A confirmation of Euler's identity

Part I

Although there is no justification for this (we are not conducting a rigorous proof, but a confirmation), we begin by making the assumption that the function $\sin x$ can be written as an infinite polynomial (infinite series). Thus, we assume the following:

(1)
$$
\sin x = a_0 + a_1 x^1 + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \cdots
$$

Substituting $x = 0$ gives $\sin 0 = a_0 + 0 + 0 + \cdots$; and since $\sin 0 = 0$ then $a_0 = 0$. Thus,

(2)
$$
\sin x = a_1 x^1 + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \cdots
$$

We know the derivative of $\sin x$ and the general derivative of a power (power rule), i.e.

 $\frac{d}{dx}(ax^n) = a\frac{d}{dx}(x^n) = a(nx^{n-1})$ $\frac{d}{dx}(ax^n) = a\frac{d}{dx}(x^n) = a(nx^{n-1})$ $= a \frac{d}{dx}(x^n) = a(nx^{n-1})$. Let's apply these and take the derivative of both sides of (2).

$$
\begin{aligned}\n\frac{dx}{dx} \quad & \int dx \\
\frac{d}{dx}(\sin x) &= \frac{d}{dx}\left(a_1x^1 + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + \cdots\right)\n\end{aligned}
$$

(4) $\cos x = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + \cdots$

Substituting $x = 0$ again gives $\cos 0 = a_1 + 0 + 0 + \cdots$ and since $\cos 0 = 1$ then $a_1 = 1$. Thus,

(5)
$$
\sin x = x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \cdots
$$

Repeat the procedure by taking the derivative of both sides of (4) with
$$
a_1 = 1
$$
, giving
\n(6)
$$
\frac{d}{dx}(\cos x) = \frac{d}{dx}(1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + \cdots)
$$

(7)
$$
-\sin x = 2a_2 + 3 \cdot 2a_3x + 4 \cdot 3a_4x^2 + 5 \cdot 4a_5x^3 + \cdots
$$

Substituting $x = 0$ again gives $-\sin 0 = 2a_2 + 0 + 0 + 0 + \cdots$ and since $\sin 0 = 0$ then $a_2 = 0$. Thus,

(8)
$$
\sin x = x + a_3 x^3 + a_4 x^4 + a_5 x^5 + \cdots
$$

Repeat the procedure again – taking the derivative of both sides of (7) with
$$
a_2 = 0
$$
, giving
\n(9)
$$
\frac{d}{dx}(-\sin x) = \frac{d}{dx}(0+3\cdot 2a_3x+4\cdot 3a_4x^2+5\cdot 4a_5x^3+\cdots)
$$

(10)
$$
-\cos x = 3 \cdot 2a_3 + 4 \cdot 3 \cdot 2a_4 x + 5 \cdot 4 \cdot 3a_5 x^2 + \cdots
$$

Substituting $x = 0$ gives $-\cos 0 = 3 \cdot 2a_3 + 0 + 0 + 0 + \cdots$ and since $-\cos 0 = -1$ then a_3 1 $3 \cdot 2$ $a_3 = -$. . Thus,

(11)
$$
\sin x = x - \frac{x^3}{3 \cdot 2} + a_4 x^4 + a_5 x^5 + \cdots
$$

Repeat the procedure again – taking the derivative of both sides of (10) with a_3 1 6 $a_3 = -\frac{1}{6}$, giving

(12)
$$
\frac{d}{dx}(-\cos x) = \frac{d}{dx}(-1 + 4 \cdot 3 \cdot 2a_4 x + 5 \cdot 4 \cdot 3a_5 x^2 + \cdots)
$$

(13) $\sin x = 4 \cdot 3 \cdot 2 a_4 + 5 \cdot 4 \cdot 3 \cdot 2 a_5 x + \cdots$

Substituting $x = 0$ gives $\sin 0 = 4 \cdot 3 \cdot 2a_4 + 0 + 0 + \cdots$ and since $\sin 0 = 0$ then $a_4 = 0$. Thus,

(14)
$$
\sin x = x - \frac{x^3}{3 \cdot 2} + a_5 x^5 + \cdots
$$

Repeat the procedure again – taking derivative of both sides of (13) with $a_4 = 0$, giving

(15)
$$
\frac{d}{dx}(\sin x) = \frac{d}{dx}(5 \cdot 4 \cdot 3 \cdot 2a_5 x + \cdots)
$$

$$
(16)\quad \cos x = 5.4.3.2a_5 + \cdots
$$

Substituting $x = 0$ gives $\cos 0 = 5 \cdot 4 \cdot 3 \cdot 2a_5 + 0 + 0 + \cdots$ and since $\cos 0 = 1$ then a_5 1 $5.4.3.2$ $a_5 =$ $-4-3-2$. Thus,

(17)
$$
\sin x = x - \frac{x^3}{3 \cdot 2} + \frac{x^5}{5 \cdot 4 \cdot 3 \cdot 2} - \cdots
$$
 or $\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$

A clear pattern has been established. The signs of the terms alternate and the powers of *x* are consecutive odd numbers – and the denominator of each term is the factorial of the same consecutive odd numbers.

$$
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
$$

Therefore $\sin x$ is equivalent to an infinite polynomial, i.e. an infinite series. This infinite series can be represented using sigma notation as follows.

$$
\sin x = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}
$$
 or
$$
\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}
$$

Part II

Assuming that the function cos *x* can also be expressed as an infinite polynomial, we could carry out a similar procedure to find it. But a more efficient method is to consider that if two functions are equal then it must logically follow that their derivatives are also equal, i.e. if $f(x) = g(x)$ then

 $f'(x) = g'(x)$. Thus, since $\frac{d}{dx}(\sin x) = \cos x$ *dx* $f'(x) = g'(x)$. Thus, since $\frac{d}{dx}(\sin x) = \cos x$ then the derivative of the infinite polynomial
equivalent to sin x found above will be equal to the infinite series for $\cos x$.
 $\cos x = \frac{d}{dx}(\sin x) = \frac{d}{dx}\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^$

$$
f(x) = g(x)
$$
. Thus, since $\frac{d}{dx}(\sin x) = \cos x$ then the derivative of the infinite polynomial
equivalent to sin x found above will be equal to the infinite series for cos x.

$$
\cos x = \frac{d}{dx}(\sin x) = \frac{d}{dx}\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right) = 1 - \frac{3x^2}{6} + \frac{5x^4}{120} - \frac{7x^6}{5040} + \cdots = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \cdots
$$

Thus, $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$ $\frac{x}{2!} + \frac{x}{4!} - \frac{x}{6!}$ $x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$

This infinite series for $\cos x$ can be represented with sigma notation as follows.

$$
\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}
$$

Part III

Recall the following definition for the number e.

$$
e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n
$$

Let's use the binomial theorem to expand $\left(1 + \frac{1}{n}\right)$ *n* $\left(1+\frac{1}{n}\right)^{n}$.

binomial theorem: $(a+b)$ $\boldsymbol{0}$ $\binom{n}{n}$ $\binom{n}{n}$ $\binom{n-r}{n}$ *r* $(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b$ \overline{a} \overline{a} +b)ⁿ = $\sum_{r=0}^{n}$ $\binom{n}{r} a^{n-r} b^r$ where $(n-r)$! $!(n-r)!$ *n n* $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

$$
\left(1 + \frac{1}{n}\right)^n = 1 + n\left(\frac{1}{n}\right) + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^2 + \frac{n(n-1)(n-2)}{3!} \left(\frac{1}{n}\right)^3 + \cdots
$$

Thus, e = $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \left(1 + n\left(\frac{1}{n}\right) + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^2 + \frac{n(n-1)(n-2)}{2!} \left(\frac{1}{n}\right)^3 + \cdots$

$$
\left(1 + \frac{1}{n}\right) = 1 + n\left(\frac{1}{n}\right) + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right) + \frac{n(n-1)(n-2)}{3!} \left(\frac{1}{n}\right) + \cdots
$$

\nThus, $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \left(1 + n\left(\frac{1}{n}\right) + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^2 + \frac{n(n-1)(n-2)}{3!} \left(\frac{1}{n}\right)^3 + \cdots\right)$
\n
$$
= \lim \left(1 + \frac{n}{n} + \frac{n^2 - n}{n^2} \cdot \frac{1}{n} + \frac{n^3 - 3n^2 + 2n}{3!} \cdot \frac{1}{n} + \cdots\right)
$$

$$
= \lim_{n \to \infty} \left(1 + \frac{n}{n} + \frac{n^2 - n}{n^2} \cdot \frac{1}{2!} + \frac{n^3 - 3n^2 + 2n}{n^3} \cdot \frac{1}{3!} + \cdots \right)
$$

© InThinking – IB Maths HL & SL

As *n* goes to infinity, the limit of each of the expressions 2 $n n^3$ $2n^2$ $\frac{1}{2}$, $\frac{1}{2}$ $\frac{n}{2}$, $\frac{n^2-n}{2}$, $\frac{n^3-3n^2+2n}{3}$ $\frac{1}{n}$, $\frac{1}{n^2}$, $\frac{1}{n}$ $\frac{-n}{2}$, $\frac{n^3 - 3n^2 + 2n}{3}$ is 1.

Thus,
$$
e = \lim_{n \to \infty} \left(1 + \frac{n}{n} + \frac{n^2 - n}{n^2} \cdot \frac{1}{2!} + \frac{n^3 - 3n^2 + 2n}{n^3} \cdot \frac{1}{3!} + \cdots \right)
$$

$$
e = 1 + 1 + 1 \cdot \frac{1}{2!} + 1 \cdot \frac{1}{3!} + \cdots = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots
$$

But, we want the infinite series for e^x . Consider $e^x = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$ $\left(\left(\frac{1}{1+1}\right)^n\right)^{x} = \lim_{n \to \infty} \left(\frac{1}{1+1}\right)^{nx}$ $=\lim_{n\to\infty}\left(\left(1+\frac{1}{n}\right)^n\right)^{x}=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{nx}$

In order to use our result above from the binomial theorem, we need to re-write the expression

$$
\left(1+\frac{1}{n}\right)^{nx}
$$
 in the form $\left(1+\frac{a}{b}\right)^{b}$. Letting $m = nx$, it follows that $\frac{1}{n} = \frac{x}{m}$; and if $n \to \infty$ then $m \to \infty$.

Substituting gives $e^x = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{nx} = \lim_{m \to \infty} \left(1 + \frac{x}{m}\right)^{m}$ $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{nx} = \lim_{m \to \infty} \left(1 + \frac{x}{m}\right)$ $= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{nx} = \lim_{m \to \infty} \left(1 + \frac{x}{m} \right)^{m}$. U $+\frac{x}{m}$. Using the result from the binomial theorem
 $\frac{1}{m}\left(\frac{x}{m}\right)^2 + \frac{m(m-1)(m-2)}{m}\left(\frac{x}{m}\right)^3 + \cdots$

Substituting gives
$$
e^x = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = \lim_{m \to \infty} \left(1 + \frac{x}{m} \right)
$$
. Using the result from the binomial theorem
\n
$$
e^x = \lim_{m \to \infty} \left(1 + \frac{x}{m} \right)^m = \lim_{m \to \infty} \left(1 + m \left(\frac{x}{m} \right) + \frac{m(m-1)}{2!} \left(\frac{x}{m} \right)^2 + \frac{m(m-1)(m-2)}{3!} \left(\frac{x}{m} \right)^3 + \cdots \right)
$$
\n
$$
= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots
$$

In sigma notation, $\mathbf{0}$ e $\sum_{x}^{\infty} x^n$ *n x n* œ $=\sum_{n=0}$

Part IV

Now, we're ready to put the pieces together for Euler's identity. Here are the results we've obtained:

$$
\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
$$

\n
$$
\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots
$$

\n
$$
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \cdots
$$

!

To work our way towards confirming Euler's identity, $e^{i\theta} = \cos\theta + i\sin\theta$, let's replace *x* with θ in the series for $\sin x$ and $\cos x$, and replace *x* with $i\theta$ in the series for e^x .

$$
\cos \theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots
$$

\n
$$
i \sin \theta = i \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots \right)
$$

\n
$$
e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!} + \cdots
$$

Simplifying powers of the imaginary number i produces the following
\n
$$
e^{i\theta} = 1 + i\theta + \frac{i^2\theta^2}{2!} + \frac{i^3\theta^3}{3!} + \frac{i^4\theta^4}{4!} + \frac{i^5\theta^5}{5!} + \frac{i^6\theta^6}{6!} + \frac{i^7\theta^7}{7!} + \dots = 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} - \frac{i\theta^7}{7!} + \dots
$$

and grouping together real and imaginary terms gives

$$
e^{i\theta} = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots + i \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots \right) + \dots
$$

Thus, confirming that $e^{i\theta} = \cos\theta + i\sin\theta$.

Most 'beautiful' equation – special case of Euler's identity

For $e^{i\theta} = \cos\theta + i\sin\theta$, replacing θ with π gives

$$
e^{i\pi} = \cos \pi + i \sin \pi = -1 + i \cdot 0
$$

Therefore, $e^{i\pi} + 1 = 0$