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A confirmation of Euler’s identity 
 

 

Part I 

 
 

Although there is no justification for this (we are not conducting a rigorous proof, but a confirmation), 

we begin by making the assumption that the function sin x  can be written as an infinite polynomial 

(infinite series).  Thus, we assume the following: 
 

 (1) 1 2 3 4 5

0 1 2 3 4 5sin x a a x a x a x a x a x        

 

Substituting 0x   gives 
0sin 0 0 0a    ; and since sin 0 0  then 0 0a  .  Thus, 

 

 (2) 1 2 3 4 5

1 2 3 4 5sin x a x a x a x a x a x       

 

We know the derivative of sin x  and the general derivative of a power (power rule), i.e. 

     1n n nd d
ax a x a nx

dx dx

  .  Let’s apply these and take the derivative of both sides of (2). 

 

 (3)    1 2 3 4 5

1 2 3 4 5sin
d d

x a x a x a x a x a x
dx dx

       

 

 (4) 2 3 4

1 2 3 4 5cos 2 3 4 5x a a x a x a x a x       

 

Substituting 0x   again gives 
1cos0 0 0a     and since cos0 1  then 

1 1a  .  Thus, 

 

 (5) 2 3 4 5

2 3 4 5sin x x a x a x a x a x       

 

Repeat the procedure by taking the derivative of both sides of (4) with 
1 1a  , giving 

 

 (6)    2 3 4

2 3 4 5cos 1 2 3 4 5
d d

x a x a x a x a x
dx dx

       

 

 (7) 2 3

2 3 4 5sin 2 3 2 4 3 5 4x a a x a x a x          

 

Substituting 0x   again gives 2sin 0 2 0 0 0a       and since sin 0 0  then 2 0a  .  Thus, 

 

 (8) 3 4 5

3 4 5sin x x a x a x a x      

 

Repeat the procedure again – taking the derivative of both sides of (7) with 2 0a  , giving 

 

 (9)    2 3

3 4 5sin 0 3 2 4 3 5 4
d d

x a x a x a x
dx dx

          

 

 (10) 2

3 4 5cos 3 2 4 3 2 5 4 3x a a x a x           
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Substituting 0x   gives 
3cos0 3 2 0 0 0a        and since cos0 1    then 

3

1

3 2
a  


.  Thus, 

 

 (11) 
3

4 5

4 5sin
3 2

x
x x a x a x    


 

 

Repeat the procedure again – taking the derivative of both sides of (10) with 
3

1

6
a   , giving 

 

 (12)    2

4 5cos 1 4 3 2 5 4 3
d d

x a x a x
dx dx

           

 

 (13) 
4 5sin 4 3 2 5 4 3 2x a a x         

 

Substituting 0x   gives 
4sin 0 4 3 2 0 0a       and since sin 0 0  then 4 0a  .  Thus, 

 

 (14) 
3

5

5sin
3 2

x
x x a x   


 

 

Repeat the procedure again – taking derivative of both sides of (13) with 4 0a  , giving 

 

 (15)    5sin 5 4 3 2
d d

x a x
dx dx

      

 

 (16) 
5cos 5 4 3 2x a      

 

Substituting 0x   gives 
5cos0 5 4 3 2 0 0a        and since cos0 1  then 

5

1

5 4 3 2
a 

  
.  Thus, 

 

 (17) 
3 5

sin
3 2 5 4 3 2

x x
x x   

   
     or     

3 5

sin
1! 3! 5!

x x x
x      

 

A clear pattern has been established.  The signs of the terms alternate and the powers of x are 

consecutive odd numbers – and the denominator of each term is the factorial of the same consecutive 

odd numbers. 
 

3 5 7

sin
3! 5! 7!

x x x
x x      

 

Therefore sin x  is equivalent to an infinite polynomial, i.e. an infinite series.  This infinite series can 

be represented using sigma notation as follows. 
 

 
 

2 1
1

1

sin 1
2 1 !

n
n

n

x
x

n






 


        or      
 

2 1

0

sin 1
2 1 !

n
n

n

x
x

n
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Part II 

 
 

Assuming that the function cos x  can also be expressed as an infinite polynomial, we could carry out 

a similar procedure to find it.  But a more efficient method is to consider that if two functions are 

equal then it must logically follow that their derivatives are also equal, i.e. if    f x g x  then 

   f x g x  .  Thus, since  sin cos
d

x x
dx

  then the derivative of the infinite polynomial 

equivalent to sin x  found above will be equal to the infinite series for cos x . 
 

 
3 5 7 2 4 6 2 4 63 5 7

cos sin 1 1
3! 5! 7! 6 120 5040 2 24 720

d d x x x x x x x x x
x x x

dx dx

 
                

 
 

 

Thus, 
2 4 6

cos 1
2! 4! 6!

x x x
x       

 

This infinite series for cos x  can be represented with sigma notation as follows. 
 

 
 

2

0

cos 1
2 !

n
n

n

x
x

n





   

 
 
 

Part III 

 
 

Recall the following definition for the number e. 
 

1
e lim 1

n

n n

 
  

 
 

 

Let’s use the binomial theorem to expand 
1

1

n

n

 
 

 
. 

 

binomial theorem:    
0

n
n n r r

r

n
a b a b

r





 
   

 
  where 

 
!

! !

n n

r r n r

 
 

 
 

 

    2 3
1 1 21 1 1 1

1 1
2! 3!

n
n n n n n

n
n n n n

         
            

       
 

 

Thus, 
    2 3

1 1 21 1 1 1
e lim 1 lim 1

2! 3!

n

n n

n n n n n
n

n n n n 

          
                       

 

 

                                    
2 3 2

2 3

1 3 2 1
lim 1

2! 3!n

n n n n n n

n n n
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As n goes to infinity, the limit of each of the expressions 
2 3 2

2 3

3 2
, ,

n n n n n n

n n n

  
 is 1.   

 

Thus, 
2 3 2

2 3

1 3 2 1
e lim 1

2! 3!n

n n n n n n

n n n

   
       

 
 

 

          
1 1 1 1

e 1 1 1 1 1 1
2! 3! 2! 3!

             

 

But, we want the infinite series for ex .  Consider 
1 1

e lim 1 lim 1

x
n nx

x

n nn n 

    
            

      

In order to use our result above from the binomial theorem, we need to re-write the expression 

1
1

nx

n

 
 

 
 in the form 1

b
a

b

 
 

 
.  Letting m nx , it follows that 

1 x

n m
 ; and if n   then m . 

 

Substituting gives 
1

e lim 1 lim 1

nx m

x

n m

x

n m 

   
      

   
.  Using the result from the binomial theorem 

 

    2 3
1 1 2

e lim 1 lim 1
2! 3!

m

x

m m

m m m m mx x x x
m

m m m m 

          
                       

 

 

                              
2 3 4

1
2! 3! 4!

x x x
x       

 

In sigma notation, 
0

e
!

n
x

n

x

n





  

 

 

 

Part IV 

 

Now, we’re ready to put the pieces together for Euler’s identity.  Here are the results we’ve obtained:  

 

 
 

2 1 3 5 7

0

sin 1
2 1 ! 3! 5! 7!

n
n

n

x x x x
x x

n





      


  

 

 
 

2 2 4 6

0

cos 1 1
2 ! 2! 4! 6!

n
n

n

x x x x
x

n





        

 

2 3 4 5 6 7

0

e 1
! 2! 3! 4! 5! 6! 7!

n
x

n

x x x x x x x
x

n
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To work our way towards confirming Euler’s identity, iθe cosθ isinθ  , let’s replace x with θ  in the 

series for sin x  and cos x , and replace x with iθ  in the series for ex .  

 
2 4 6θ θ θ

cosθ 1
2! 4! 6!

      

 

3 5 7θ θ θ
i sinθ i θ

3! 5! 7!

 
     

 
 

 

           
2 3 4 5 6 7

i θ
iθ iθ iθ iθ iθ iθ

e 1 iθ
2! 3! 4! 5! 6! 7!

          

 

Simplifying powers of the imaginary number i produces the following 

 
2 2 3 3 4 4 5 5 6 6 7 7 2 3 4 5 6 7

i θ i θ i θ i θ i θ i θ i θ θ iθ θ iθ θ iθ
e 1 iθ 1 iθ

2! 3! 4! 5! 6! 7! 2! 3! 4! 5! 6! 7!
                   

 

and grouping together real and imaginary terms gives 

  

2 4 6 3 5 7
i θ θ θ θ θ θ θ

e 1 i θ
2! 4! 6! 3! 5! 7!

 
           

 
 

 

Thus, confirming that i θe cosθ isinθ  . 

 

 

 
 

Most ‘beautiful’ equation – special case of Euler’s identity 

 

For i θe cosθ isinθ  , replacing θ  with π  gives  

 
i πe cosπ isin π 1 i 0       

 

Therefore, 
i πe 1 0   

 

 


