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Part |

Although there is no justification for this (we are not conducting a rigorous proof, but a confirmation),
we begin by making the assumption that the function sin x can be written as an infinite polynomial
(infinite series). Thus, we assume the following:

(1) sinx=a,+ax +a,x’ +a; x> +a,x* +ax’ +---
Substituting x =0 gives sin0=a,+0+0+---; and since sin0=0 then a, =0. Thus,
(2) sinx=ax +a,x’+ax’ +a,x* +ax’ +---

We know the derivative of sinx and the general derivative of a power (power rule), i.e.

i(aXn ) = ai(xn ) = a(nx"‘l) . Let’s apply these and take the derivative of both sides of (2).
dx dx

(3) di(sin X)= d

x &(aix“razxz+a3x3+a4x“+a5x5+---)
(4)  cosx=a +2a,x+3a,x" +4a,x> +5a,x" +---
Substituting x =0 again gives cosO=a,+0+0+--- and since cosO0=1 then a =1. Thus,

(5) sinx=x+a,x* +a, X’ +a,x  +a x>+

Repeat the procedure by taking the derivative of both sides of (4) with a =1, giving

(6) %(cos X)= %(H 28, +3a;X" +42,X° +58,X" +---)

(7)  —sinx=2a,+3-2a,x+4-33,x* +5-4a,x> +---
Substituting x =0 again gives —sin0=2a, +0+0+0+--- and since sin0=0 then a, =0. Thus,
(8) sinx=x+ax’+ax'+ax’+--

Repeat the procedure again — taking the derivative of both sides of (7) with a, =0, giving

(9) %(—sin x):%(0+3-2a3x+ 4-33,X" +5-4a,X° +---)

(10) —cosx=3-2a,+4-3-2a,Xx+5-4-3a,X" +---
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Substituting x =0 gives —cos0=3-2a,+0+0+0+--- and since —cos0=-1 then a, =—3i2. Thus,

3
(11) sinx:x—;—2+a4x4+a5x5+---

Repeat the procedure again — taking the derivative of both sides of (10) with a, = —% , giving

d d
(12) &(—cosx):&(—u4-3-2a4x+5-4-3a5x2+---)

(13) sinx=4-3-2a,+5-4-3-2a,x+---

Substituting x =0 gives sin0=4-3-2a,+0+0+--- and since sin0=0 then a, =0. Thus,
X 5

14) sinx=X———+aXx +---

(14) W

Repeat the procedure again — taking derivative of both sides of (13) with a, =0, giving

d, . d
(15) &(smx):

&(5-4-3'2%x+-~)

(16) cosx=5-4-3-2a, +---

Substituting x =0 gives cos0=5-4-3-2a,+0+0+--- and since cos0=1 then a, =t 413 > Thus,
3 5 3 5
a7 SinX:X—X—+ X —eeor sinxzi___kx__...
3-2 5-4.3.2 1 31 5l

A clear pattern has been established. The signs of the terms alternate and the powers of x are
consecutive odd numbers — and the denominator of each term is the factorial of the same consecutive
odd numbers.

X x* X

sinX=X—-—+——-—+
31 51 71

Therefore sin x is equivalent to an infinite polynomial, i.e. an infinite series. This infinite series can
be represented using sigma notation as follows.

2n-1 2n+1

six=3(-1)” CETIEE Zy e

n=0
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Part Il

Assuming that the function cos x can also be expressed as an infinite polynomial, we could carry out
a similar procedure to find it. But a more efficient method is to consider that if two functions are

equal then it must logically follow that their derivatives are also equal, i.e. if f(x)=g(x) then

f'(x)=g'(x). Thus, since di(sin x) = cos x then the derivative of the infinite polynomial
X

equivalent to sin x found above will be equal to the infinite series for cos x.

d, . d D D 3x? Bx*  7x° x2 x* X8
cosx:—(smx):— Xy 2 21 _ S N AT B AN
dx dx 31 51 71 6 120 5040 2 24 720
2 4 6
Thus, cosx = 1—X—+X——X—+
217 41 6!

This infinite series for cos x can be represented with sigma notation as follows.

2n

COS X = ;(_1)n ()z(n)!

Part 111

Recall the following definition for the number e.

e=lim (1+1j
n—oo n

1 n
Let’s use the binomial theorem to expand (l+ —j :
n

binomial theorem: (a+b)" :Zn:(:j a""b" where (:] #lr)l

r=0

R O O
Thus,e:m(1+%j”:n@(l+n(;) !(3 n2>@+...]

) n n-n 1 n*-3n°+2n 1
=lim|1+—+ =+ c—

8

n n*> 2! n 3!
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n—n n®=3n>+2n .
R 3 Is 1.
n n

e - . n
As n goes to infinity, the limit of each of the expressions —,
n

1+—+

Thus, e=lim ——+ 5
n n 21 n 3!

n—ow

[ n n*-n 1 n3—3n2+2n‘£+mj
e:1+1+1-£+1-£+-~-:1+1+£+—+~-
2! 3l !

n— oo n n— oo n

o . . A 1"
But, we want the infinite series for ¢*. Consider ¢* = lim ((1+—] ] = lim (1+—j
In order to use our result above from the binomial theorem, we need to re-write the expression

nx b
(1+lj in the form (1+%j . Letting m = nx, it follows that 1=l; and if n— o0 then m — .
n n m

n—o n m — oo

otnf ] sl P e

x2 x* x*

=1+ X+ —+—+—+
21 3! 41

Substituting gives e¢* = lim (1+ lj = lim (1+ ij . Using the result from the binomial theorem
m

. : 2 X"
In sigma notation, ¢* =) —
o n!

Part IV

Now, we’re ready to put the pieces together for Euler’s identity. Here are the results we’ve obtained:

0 2n+1 3 5 7
inx=3"(-1) X _x_ X X _X
o Z(;( )(2n+1)! TR T

0 X2n XZ X4 XG

) Xn XZ 3 X4 X5 XG X7
O =) =l X o e
= n! 21 31 41 51 6! 7!
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To work our way towards confirming Euler’s identity, € =cos@+isin0, let’s replace x with 8 in the
series for sinx and cosx, and replace x with i6 in the series for e*.

2 4 6
c050:1—9—+e——e—+
21 41 6!

3 5 7
isinezi[6—9—+e——e_+...j
31 51 71

e =1+i0+

(0 (o) , (i)' () (o) (o)
2!

3! 41 5! 6! 7!
Simplifying powers of the imaginary number i produces the following
4.0, 1007 07 %t °0° i%° {70’ 6° i0® 0 i6° 6° 0’

=1+10+—+—+—+ +—t—+ =1+t ———-

© 20 31 41 51 6l 7! 21 31 41 51 6! 7!

and grouping together real and imaginary terms gives

o 62 64 96 ( 63 95 97 j
e =1-—+———+ -+ O+ ===+ [+
2! 41 6! 3t 51 71

Thus, confirming that e'® =cos6 +isin®.

Most ‘beautiful’ equation — special case of Euler’s identity

For e'® =cos0 +isin0, replacing & with @ gives

" =cosm+isint=—1+i-0

Therefore, € +1=0
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