-
tiplicative background risk. In the presence of an additive background risk �, Dana and Scarsini (2007)
proved that

�(x, y) → �[U(W � � � x � � � y) �X � x]

is supermodular when � ↓st X and used it to prove that the optimal indemnity is nondecreasing.
Such a supermodularity property does not hold with a multiplicative background risk. Moreover,

since y�,x is defined implicitly, its shape is not straightforward to understand. Therefore, we now review

2 That is, the cross-derivative with respect to x and y may be negative. See definition 3.1 of a supermodular function (when it is C2) by Dana
and Scarsini (2007, p.157).
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98 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 16, NUMBER 1

special cases. First, we study the case when the default risk of the seller is independent of the loss
incurred by the buyer.

4.2 Independence of X and �

Proposition 4.2
Under the assumption of independence between � and X and when K � (0, �[X]), the optimal solution
to Problem A exists, is unique, and is nondecreasing with respect to X. Moreover, 	y�,x/	x 
 1, where
y�,x is implicitly defined by (15).

In the absence of default risk, � � 1 and the optimal indemnity is a stop-loss. In this case, when
the indemnity is nonzero, its slope is equal to one. In the presence of an independent default risk, the
marginal insurance rate 	I/	x is bigger than one, and there is therefore a higher demand for insurance
above the deductible. This is consistent with Cardenas and Mahul (2006, Corollary 1). We will see in
the following that a dependence structure between the loss of the buyer and the default of the seller
fundamentally changes the optimal risk sharing, and a nondecreasing indemnity is no longer necessarily
optimal.

4.3 Bernoulli Recovery Rate
We now assume that � and X are dependent and that the recovery rate follows a Bernoulli distribution.
Therefore we need only to study for x 
 0,

�
p(x) � �[� � 1 �X � x].

We assume that p is not constant, which ensures that � and X are not independent. Due to the
assumption on the dependence structure (see Section 2.2), p is nonincreasing with respect to x. In
other words, it is more likely to observe a default of the seller when there is a big loss x.

Assume first that p is nonincreasing and differentiable.

Proposition 4.3
Assume that � can take only two possible values 1 and �0 � [0, 1) and that p(x) takes values in (0,1).

• When �0 � 0 (no recovery), the optimum is a stop-loss contract � (x � W � � � [U�]�1(�))�I*(x)�

for � 	 0.
• When 0 � �0 � 1,

�10 if x � W � � � [U�] (�)I*(x) � (16)� �1� min( y , x) if x 	 W � � � [U�] (�)�,x

and

p�(x) U�(W � � � x � � y )	y U�(W � � � x � � y ) � � 1 � p(x) 0 �,x�,x 0 �,xA(x) � 1 � � � � ,0 02	x p (x) U�(W � � � x � y ) p(x) U�(W � � � x � y )�,x �,x

(17)

with

2� U�(W � � � x � � y )(1 � p(x))0 0 �,xA(x) � 1 � 
 1 (18)
p(x)U�(W � � � x � y )�,x

and where 	y�,x/	x at the deductible x � W � � � [U�]�1(�) is strictly greater than 1. Locally the
optimal indemnity exceeds the stop-loss contract at the deductible level.
Note that the case �0 � 1 corresponds to the no-default case studied by Arrow (1963) for which the

stop-loss contract is optimal.
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 99

In general, it is not clear from Proposition 4.3 whether is nondecreasing. However, there are severalI*�
sufficient conditions to ensure that the optimal solution is such that is locally nondecreasing, asI*�
given in the following corollary.

Corollary 4.1
The optimal indemnity is locally nondecreasing in the neighborhood of x0, that is, 	y�,x/ 
 0, if	x �x�x0

one of the following conditions is true:

• The probability of default is insensitive to local changes in loss levels, p�(x0) � 0.
• p(x0) � 0 and the following inequality holds:

U�(W � � � x � y ) p�(x )0 �,x0 0� 	 � . (19)
U�(W � � � x � y ) p(x )0 �,x 00

• The map t w(t) tU�(W � � � x0 � is such that
�

�→ � ty )�,x0

w�(t) � 0 on [� , 1]. (20)0

Let us give an example. We assume an exponential CARA utility U(x) � �e��x and hyperbolic no-
default probability p(x) � c/(c � x). Condition (19) reduces to � 	 (c � x)�1 and is therefore
satisfied for large losses x 	 ��1 � c. So for large x, the optimal contract is increasing. Rearranging
the expression for the derivative of w(t), we find that Condition (20) is equivalent to

U�(W � � � x � ty ) 1�,xw�(t) � 0 ⇔ � 	 , (21)
U�(W � � � x � ty ) � y�,x 0 �,x

which again reduces to a statement about the absolute risk aversion of U. For CARA risk preferences,
(21) becomes � 	 (�0 y�,x)�1.

A complementary result is given in the following proposition, which relies on the supermodularity
property.

Proposition 4.4
Assume that � follows a Bernoulli distribution. The optimal solution to Problem A is nondecreasing if
for all y � (0, x̄)

�x → � U�(W � � � x � � y) � p(x)(U�(W � � � x � y) � � U�(W � � � x � � y))0 0 0 0

is nondecreasing.
The condition in Proposition 4.4 does not directly involve the implicit y�,x and can be easily verified

(numerically or analytically). For instance, for CARA risk preferences U(x) � �e��x and exponential
p(x) � e��x it reduces to � 	 �(1 � �0). This is a mild assumption about the risk aversion of the
buyer, since typically we would have � � �.

Assume now that p can take only two values, 1 and p0 � 1. Since p is nonincreasing, there exists x0,
such that p(x) � 1 for all x � x0, and p(x) � p0 ∀x 
 x0.

Proposition 4.5
Suppose p(x) takes only two values, then

• When �0 � 0 or �0 � 1, the optimal indemnity is a stop-loss;
• When 0 � �0 � 1, the optimal indemnity is nondecreasing and 	I*/	x 
 1.

Thus, with partial recovery, optimal indemnity requires marginal overinsurance, that is, increase in
coverage that is strictly higher than the increase in loss level.
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Figure 2
Expected Utility as a Function of the Premium �
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Note: The solid line corresponds to the expected utility when the indemnity has the optimal shape given by (14). The dotted line corresponds
to the expected utility when the indemnity is a stop loss and the deductible level is such that the premium constraint is met. The parameters
are m � 0.3, c � 0.9, � � 0.2, W � 5 with recovery rate �0 � 0.6, with CARA utility U(x) � �e��x with � � 2.75.

REMARK 4.1

The case �0 � 0 is the full-default model considered by Cummins and Mahul (2003). It is consistent
with their results, namely, that stop-loss insurance is optimal in the presence of a total default risk
when the insurance buyer and the insurance seller have the same beliefs about the default probability.

REMARK 4.2

Under the assumptions of Proposition 4.5 there is one jump in p(x) at x0 so that Proposition 4.3 does
not apply directly. As shown in the proof of Proposition 4.5 the effect of this jump is a strict increase
in the slope 	y�,x/	x at the level x0. If it is optimal to buy insurance around the value x0 where a jump
is observed, a strict increase in the marginal rate of insurance will be observed. Precisely, if x0 is larger
than the stop-loss level of the optimal indemnity, then the optimal contract is first a linear stop-loss
with slope 1, and when x0 is reached, the marginal demand for insurance becomes strictly bigger.

4.4 Illustration
Given �, it is possible to solve the implicit equation (15) to derive y�,x with �, so that the premium
constraint is met. Similar to Figure 1, let us consider an exponential loss X � Exp(m), with probability
of recovery p(x) � c/c � x. Figure 2 compares the expected utility as a function of the premium �
spent to buy the reinsurance contract for the optimal indemnity given in (14) and a stop-loss indemnity
investigated in Section 3. We observe that the resulting reinsurance premia are very different and the
associated loss in expected utility is significant. If the buyer can choose the shape of the reinsurance
indemnity, then he or she needs to spend much less (and can gain much more utility) than if he or
she has to insure through a deductible indemnity.

In Figure 3 we further assume that � � 1 and study the effect of an increase in default risk on the
optimal shape of the contract. More precisely, we investigate the effect of varying the recovery rate �0

and the probability-of-default parameter c. Recalling the definition of p(x) in (2), higher c increases
the probability of seller performance. From Figure 3, we find that as �0 ↑ 1, the marginal insurance
rate goes to 1, and the optimal indemnity is a stop-loss contract as in the standard framework. At the
same time, lower probability of default leads to a lower marginal insurance rate above the deductible.
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 101

Figure 3
Effect of Counterparty Risk on the Shape of the Optimal Indemnity
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Note: Panel A displays the effect of the recovery rate �0 on the shape of the optimal indemnity. Panel B displays the effect of the parameter c
of the conditional probability of the seller to be solvent. Parameters are the same as in Figure 2 with � � 1.

5. PRESENCE OF ASYMMETRIC INFORMATION

Problem A studied so far assumes that the buyer and the seller have the same beliefs about the default
risk of the seller. However, it is commonly accepted that the reinsurance seller is more optimistic than
the insurance buyer about his or her own default risk. Indeed, buyers often believe that sellers under-
estimate their likelihood of nonperformance. In the extreme case where the seller ignores the default
risk to calculate his or her expected cost, the participation constraint becomes

C � �[� � I(X)].

Equivalently, one has

�[I(X)] � K, (22)

where K � � � C instead of (1). Similarly as before, we will use a linear loading factor �, such that
K � �/(1 � �). In this case the optimal reinsurance contract solves the following optimization problem:

max{�[U(W � � � X � �I(X))]} (AS)
I,�

subject to

0 � I(x) � x,
� .

�[I(X)] �
 1 � �

REMARK 5.1

In special cases, Problem AS is identical to Problem A studied so far. For example, when � � 1 (no
counterparty risk), or when � and X are independent (because then �[�I(X)] � �[�]�[I(X)], and the
constraint (22) can therefore be rewritten in a similar way to (1) but with a different constant K).

In the presence of a dependency structure between the loss X incurred by the buyer and the default
risk of the seller (measured by the recovery rate �), the solutions to Problems A and AS can be very
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102 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 16, NUMBER 1

different. Even so, in the literature on optimal insurance design under default risk, the optimization
problem is usually set as in (AS); see, for example, Doherty and Schlesinger (1990) or Cummins and
Mahul (2003).

5.1 Solving Problem AS
In the general case, the optimal solution is defined implicitly by

�[�U�(W � � � x � �z ) �X � x ] � � � 0, (23)�,x

where the Lagrange multiplier � is such that the participation constraint of the seller is satisfied. We
now consider some further special cases in parallel to Section 4.3.

Proposition 5.1
Assume that p(x) is nonincreasing, differentiable, and takes value in (0, 1). Assume also that the recovery
rate � is Bernoulli with �0 � [0, 1).

When �0 � 0, the optimal solution to Problem AS is not a stop-loss contract anymore, and it is given
by

��1max 0, x � W � � � [U�] .� � ��p(x)

When �0 � (0, 1), the optimal solution to Problem AS is given by

�x → I*(x) � max(min(z , x), 0), (24)� �,x

where

	z � � � U�(W � � � x � � z ) U�(W � � � x � � z )p�(x) 1 � p(x)�,x 0 0 �,x 0 �,xA(x) � 1 � � � ,02	x p (x) U�(W � � � x � z ) p(x) U�(W � � � x � z )�,x �,x

(25)

with A(x) given by (18).
Note that when p(x) can take only two values, 1 and p0 � 1, the results are similar to the ones

obtained in Proposition 4.5.

REMARK 5.2

We can also redo the problem of stop-loss reinsurance with the CTE risk criterion from Section 3.2. If
the resulting optimal stop-loss level is finite, then it is implicitly given throughd̃

� 1
1 �� � (1 � �) � (1 � � )(1 � p(x)) F (dx).� 	0 X

d̄ 

Comparing with (9), it is easy to check that 	 so that demand for insurance is intuitively lowerd̃ d*
if counterparty risk is not fairly priced. Moreover, if �0�1 � (1 � �), then depending on other model
parameters it is possible that � ��, and no insurance is purchased at all.d̃

5.2 Comparison between Problems A and AS
Recall that the only difference between Problems A and AS is that the insurance buyer takes into
account his or her own default risk in its participation constraint. We now make a few remarks about
the difference of the respective optimal risk-sharing arrangements.

First, recall that if �0 � 0 (case of a total default), then the optimal solution to Problem A is a stop-
loss contract. However, the optimal indemnity for Problem AS is given as
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 103

Figure 4
Optimal Indemnities with Asymmetric Default Risk
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Figure 5
Numerical Comparison of Problems A and AS
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Note: The solid line corresponds to the optimal indemnity max(0, min(y�,x, x)) with � such that the premium level is optimal equal to 0.9.
The dotted line is then the corresponding deductible that can be bought with premium 0.9. In dotted-hatched it is the optimal indemnity
max(0, min(z�,x, x)) with � such that the premium level is optimal equal to 1.275. The hatched line is the corresponding deductible when the
seller ignores its default risk to calculate the premium. Parameters are the same as in Figure 2.

��1I*(x) � max 0, min x � W � � � [U�] , x ,� � � � ��� p(x)

and this function of x may take very complex shapes. As an illustrative example, suppose that W � 3,
� � 1, � � 0.01, c � 0.2, and p(x) � c/(c � x) with CARA utility U(x) � �e��x with � � 2.75. Note
that the optimal indemnity shape is independent of the distribution of X. For total default �0 � 0,
Figure 4 shows that the optimal indemnity is then first equal to full insurance, then is decreasing and
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104 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 16, NUMBER 1

equal to z�,x, then is equal to 0, and finally is equal to z�,x. For �0 	 0 other indemnity shapes may be
obtained; see Figure 4. Even though the above parameters have been chosen specifically for this case,
this example shows how complex and unrealistic the optimal insurance contract can be.

In general, like in Section 4.4, we may solve the implicit equation (23) to derive z�,x and then find
� so that the premium constraint is met. Figure 5 compares the optimal indemnities of Problems A
and AS for �0 	 0. When the premium is not fairly priced (that is, the seller ignores his or her own
default risk and therefore overestimates the premium), the optimal premium level increases. For the
parameters of Figure 2, it is equal to 1.275 instead of the optimal premium level of 0.9 found in
Section 4.4 when the premium incorporates the seller’s default risk. As shown in Figure 5, more cov-
erage is purchased when reinsurance is fairly priced. Note that both optimal indemnities ( y* and z*)
involve marginal overinsurance above the deductible level.

6. CONCLUSION

Given the increased visibility of default risk in insurance, qualitative investigation of counterparty de-
fault on optimal reinsurance is a highly topical subject for the wider actuarial community. Our results
extend the standard theory of insurance design to take into account systemic credit risk by introducing
a multiplicative loss-dependent background risk. Our theoretical analysis highlights the complexity of
optimal risk sharing in practice where one indeed observes both counterparty risk and asymmetric
information.

Reinsurance becomes unreliable in the presence of counterparty risk. We show two important effects:
namely, that it increases the reinsurance demand in the tail (the optimal shape involves marginal
overinsurance above a stop-loss level), but at the same time decreases the optimal premium level (that
is, the amount spent by the buyer in the reinsurance market). Overall, we believe our analysis dem-
onstrates that the classical expected utility framework is intractable and therefore inadequate in study-
ing risk sharing with counterparty risk as currently needed by practitioners. It remains an open question
which alternative frameworks are better suited for this task. While we have shown that risk measures
such as CTE can be more tractable, their cash additivity might be practically undesirable, completely
removing buyer capital reserves from the model.

The model in this paper has been static, that is, one-period. Given that most reinsurance contracts
are signed for several years, it is of interest to further analyze dynamic multiperiod models. For in-
stance, at the height of the credit freeze in 2008, there was discussion of reinsurance contracts with
the premium tied to the credit rating of the seller. With multiple periods it would also be possible to
set up vested reinsurance accounts, so that (a portion of) the premia paid so far is guaranteed to be
available once a claim is filed.

APPENDIX
PROOFS

A.1 PROOF OF PROPOSITION 3.1

PROOF

Direct computation shows that 	 if and only if (1 � �) � �1. In the former case, it alsoC�(ā) ��(ā)
follows that C�(x) � ��(x) for x 	 so that C(d) � �(d) is increasing and concave on �).ā, (ā,
Moreover, � so that C(d) � �(d) is decreasing on (0, It immediately follows that theC�(a) ��(a), a).
global minimum of IC is on and some algebra leads to the first-order condition (9).[a, ā],

In the second case, it follows that IC is decreasing on (0, ��), and its global minimum is at ��.
Note that when 1 � � � �1, then IC is constant on ��) and so does not have a unique minimum.(ā,
In that case we may again take by convention � ��. �Cd*
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 105

A.2 PROOF OF PROPOSITION 3.2
PROOF

A simple check shows that V(d) � �(d) is always decreasing on [0, If � is small enough, namely,a).
as in case (1), then we find that � 	 0, so that IV is increasing on and henceV�(a�) ��(a) [a, ā), a
is the candidate for global minimum. In either case, IV is convex on and � 	 0,[a, ā] V�(ā�) ��(ā�)
so there is a unique local minimum in that must satisfy the first-order condition of (10). This(a, ā)
local minimum may or may not be the global minimum. Indeed, IV is decreasing on so that ��(ā, �),
is another candidate. The answer depends on comparing

I (d*) � d* � �(d*) vs. I (��) � ā,V V

which in turn depends on �. We thus observe a phase transition as � increases: for small �, the local
minimum on is the global minimum and d* � � �; for � close to �1 � 1 the global minimum(a, ā) ā
is at ��, with an abrupt transition at some critical (given only implicitly). ��̃

A.3 PROOF OF PROPOSITION 3.3
PROOF

If � ��, there is nothing to prove. Otherwise, we note that onVd [a, ā],*
�1 � �0C�(d) � 1 � � (1 � p(x))F (dx) � 1 � V�(d), (A.1)X

d

which implies that the global minimum of C(d) � �(d) is to the right of the global minimum of
V(d) � �(d). Since is decreasing in �0 and �0 � 1 corresponds to no default, it follows thatCd*

	 d. �Cd*

A.4 PROOF OF PROPOSITION 4.1
PROOF

For any indemnity I(X) satisfying �[�I(X)] � K and 0 � I(X) � X, we have by optimality of thatI*(X)�

for all x � (0, x̄)

�[U(W � � � x � �I(x)) �X � x] � �I(x)�[� �X � x]

� �[U(W � � � x � �I*(x)) �X � x] � �I*(x)�[� �X � x]. (A.2)� �

Integrating over x and using the fact that � K and �[�I(X)] � K, then�[�I*(X)]�

�[U(W � � � X � �I(X))] � �[U(W � � � X � �I*(X))],�

which concludes the proof. �

A.5 PROOF OF PROPOSITION 4.2
Denote by � max(min( y�,x, x), 0). To prove Proposition 4.2, we need two lemmas.I*(x)�

Lemma A.1

For � 	 0, when � and X are independent, the function x y�,x is nondecreasing.�→
PROOF

Let x1 � x2. Denote by y1 � and y2 � The function h1 � x �[�U�(W � � � x � �y1) ��y y . →�,x �,x1 2

��] is increasing. Therefore h1(x1) � h1(x2). Define also h2 � y �[�U�(W � � � x2 � �y) � ��]�→
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106 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 16, NUMBER 1

(where the expectation sign refers to the expectation with respect to the random variable �). It is
clear that h2 is decreasing and h2( y2) � 0 (by definition of y2) and h1(x2) � h2( y1). Then

∀y 
 y , h ( y) � h ( y ) � 0.2 2 2 2

Since h2( y1) � h1(x2) 	 h1(x1) � 0, then y1 � y2. �

Lemma A.2
For x � , when � and X are independent,[0, x̄]

�[�U�(W � � � x)]
I*(x) � 0 ⇔ � 
 , (A.3)� �[�]

�[�U�(W � � � (1 � �)x)]
I*(x) � x ⇔ � � . (A.4)� �[�]

PROOF

First, we note that the function � y�,x is nonincreasing. Let �1 � �2. It is clear that 	�→ y y� ,x � ,x1 2

because of the inequality

�[�U�(W � � � x � �y )] �[�U�(W � � � x � �y )]� ,x � ,x1 2� � � � � ,1 2�[�] �[�]

and the fact that U� is decreasing.
Note that y�,x � 0 if and only if � � �[�U�(W � � � x)]/�[�]. By monotonicity of � y�,x, and�→

because � max(min( y�,x, x), 0) we obtain (28).I*(x)�

Note that y�,x � x if and only if � � �[�U�(W � � � (1 � �)x)]/�[�]. By monotonicity of � �→
y�,x, and because � max(min( y�,x, x), 0), we obtain (29). �I*(x)�

In addition to these two lemmas, the proof of Proposition 4.2 uses the ‘‘nondecreasing rearrange-
ment’’ of a random variable. We recall here its definition (see definition 3.3 of Dana and Scarsini [2007,
p. 157] and further key properties in Carlier and Dana [2003]).

DEFINITION A.1

For a given measurable function f � there exists a unique nondecreasing function� ˜[0, x̄] → [0, x̄], f
such that

˜∀x � [0, x̄], Pr{ f � x} � Pr{ f � x}.

is called the nondecreasing rearrangement of f.f̃
We will make use of the following important property (which is a variant of the Hardy Littlewood

inequality).

Lemma A.3 (3.6 of Dana and Scarsini 2007)

If L � � is continuously differentiable such that for all t � the application x2 � �[0, x̄] → [0, x̄], →
	L/	t (x, t) is increasing (supermodularity condition), then

˜�[L(x, f(x))] 
 �[L(x, f(x))], (A.5)

and the inequality is strict unless f(x) is nondecreasing.
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 107

PROOF OF PROPOSITION 4.2

Under the assumption of independence between X and �, the auxiliary problem (13) involves condi-
tional expectations. It can now be simplified as the following optimization problem:

max {�[U(W � � � x � �y)] � �y�[�]}. (A.6)
0�y�x

Denote by the optimal solution, then � max(min( y�,x, x), 0), where y�,x is the uniqueI*(x) I*(x)� �

solution to �[U�(W � � � x � �y�,x)] � ��[�] � 0. It is the pointwise optimum. For K � (0, �[X]),
there exists � 	 0 such that � K. It is clear that is continuous with respect to �.�[I*(X)] I*(x)� �

Moreover due to lemma A.2 one has

lim �[I*(X)] � �[X]�
� ��→0

and

�lim �[I*(X)] � 0 .�
��→��

We have proved the existence of an optimal solution thanks to Proposition 4.1. Lemma A.1 proves that
this solution is nondecreasing.

The uniqueness comes from the unique rearrangement of I(X) defined in definition A.1, which is
nondecreasing with respect to X (also called comonotonic rearrangement), and of the supermodularity
of �(x, y) � �[U(W � � � x � �y]. For any solution I, define as the nondecreasingĨ
rearrangement of I with respect to X; then

˜�[U(W � � � X � �I(X)] 
 �[U(W � � � X � �I(X)],

and the inequality is strict unless I(�) is nondecreasing (because of Lemma A.3).
When y�,x � (0, x) its derivative with respect to x verifies

	y �[�U�(W � � � x � �y )]�,x �,x
� .2	x �[� U�(W � � � x � �y )]�,x

We know that U� is negative and that 0 � �2 � � � 1; therefore 	y�,x/	x 
 1. This ends the proof of
Proposition 4.2. �

A.6 PROOF OF PROPOSITION 4.3

PROOF

Starting with

�[U�(W � � � x � �y ) �X � x] � ��[� �X � x] � 0, (A.7)�,x

one can rewrite this equality as

p(x)U�(W � � � x � y ) � (1 � p(x))� U�(W � � � x � � y ) � �(p(x) � � (1 � p(x))) � 0.�,x 0 0 �,x 0

(A.8)

If �0 � 0, the equality (A.8) becomes p(x)U�(W � � � x � y�,x) � �p(x) � 0. Since p(x) � 0,
y�,x � x � W � � � [U�]�1(�).

In the general case 0 � �0 � 1. Note that when x � W � � � [U�]�1(�) then y�,x � 0. In fact, we
have the following implications:
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108 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 16, NUMBER 1

�1x � W � � � [U�] (�) ⇔ U�(W � � � x) 
 �

⇔ �U�(W � � � x) 
 ��a.s.

⇔ �[�U�(W � � � x) �X � x] 
 ��[� �X � x]

⇔ �[�U�(W � � � x) �X � x] 
 �[�U�(W � � � x � �y ) �X � x]�,x

⇒ y � 0�,x

⇒ I*(x) � 0.�

The above relationships show that the optimal contract has a deductible level at W � � � [U�)�1(�),
so that the expression (16) of the optimal indemnity is proved.

In the general case 0 � �0 � 1, from the expression (A.7) we also obtain for all x 
 0,

p(x)[U�(W � � � x � y ) � � U�(W � � � x � � y ) � � � �� ]�,x 0 0 �,x 0

� � (�� � U�(W � � � x � � y )) � 0. (A.9)0 0 �,x

For typographical convenience in the proof below, we now denote by �(x) y�,x and by ��(x) �
�
�

	y�,x/	x and differentiate the above equality to obtain

p�(x)[U�(W � � � x � �(x)) � � U�(W � � � x � � �(x)) � � � �� ]0 0 0

� p(x)[U�(W � � � x � �(x))(��(x) � 1) � � U�(W � � � x � � �(x))(� ��(x) � 1)]0 0 0

� � U�(W � � � x � � �(x))(� ��(x) � 1) � 0. (A.10)0 0 0

Using (A.9) in the first line, and after simplifying, (17) follows, and we obtain the expression of
A(x)��(x) given in Proposition 4.3.

Evaluating this expression at x* � W � � � [U�]�1(�), we obtain 1 � 1 � p(x*)/p(x*) �0. Moreover

2� (1 � p(x*))0A(x*) � 1 � .
p(x*)

Therefore

p(x*) � (1 � p(x*))�0��(x*) � 	 12p(x*) � (1 � p(x*))�0

because � �0. �2�0

A.7 PROOF OF COROLLARY 4.1

PROOF

We continue to use �(x) � y�,x. An alternative representation from (A.10) is

2{p(x)U�(W � � � x � �(x)) � � (1 � p(x))U�(W � � � x � � �(x))}��(x)0 0

� �p�(x)U�(W � � � x � �(x)) � p(x)U�(W � � � x � �(x))

� (1 � p(x))� U�(W � � � x � �(x)) � � p�(x)U�(W � � � x � � �(x)) � �(1 � � )p�(x). (A.11)0 0 0 0

This formula does not require that p(x) � 0. It can be written as B(x)��(x) � C(x). In (A.11) we see
that the coefficient B(x) on the left-hand side is always negative, while on the right-hand side all the
terms in C(x) except the first one are negative again. Therefore, unless p�(x)U�(W � � � x � �(x))
is large, we expect that �� 	 0 and the optimal contract is increasing.

If at x, p�(x) � 0, then immediately ��(x) 
 0.
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IMPACT OF COUNTERPARTY RISK ON THE REINSURANCE MARKET 109

To understand the structure of (A.11) better, we may combine the terms on the right-hand side in
two ways. First, consider �p�(x)U�(W � � � x � �(x)) � p(x)U�(W � � � x � �(x)). Rearranging,
this term is negative if and only if

U�(W � � � x � �(x)) p�(x)
� 	 � ,

U�(W � � � x � �(x)) p(x)

which depends on the absolute risk aversion of the utility function compared to the sensitivity of the
probability of default. This proves the local monotonicity of the optimum when the second condition
(19) holds.

Finally, consider

�p�(x)U�(W � � � x � �(x)) � � p�(x)U�(W � � � x � � �(x)).0 0

The sign of this term depends on whether the function t w(t) tU�(W � � � x � t�(x)) is increasing
�

�→ �
or decreasing. Indeed, the above is p�(x)(w(�0) � w(1)), and a sufficient condition for it to be negative
is w�(t) � 0 on [�0, 1]. This proves the monotonicity of the optimum when the condition (20) holds.

�

A.8 PROOF OF PROPOSITION 4.4

PROOF

As for the proof of Proposition 4.2 we make use of Lemma A.3 given in Appendix A.5 (which was
originally proved by Dana and Scarsini 2007). We differentiate �(x, y) �� �[U(W � � � x � �y) �X �
x] � (1 � p(x))U(W � � � x � �0 y) � p(x)U(W � � � x � y) with respect to y. The condition in
Proposition 4.4 ensures that its derivative with respect to y is nondecreasing in x and thus that we can
apply Lemma A.3 to obtain

˜�[�(X, I(X))] � �[�(X, I(X))]. (A.12)

Equality I(X) � holds if and only if I(X) is almost surely nondecreasing. Therefore, the optimalĨ(X)a.s.
indemnity of Problem A is then nondecreasing because of (A.12) and because the constraints of Prob-
lem A are also verified. Note that �(x, y) � ��[�y �X � x] also satisfies the assumption of Lemma
A.3; thus � �[�Y] � K. �˜�[�Y]

A.9 PROOF OF PROPOSITION 4.5

PROOF

Recall that the optimum y�,x is implicitly defined by (15). This equation becomes

� U�(W � � � x � � y )(1 � p(x)) � U�(W � � � x � y )p(x) � �(� (1 � p(x)) � p(x)) � 0.0 0 �,x �,x 0

(A.13)
When �0 � 0, in both cases for x 
 x0(p(x) � p0 	 0) or for x � x0(p(x) � 1), this simplifies to

U�(W � � � x � y ) � � � 0,�,x

and therefore y�,x � x � W � � � [U�]�1(�) is a stop-loss contract.
When �0 � 1, it is the standard optimal insurance problem (with no counterparty risk and p0 � 1)

so the stop-loss contract is optimal.
When �0 � (0, 1), we discuss two cases.
For x � x0, p(x) � 1, and one has U�(W � � � x � �0 y�,x) � � (from eq. [A.13]). Therefore

y�,x � x � W � � � [U�]�1(�) and 	y�,x/	x � 1.
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In the case when x 	 x0, we can follow the proof of Proposition 4.3 and show that although p(�) is
not differentiable everywhere on equations (17) and (18) still hold (where for x 	 x0, p�(x) �(0, x̄),
0 and p(x) � p0). Denote by D(x) � �0(1 � p0)U�(W � � � x � �0�(x))/p0U�(W � � � x � �(x)).
It follows that A(x) in (18) is given by A(x) � 1 � �0D(x) when x 	 x0. The slope of the contract
given in (17) can then be simplified as

	y 1 � D(x)�,x
� 	 1,

	x 1 � � D(x)0

because D(x) 	 0 and �0 � 1.
If x0 is larger than the stop-loss level W � � � [U�]�1(�), then the optimal indemnity is first a linear

stop-loss with slope 1, and when x0 is reached, the marginal demand for insurance becomes bigger.�

A.10 PROOF OF PROPOSITION 5.1
PROOF

Finding the optimum of Problem AS is very similar to finding the optimum of Problem A. We first solve
for a pointwise optimum z�,x ignoring the constraints on the indemnity. We then add the constraints
such that the pointwise optimum will be equal to

max(0, min(z , x)).�,x

The Lagrange multiplier should then be chosen such that �[I*(X)] � K.
For all x 
 0, the pointwise optimum z�,x verifies �[�U�(W � � � x � �z�,x) �X � x] � � � 0. One

can rewrite this equality as

p(x)U�(W � � � x � z ) � (1 � p(x))� U�(W � � � x � � z ) � � � 0. (A.14)�,x 0 0 �,x

If �0 � 0, from (A.14), z�,x � x � W � � � [U�]�1 (�/p(x)).
In the general case 0 � �0 � 1, one obtains for all x 
 0,

p(x)[U�(W � � � x � z ) � � U�(W � � � x � � z )] � � U�(W � � � x � � z ) � � � 0.�,x 0 0 �,x 0 0 �,x

(A.15)

For simplicity of notation, we now denote by �(x) z�,x and differentiating the above equality find
�
�

p�(x)[U�(W � � � x � �(x)) � � U�(W � � � x � � �(x))]0 0

� p(x)[U�(W � � � x � �(x))(��(x) � 1) � � U�(W � � � x � � �(x))(� ��(x) � 1)]0 0 0

� � U�(W � � � x � � �(x))(� ��(x) � 1) � 0. (A.16)0 0 0

Using (A.14) in the first line of (A.16), one obtains (25). �
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