
Develop & build Linux System C/C++ libraries - from scratch

Introduction

What this Course is all about ?

➢ This course teaches how to develop Linux System C/C++ Libraries which are

➢ Generic

➢ Extensible

➢ Programmable

➢ Modularized

➢ If you happen to become a programmer (in any area), you will write most of the code using the libraries already created

for you by your ancestors

➢ After doing this course, You should be able to write a reusable code as a library and reuse it in applications

➢ We will take the example to build a library of Doubly linked list throughout the course, the techniques learnt can be applied

to build library for any other data structure

➢ It is expected that you are aware of C programming already and knows how doubly linked list works

Develop & build Linux System C/C++ libraries - from scratch

What is a Library

➢ In Simple words, A library is a reusable code that can be integrated with any application , and hence, application can use

it

➢ For example, LinkedList, Stacks, Queues, Trees, Graphs exists as libraries because they can be reused again and again

by various applications as per the requirement

➢ For example, A school management system can use Linked List to store the list of students, whereas, a Railway reservation

System can use a Linked list to store the details of passengers

➢ All languages have their standard set of libraries which developers uses all the time while writing code

➢ memcpy, memset, strcpy, malloc, free are all examples of functions defined in GNU C standard library glibc

➢ A library can contain :

➢ Reusable functions – finding the square root of a real number

➢ Constants - No if hours in a day, Enumerations – SUN MON TUES . . .

➢ Expandable Macros (#define square(x) (x*x))

➢ Libraries are generic – They do not assume that they have been written for some specific applications

Develop & build Linux System C/C++ libraries - from scratch

Relationship Between a Library and an Application

LinkedList

Library

Appln 1 Appln 2 Appln 3

Use

➢ An Application is a Consumer of a Library

➢ Application uses the library to organize and manage

its internal data structures

➢ For example, Application needs to use

Heap library in order to perform

Dijkstra calculation on a data

Organized as a Graph using

Graph Library

➢ A library is write once and use everywhere code

Develop & build Linux System C/C++ libraries - from scratch

Doubly Linked List

➢ In this course, we Shall apply all the concepts of designing and writing a library using Linked List as a

sample Library example

➢ It is expected that you know Functionality & operations of Doubly Linked List (DLL) such as :

➢ Insertion

➢ Deletion

➢ Search

➢ Traversal

➢ By the end of this course, you should be having a full working DLL code as a library

Lets begin our Journey .. Step by Step .. Fasten your Seat belts guys ☺

Develop & build Linux System C/C++ libraries - from scratch

Library Files Organization

➢ In C (Or C++) , we Organize our code (Whether application or Library) in two types of files :

➢ Header File (.h)

➢ Source Files (.c/.cpp)

➢ Header files contains :

➢ Anything which needs to be exposed to other source files

➢ Structure definitions

➢ Constants and Enumerations

➢ Macros

➢ Function Declarations (No Fn definitions)

➢ static inline functions

➢ Source file contains :

➢ Actual implementation of logic as functions whose declarations are present in hdr files

➢ Anything which need not be exposed to other source files

“I have this for you

Source files !!”

“Thanks, We will use what you

Provide to us !!”

Develop & build Linux System C/C++ libraries - from scratch

Library Files Organization

➢ Often Students find it difficult to understand the purpose of Header file !

➢ The Header file actually says –

“Hey developer, I have THE DECLARATION of all these functions which are defined in the source file, Use them using the

prototypes/Signatures I am telling you, and yes – Do not dare to see the internal implementation of these functions

in Source files”

➢ A Header file conveys “What is there” and not “How it is done”

➢ A Developer of an Application who wishes to use DLL in his application must need to have access to

dll.h file so that he can #include “dll.h” in his application code, and make a call to functions declared in

dll.h file. Developer do not need to see what is their in dll.c file.

➢ Its equivalent to – eating a tasty pre-cooked meal without knowing how it was cooked !

➢ All Developer need to know is how to make use of DLL library in his application without actually worry to know

how DLL internally works !

dll.h

Human Readable

dll.o

(Not human readable)

Library Developer

Library User

(Application Developer)

Here is the

Library I

wrote !

➢ Header file is an interface to actual functionality which is hidden from library users

Develop & build Linux System C/C++ libraries - from scratch

Library Files Organization

➢ Download Code :

➢ git clone http://github.com/csepracticals/LibraryDesigning

➢ Code : go inside dir LibFileOrganization

dll.h
dll.c

http://github.com/csepracticals/LibraryDesigning

Develop & build Linux System C/C++ libraries - from scratch

Library Files Organization

Assignment :

Add one more function to DLL library :

int /* return 0 on success, -1 on failure*/

add_data_to_dll (dll_t *dll, void *app_data);

This function should create a new dll node and make it hold the application data. Add this new node to the front

(or end – your wish) to the doubly linked list

You can see solution in dll.c file

Develop & build Linux System C/C++ libraries - from scratch

Library integration with an Application

➢ Let us see our mini Library in Action

➢ We have created a mini dll Library which have two functions now :

➢ get_new_dll

➢ add_data_to_dll

➢ Let us see our this small Library in Action

➢ See the code in : ApplnIntegration dir

➢ We will write application.c which represent the Application. This Application will reuse the DLL library

➢ Demo . . .

Develop & build Linux System C/C++ libraries - from scratch

Library integration with an Application

➢ Compilation Commands :

Compile the application.c

gcc -g -c application.c -o application.o

Compile the dll.c

gcc -g -c dll.c -o dll.o

Linking and create final executable :

gcc -g application.o dll.o -o exe

Run the executable :

./exe

gcc – Compiler

-g – GDB Flags (Later)

-c – compile

-o – output file

Note that :

Only Source files (.c/.cpp) are compilation units

Header files are not compilation units

We will see, later, how Header files actually work

Develop & build Linux System C/C++ libraries - from scratch

What we have done so far ..

Header file

dll.h

Source file

dll.c

Doubly linked list Library

application.c

#include “dll.h”

Object file

dll.o

Object file

application.o

compile compile

exeCompile : gcc –g –c <file.c> -o <file.o>

Linker : gcc –g <file1.o> <file2.o> . . . –o <exe name>

Final Executable is created using all .o files

Together (exactly one .o file must contain main)

Develop & build Linux System C/C++ libraries - from scratch

How Header File works ?

➢ If we understand exactly how the header file works

➢ we shall be able to save ourselves from compilation errors

➢ we shall be able to organize and design our projects better

➢ I have seen even experienced programmers (=4 yrs of exp) are not clear about Header files !! 

➢ Header files are non-compilation units - Compiler DO NOT compile header files

➢ But you still see syntax error if you write wrong in header file !!

➢ It means compiler parses/compile the header file – contradiction

➢ Header file Inclusion simply works by

➢ 1. Recursive Text Substitution Method

➢ 2. Simply replace the #include <hdr.h> statement by content of hdr.h

➢ 3. If hdr.h contains itself #include <b_hdr.h>, replace b_hdr.h by its contents and so on . . . (recursion)

Helps to Achieve two basic principles of C/C++ language :

➢ Define structure definitions first before Use (define-and-use Thumb Rule)

➢ Declare function prototype first before Use (declare-and-use Thumb Rule)

➢ Let us discuss each point in detail . . .

Develop & build Linux System C/C++ libraries - from scratch

Text Substitution

➢ Substitution happen in Source file being compiled by the compiler

➢ Compiler before actually commence compiling the source file, it performs Text substitution

#include Pre-processing directive

➢ #include <A.h> is replaced by contents of A.h in Src file

➢ If contents of A.h contains #include <B.h>, #include <B.h> is again replaced by content of B.h in src file

#define Pre-processing directive

➢ #define square(x) (x*x)

➢ square(x) is textually substituted by (x*x) at all places in src file where square(x) is written

➢ Let us see an example

Develop & build Linux System C/C++ libraries - from scratch

Text Substitution

File : A.h

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

File : B.h

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

File : app.c (V1)

#include “B.h”

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = square(15);

. . .

}

File : app.c(V2)

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

File : app.c(V3)

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

This is what you

Write
Text Subs – Ist Pass Text Subs – 2nd Pass

Develop & build Linux System C/C++ libraries - from scratch

File : A.h

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

File : B.h

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

File : app.c(V3)

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Text Subs – 2nd Pass

Final Compilation Unit

Remove all

#defines

File : app.c(V4)

int sum (int a, int b);

int multiply (int a, int b);

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Text Substitution

Develop & build Linux System C/C++ libraries - from scratch

How Header File works ?

➢ If we understand exactly how the header file works

➢ we shall be able to save ourselves from compilation errors

➢ we shall be able to organize and design our projects better

➢ I have seen even experienced programmers (=4 yrs of exp) are not clear about Header files !! 

➢ Header files are non-compilation units - Compiler DO NOT compile header files

➢ But you still see syntax error if you write wrong in header file !!

➢ It means compiler parses/compile the header file – contradiction

➢ Header file Inclusion simply works by

➢ 1. Recursive Text Substitution Method

➢ 2. Simply replace the #include <hdr.h> statement by content of hdr.h

➢ 3. If hdr.h contains itself #include <b_hdr.h>, replace b_hdr.h by its contents and so on . . . (recursion)

Helps to Achieve two basic principles of C/C++ language :

➢ Define structure definitions first before Use (define-and-use Thumb Rule)

➢ Declare function prototype first before Use (declare-and-use Thumb Rule)

➢ Let us discuss each point in detail . . .

Develop & build Linux System C/C++ libraries - from scratch

Text Substitution

➢ Substitution happen in Source file being compiled by the compiler

➢ Compiler before actually commence compiling the source file, it performs Text substitution

#include Pre-processing directive

➢ #include <A.h> is replaced by contents of A.h in Src file

➢ If contents of A.h contains #include <B.h>, #include <B.h> is again replaced by content of B.h in src file

#define Pre-processing directive

➢ #define square(x) (x*x)

➢ square(x) is textually substituted by (x*x) at all places in src file where square(x) is written

➢ Let us see an example

Develop & build Linux System C/C++ libraries - from scratch

Text Substitution

File : A.h

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

File : B.h

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

File : app.c (V1)

#include “B.h”

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = square(15);

. . .

}

File : app.c(V2)

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

File : app.c(V3)

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

This is what you

Write
Text Subs – Ist Pass Text Subs – 2nd Pass

Develop & build Linux System C/C++ libraries - from scratch

File : A.h

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

File : B.h

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

File : app.c(V3)

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Text Subs – 2nd Pass

Final Compilation Unit

Remove all

#defines

File : app.c(V4)

int sum (int a, int b);

int multiply (int a, int b);

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Text Substitution

Develop & build Linux System C/C++ libraries - from scratch

Pre-processing Directives

➢ Problem Of Duplicate Inclusion of Header files

➢ What are Preprocessing Directives

➢ Solution to Duplicate Inclusion of Header files using Preprocessing Directives

Develop & build Linux System C/C++ libraries - from scratch

Duplicate Inclusion Of header File

➢ Most of the times we end up including the same Header file into Source file multiple times

➢ This results in Duplicate text substitution

➢ Result : Compilation error 

➢ Let us see the scenario . . .

Develop & build Linux System C/C++ libraries - from scratch

File : A.h

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

File : B.h

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

File : app.c (V1)

#include “A.h”

#include “B.h”

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = square(15);

. . .

}

File : app.c (V2)

#include “A.h”

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

File : app.c (V3)

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}
This is what you

Write
Text Subs – Ist Pass

Text Subs – 2nd Pass

Duplicate Inclusion Of header File

Develop & build Linux System C/C++ libraries - from scratch

File : app.c

int sum (int a, int b);

int sum (int a, int b);

int multiply (int a, int b);

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Final Compilation Unit
Duplicate Inclusion Of header File

File : A.h

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

File : B.h

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

File : app.c (V3)

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Remove all

#defines

Text Subs – 2nd Pass

Duplicate Declarations !!

Compiler error 

Develop & build Linux System C/C++ libraries - from scratch

Pre-Processor Directives in C

➢ Before Compiler Actually compiles the source files, it performs the text substitution

➢ The C preprocessor directives (#include, #define) is just a simple text substitution tool

➢ Remember, Text Substitution is performed first before the compiler actually starts compilation of source files.

➢ Directives can be written in both – Source files as well as Header files

Preprocessor Function

#define Substitutes a preprocessor macro.

#include Inserts a particular header from another file.

#undef Undefines a preprocessor macro.

#ifdef Returns true if this macro is defined.

#ifndef Returns true if this macro is not defined.

#if Tests if a compile time condition is true.

#else The alternative for #if.

Preprocessor Function

#elif #else and #if in one statement.

#endif Ends preprocessor conditional.

Develop & build Linux System C/C++ libraries - from scratch

Pre-Processor Directives in C

#define A 10

#define B 20

#define square(x) (x*x)

#ifdef A

#include “x.h”

#endif

#undef A

#ifdef A

#include “y.h”

#endif

#ifndef A

int const T = square(B);

#else

int const T = square(B);

#endif

int main() { . . .

abc.c

< contents of x.h >

int const T = 20*20;

abc.c

After

Pre-processing

This is what Compiler finally

Compiles !!

Now let us see how preprocessor directives can solve the problem of Duplicate header file

inclusion !

Develop & build Linux System C/C++ libraries - from scratch

File : app.c (V1)

#include “A.h”

#include “B.h”

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = square(15);

. . .

}

This is what you

Write

Duplicate Inclusion Of header File - Solution

File : A.h

#ifndef __A__

#define __A__

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#endif

File : B.h

#ifndef __B__

#define __B__

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#endif

File : app.c (V3)

#ifndef __A__

#define __A__

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#endif

#ifndef __B__

#define __B__

#ifndef __A__

#define __A__

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#endif

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#endif

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Text Subs

Pass 1

File : app.c (V2)

#ifndef __A__

#define __A__

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#endif

#ifndef __B__

#define __B__

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#endif

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Text Subs

Pass 2

Develop & build Linux System C/C++ libraries - from scratch

File : A.h

#ifndef __A__

#define __A__

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#endif

File : B.h

#ifndef __B__

#define __B__

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#endif

File : app.c (V3)

#ifndef __A__

#define __A__

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#endif

#ifndef __B__

#define __B__

#ifndef __A__

#define __A__

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#endif

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#endif

#define square(x) (x * x)

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

File : app.c (V4)

int sum (int a, int b);

int multiply (int a, int b);

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Final Compilation Unit

File A.h has been

Prevented from

Including in

Application

Multiple times

✓

Compiles !

Remove all

directives

Duplicate Inclusion Of header File –

Solution

Develop & build Linux System C/C++ libraries - from scratch

File : A.h

#ifndef __A__

#define __A__

#define max(a,b) (a > b ? a : b)

int sum (int a, int b);

#endif

File : B.h

#ifndef __B__

#define __B__

#include “A.h”

#define min(a,b) (a > b ? b : a)

int multiply (int a, int b);

#endif

File : app.c (Final Version)

int sum (int a, int b);

int multiply (int a, int b);

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Final Compilation Unit

When Hdr file A.h

included multiple times

File : app.c (Final Version)

int sum (int a, int b);

int sum (int a, int b);

int multiply (int a, int b);

int foo(int b);

int foo(int b) {

}

int main(){

int a = (15*15);

. . .

}

Final Compilation Unit

When Hdr file A.h

included only once

✓


Duplicate Inclusion Of header File - Solution

Develop & build Linux System C/C++ libraries - from scratch

Rules

for

Defining and Using

Structures

and

Functions

Develop & build Linux System C/C++ libraries - from scratch

➢ Never Use before defining it

A.h

tyepedef struct Emp_ {

char name[32];

unsigned int emp_id;

occ_t occ;

} emp_t;

typedef struct occ_ {

char designation[32];

unsigned int salary;

} occ_t;

A.c

#include “A.h”

main(){

}

Apply Text Substitution

Always Definition first and then usage

– For Structures

Use

Definition

Develop & build Linux System C/C++ libraries - from scratch

➢ Never Use before defining it

A.h

tyepedef struct Emp_ {

char name[32];

unsigned int emp_id;

occ_t occ;

} emp_t;

typedef struct occ_ {

char designation[32];

unsigned int salary;

} occ_t;

Use

Definition

A.c

tyepedef struct Emp_ {

char name[32];

unsigned int emp_id;

occ_t occ;

} emp_t;

typedef struct occ_ {

char designation[32];

unsigned int salary;

} occ_t;

main(){

}

Compiler Error !

Use

Definition

Always Definition first and then usage

– For Structures

Compiler must see structure definitions first, and then its usage (define-and-use thumb rule)

Develop & build Linux System C/C++ libraries - from scratch

Always Declaration first and then

usage – For functions

A.c

int foo (int a);

. . . .

…. .

foo(a);

. . . .

A.c

int foo (int a);

int foo (int a) {

/*fn body*/

}

. . . .

…. .

foo(a);

. . . .

B.c

int foo (int a);

int foo (int a) {

/*fn body*/

}

. . . .

…. .

foo(a);

. . . .

A.c

int foo (int a);

. . . .

…. .

foo(a);

. . . .

B.c

int foo (int a);

foo(a);

int foo (int a) {

/*fn body*/

}

. . . .

…. .

. . . .

✓ ✓ ✓

Note : Function Definition must be present in exactly one and only one Source file

➢ When a Compiler Compiles the sourse files, it must first see the declaration of a Function and then

its usage (fn call). Take it as a thumb rule (declare-and-use thumb rule)

➢ Compiler don’t consider the function definition while compiling the sourse files (creating Object files)

Develop & build Linux System C/C++ libraries - from scratch

Always Declaration first and then

usage – For functions

A.c

#include “A.h”

int foo (int a) {

/*fn body*/

}

…. .

B.c

int foo (int a);

. . . .

…. .

foo(a);

. . . .

✓

A.h

int foo (int a);

B.c

#include “A.h”

. . . .

…. .

foo(a);

. . . .

✓

B.c

…. .

foo(a);

. . . .



G I V E N

➢ When a Compiler Compiles the sourse files, it must first see the declaration of a Function and then

its usage (fn call). Take it as a thumb rule (declare-and-use thumb rule)

➢ Compiler don’t consider the function definition while compiling the course files (creating Object files)

Develop & build Linux System C/C++ libraries - from scratch

Recursive Dependency

➢ Pre-requisite : Pointer Usage Vs Complete Usage for a Structure

struct emp_t {

char name[32];

unsigned int emp_id;

designation_t des; /*Complete Usage*/

occ_t *occ; /*Pointer usage*/

};

➢ A Compiler must know the complete size of the structure at the compile time.

➢ It means, compiler must know the size of each individual fields of the structure definition it is compiling

Develop & build Linux System C/C++ libraries - from scratch

A.c

struct emp_t {

char name[32];

unsigned int emp_id;

occ_t occ;

};

struct occ_t {

char designation[32];

unsigned int salary;

emp_t boss;

};

Recursive Dependency

A.c

struct occ_t {

char designation[32];

unsigned int salary;

emp_t boss;

} ;

struct emp_t {

char name[32];

unsigned int emp_id;

occ_t occ;

} ;
Compiler Error !



Solution ?

Develop & build Linux System C/C++ libraries - from scratch

A.c

/*Forward Declaration*/

struct occ_t;

struct emp_t {

char name[32];

unsigned int emp_id;

struct occ_t *occ;

};

struct occ_t {

char designation[32];

unsigned int salary;

struct emp_t boss;

} ;

Recursive Dependency - Solution

Break the recursive dependency by using

pointer usage

Code Compiles !

/*Tells the compiler that struct occ_t will be defined in future, pls tolerate

if it is used as pointer. It is called Forward declaration*/

Develop & build Linux System C/C++ libraries - from scratch

Summary

➢ Pre-processor directives are simple text substitution tool

➢ Pre-processor are executed even before compiler actually starts compiling the source files

➢ Using #ifndef .. #endif, we can prevent multiple inclusions of same header file

➢ Always, enclose the opening and closing of header file using #ifndef .. #endif . Make changes to your dll.h

➢ Avoid Recursive dependency in the first place, if not possible, use pointers usage instead of complete usage definition

Develop & build Linux System C/C++ libraries - from scratch

Library

➢ So, now we have a basic working DLL code

➢ Now, Let us create a Doubly Linked List library

➢ A Library is just a collection of related object files

➢ For Big Libraries, it is very much possible that library code spans across multiple source files

➢ These multiple source files are compiled to create corresponding object files (.o)

➢ Then these .o files are bundled together to create one unit called a Library

Develop & build Linux System C/C++ libraries - from scratch

Library

➢ So far, we have added two basic function to our Library of Doubly Linked List

➢ Let us create a complete DLL Library by adding more functions to it

➢ Please add and implement the following functions also but add these functions definition in dll_util.c and declaration

in dll.h

➢ We are doing these for the sake that our Library code spawns across two source files

int /*return 0 on success and -1 on failure*/

remove_data_from_dll_by_data_ptr (dll_t *dll, void *data);

int /*return 0 if empty, -1 if not empty*/

is_dll_empty (dll_t *dll);

void

drain_dll (dll_t *dll); /* delete all nodes from a dll, but do not free appln data*/

Solution : LibraryDesigning/Morefunctions

Develop & build Linux System C/C++ libraries - from scratch

➢ C/C++ source files can be compiled to form two flavors of Libraries on Linux Platform

➢ Libraries are collection of compiled object files (.o)

➢ We shall learn the process of creation of two types of libraries, and how they internally work

Linux

C/C++Libraries

Static

Libraries

(.a)

Dynamic

Libraries

(.so)

Library

“Bundled”

Develop & build Linux System C/C++ libraries - from scratch

Library - Static

dll.c

dll_util.c

→ gcc –c dll.c –o dll.o

→ gcc –c dll_util.c –o dll_util.o

dll.o

dll_util.o

libdll.a
Static

Library

Static Library : ar rs libdll.a dll.o dll_util.o

“Bundled”

Develop & build Linux System C/C++ libraries - from scratch

Library - Dynamic

dll.c

dll_util.c

→ gcc -c -fPIC dll.c -o dll.o

→ gcc -c -fPIC dll_util.c -o dll_util.o

dll.o

dll_util.o

libdll.so
Dynamic

Library

Dynamic Library : gcc dll.o dll_util.o -shared -o libdll.so

*PIC – Position Independent Code

Develop & build Linux System C/C++ libraries - from scratch

Library Integration - Static

➢ Some developer wrote DLL library and provide you dll.h and libdll.a (Or libdll.so). Note that you don’t have direct access

to dll.c/dll_util.c file now

➢ You have written your application application.c which uses DLL

➢ How will you create your final executable now ?

Compiler

libdll.a

application.c

Input

exe

Output

Steps :

1. gcc -c application.c -o application.o

2. gcc application.o -o exe -L . –ldll

3. Run executable : ./exe

Linkingapplication.o

External Libraries

exe


Develop & build Linux System C/C++ libraries - from scratch

Library Integration - Dynamic

➢ How will you create your final executable when we have Shared library file ?

Compiler

libdll.so

application.c

Input

exe

Output

Steps :

1. gcc -c application.c -o application.o

2. Place the libdll.so file in default location in /usr/lib and run sudo ldconfig command

3. gcc application.o -o exe -ldll (Linking)

4. Run executable : ./exe

Develop & build Linux System C/C++ libraries - from scratch

Library Integration - Dynamic

➢ What is you don’t want to copy the Shared library .so file in default location /usr/lib/

Steps :

1. gcc -c application.c -o application.o

2. Place the libdll.so file in default location in /usr/lib and run sudo ldconfig command

3. gcc application.o -o exe -ldll (Linking)

4. Run executable : ./exe

Develop & build Linux System C/C++ libraries - from scratch

ldd command

➢ You can use ldd command to find that given executable is dependent on which libraries

➢ Syntax : ldd ./exe

➢ Pasting the output from my machine :

vmx@vmx:~/Documents/csepracticals/LibraryDesigning/ApplnIntegration$ ldd ./exe

linux-gate.so.1 => (0xb7711000)

libdll.so => /usr/lib/libdll.so (0xb76f5000) << your Library

libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb7546000)

/lib/ld-linux.so.2 (0x80065000)

Develop & build Linux System C/C++ libraries - from scratch

ldconfig command

➢ d

Develop & build Linux System C/C++ libraries - from scratch

Summary

➢ We learnt how to create static and Dynamic Library

➢ How to create executable from application.c which is dependent on Library

➢ Understand the Steps for Compilation and Linking

➢ But, What exactly Static and Dynamic Libraries are ?

➢ How do they work ?

➢ Why we need two flavors of Libraries ?

➢ Next . . .

Compilation Stages

4 Stages !!

Very Pet Interview Question !!

4 stages of Compilation

Linking with Static Library

int

main(){

person_t *person1 = calloc(1, sizeof(person_t));

strncpy(person1->name, "Abhishek", strlen("Abhishek"));

person1->age = 31;

person1->weight = 75;

/*Create a new Linked List*/

dll_t *person_db = get_new_dll();

add_data_to_dll(person_db, person1);

. . .

return 0;

}

int

main(){

person_t *person1 = calloc(1, sizeof(person_t));

strncpy(person1->name, "Abhishek", strlen("Abhishek"));

person1->age = 31;

person1->weight = 75;

/*Create a new Linked List*/

dll_t *person_db = <Body of the get_new_dll()>;

<Body of add_data_to_dll(person_db, person1);>

. . .

return 0;

}

Think it like, the function

Calls are replaced by their

Entire implementation

Linker

libdll.a

application.o

exe

application.o

exe

Linking

Dependent

Libraries

Object file

containing main()

Linking with Static Library

➢ Because in the exe file (Binary or executable file), the function calls are replaced by their actual

implementation, Final binary file (executable) becomes independent of dependent libraries

➢ But It increases the size of exe file

➢ Now we are in a position to learn the stages involved in compilation process . . .

4 stages of Compilation

Preprocessing
Compilation

Text Substitution

Execute Preprocessing directives

Generation assembly code

Assembler

Generate machine code (0/1)

From Compiled code

1
2

3

Four Stages in Compilation Process

Final Executable

Note : Preprocessor, Compiler, Assembler & Linker

are generally together termed As Compiler only.
Linking

Linking with dependent Libraries

And Other Object files

4

Text Substituted

C code
Assembly Code

User Written

C/C++ program

Libraries

4 stages of Compilation

Preprocessor

Stage 1

Text Substituted src files

test1.ctest.h

test.c Note : The role of Header files

Is Over here

Four Stages in Compilation Process

Preprocessing stage :

All #includes<abc.h> are replaced by contents of abc.h recursively

All #defines are applied in src file code and then #defines themselves are removed

All #if… #endif are processed

4 stages of Compilation

Preprocessor

Stage 1

Text Substituted src files

test1.ctest.h

test.c

Compiler

Stage 2

Linker

Stage 4

test.o (atleast one .o file

Must contain main)

Other external

Libraries

Final Executable



Note : The role of Header files

Is Over here

Assembly code

(test.s)

Assembler

Stage 3

Four Stages in Compilation Process

Generate Machine code

(object files and Libraries)

4 stages of Compilation

Four Stages in Compilation Process

4 stages of Compilation

test.o

…

…

foo();

Print foo_global

fest.o

int foo_global = 10;

…

…

foo(){

}

➢ Without linking, test.o would not know how to invoke external functions such as foo()

➢ Not only that, without linking, test.o cannot access foo_global also

➢ Linking is all about – providing an access to external functions and global varibles

Makefile

Develop & build Linux System C/C++ libraries - from scratch

➢ Makefile is a program building tool which runs on Unix, Linux, and their flavors.

➢ It aids in simplifying building the software program that may dependent on various other libraries

➢ For example, if you have a software program which has

200 source files

20 header files

And you need to create below dishes from above Raw material :

10 static libraries

5 shared libraries

3 executable

➢ Then, you need to make use of Makefile. You will go mad if you do it one by one !

➢ Makefile contains all the commands required to build all the Dishes you need

➢ 99% students never make use of Makefiles to build and compile their C/C++ programs !!  Sad !!

Makefile

Develop & build Linux System C/C++ libraries - from scratch

➢ Functions of Makefile :

1. Compiling

2. Linking

3. Creating required libraries – static and Dynamic

4. Create required Executables

5. Installation of Libraries & executables

6. Update dependencies

Makefile

Source &

Header files

Libraries

Executables

Installation

Other precompiled

Libraries and Object

files

Let us write our first Makefile.

Code : LibraryDesigning/MakefileAssignment

Makefile Dependency tree

Develop & build Linux System C/C++ libraries - from scratch

➢ Makefile works on the concept of dependency tree

Delicious

meal

Chicken Curry Chapati Cooked Rice Wine

Raw

Chicken
Onions

Chicken

powder

wheat

flour
Water Raw

Rice
Water

➢ Level N element cannot be

prepared unless all its immediate

Descendants elements at Level

N + 1 are available

➢ Root element is the target we

want to prepare

➢ Preparation of recipe takes

place from bottom to up

in the tree

➢ If element at Level N is changed/

updated, all ancestors from

Level N -1 upto root of the

tree needs to be updated.

Makefile Example

Develop & build Linux System C/C++ libraries - from scratch

/MakefileAssignment

/common_math /complex_math /trig_mathmain.c Makefile

common_math.c common_math.h complex_math.c complex_math.h trig_math.c trig_math.h

exe (final executable from main.c)

libcalc.a (provide all Mathematical

functions)

Makefile
Input Raw Material :

All .c and .h files

Develop & build Linux System C/C++ libraries - from scratch

➢ Let us suppose we want to create a Library libcalc.a which will be a collection of

all Mathematical functions defined in common_math.c, complex_math.c and trig_math.c

libcalc.a

common_math.o complex_math.o trig_math.o

common_math.c

common_math.h

Libraries are created out

Of object files of source files

complex_math.c

complex_math.h
trig_math.c

trig_math.h

Object files are created out of

Source files and Header files

Makefile Example

Develop & build Linux System C/C++ libraries - from scratch

➢ In Makefile we write rules which have the following syntax as follows :

<What we want to prepare (Final Dish)>:<What are raw materials we need to prepare the final dish>

<Action – Steps to prepare>

Example :

common_math.o:common_math/common_math.c

gcc -c -I common_math common_math/common_math.c -o common_math/common_math.o

Note : -I <path> is used to specify the location of header files

complex_math.o:complex_math/complex_math.c

gcc -c -I complex_math complex_math/complex_math.c -o complex_math/complex_math.o

trig_math.o:trig_math/trig_math.c

gcc -c -I trig_math trig_math/trig_math.c -o trig_math/trig_math.o

So, as per the dependency tree, now we have all the L1 elements ready which are required to prepare libcalc.a

Makefile Example

Develop & build Linux System C/C++ libraries - from scratch

Building libcalc.a

libcalc.a : trig_math/trig_math.o common_math/common_math.o complex_math/complex_math.o

ar rs mylibmath.a common_math/common_math.o complex_math/complex_math.o trig_math/trig_math.o

Congrats , We have now created our library, Next we also want to create an executable because we have main.c

exe : main.o libcalc.a

gcc main.o -o exe -L . libcalc.a -lm

main.o : main.c

gcc -c -I common_math -I complex_math -I trig_math main.c -o main.o

Now , putting it altogether in one single Makefile

exe

main.o libcalc.a libmath.so

Makefile Example

➢ In Makefile we write rules which have the following syntax as follows :

<What we want to prepare (Final Dish)>:<What are raw materials we need to prepare the final dish>

<Action – Steps to prepare>

Final Makefile

Develop & build Linux System C/C++ libraries - from scratch

Execution of Makefile statements do not happen sequentially in the order they are written, statements executes as per the Depth first

Search Algorithm !! So, the order of statement do not really matter in Makefile

If you update any source file, the ancestors of source file in the dependency tree upto root are updated

Assignment On Makefile

Develop & build Linux System C/C++ libraries - from scratch

➢ Download source code :

git clone https://github.com/csepracticals/SPFComputation

➢ This source code is one big project composed of various libraries and many source files

➢ You can find Makefile file in the dir. This is the final solution. Rename it to Makefile2.

➢ We need to write a fresh Makefile again from scratch to build this project, you need not understand any code of this project

➢ Reference Makefile2 for help

➢ After doing this Assignment you will be confident in writing Makefiles

➢ Let me explain you the problem statement in detail

https://github.com/csepracticals/SPFComputation

Programmable Libraries

Develop & build Linux System C/C++ libraries - from scratch

➢ Lets comeback to our Doubly Linked List Library

➢ Now, you should compile all your codes using Makefile throughout your rest of the life

➢ I am assuming you have implemented rest of the functions of DLL library we discussed before in DLL library

➢ Now, our focus once again shifts to DLL code (dll.c/.h)

➢ In this Module, we will learn how to make Library perform Application specific operations while being

generic (application agnostic) at the same time

➢ In other words, we shall make our Library programmable – that is – teach it at run time how to perform application

specific operations

➢ You need to have some idea about function pointers/callbacks to learn this topic

Dir : LibraryDesigning/ProgrammableLib

Programmable Libraries

Develop & build Linux System C/C++ libraries - from scratch

➢ Suppose your application uses a DLL to maintain the records of Students

➢ Now you want details of students whose roll number is 800400

➢ Obviously you will iterate over DLL, and returns the matching result

➢ So you would have written application function such like the one below :

student_t *

search_student_by_rollno(dll_t *student_db,

unsigned int rollno/*search key*/)

➢ Similarly, had you used the DLL to maintain the records of Employees, keyed by Employee id, Search function would be :

employee_t *

search_student_by_rollno(dll_t *student_db,

unsigned int emp_id/*search key*/)

➢ You would have to write as many search functions as many you are using DLL to maintain records of different type

Programmable Libraries

Develop & build Linux System C/C++ libraries - from scratch

➢ This result in a code duplication

➢ The cleaner approach is to delegate the responsibility of searching a particular record by key to Library itself

➢ We need to trach the library how to match the record in a DLL for a given key

➢ We do this through a function written below :

int /*return 0 if matches, return -1 if do not match*/

search_student_db_by_key(void *data, void *key);

int /*return 0 if matches, return -1 if do not match*/

search_employee_db_by_key(void *data, void *key);

➢ Let us discuss the implementation of these two functions

Search by key Callbacks

Develop & build Linux System C/C++ libraries - from scratch

Dir : LibraryDesigning/ProgrammableLib/search_callbacks/

Step 1 : Callback Implementation

int /*return 0 if matches, return -1 if do not match*/

search_student_db_by_key(void *data, void *key);

int /*return 0 if matches, return -1 if do not match*/

search_employee_db_by_key(void *data, void *key);

Note that : Signature of these two functions must be generic – that is should not application specific

Step 2 : Now, Next we will going to define a callback fn pointer in DLL library

typedef struct dll_{

dll_node_t *head;

int (*key_match)(void *, void *); /*Function Pointer Added*/

} dll_t;

Search by key Callbacks

Develop & build Linux System C/C++ libraries - from scratch

Step 3 : Search Callbacks Registration

/*Add a new function to DLL library* and provide its implementation in source file*/

void

register_key_match_callback(dll_t *dll, int (*key_match)(void *, void *));

Step 4 : Add a new generic Search function in Libray. This function can be used to search any application data hold by DLL

void*

dll_search_by_key (dll_t *dll, void *key);

Step 5 : After creating a DLL in application, register the appropriate callback function with DLL

Step 6 : Done !!

➢ We have just taught the DLL Library by registering the key match callback to how to search the application data

hold by the DLL depending on the key

Search by key Callbacks

Develop & build Linux System C/C++ libraries - from scratch

➢ We have just taught the DLL Library by registering the key match callback to how to search the application data

hold by the DLL depending on the key

➢ All Application developer need is to write a key match callback for the data type which will be maintained by DLL library

➢ We have nicely delegated the search operation onto Library

➢ Library performs application specifc operations by invpoking the application specific functions through generic Callbacks

➢ Have we written any application specific code in dll.h/dll.c ? NO

➢ Libraries are suppose to be application agnostic, we have not violated this rule

➢ In Industry, you will find this technique everywhere !!

➢ Let us use the same concept to provide intelligence to our DLL library so that it can insert the data in sorted order using

comparison callback

Comparison Callback

Develop & build Linux System C/C++ libraries - from scratch

➢ A Developer wants, whenever he inserts the data in the DLL, the data should be inserted in sorted order

➢ Of-course, this requirement needs to compare the data being inserted with the data elements already present in the DLL

so as to find the appropriate position in DLL

➢ So, DLL should be intelligent to compare two application specific data being maintained by DLL

➢ We can achieve this using comparison callback, let us do it step by step (Same steps as before) . . .

Dir : LibraryDesigning/ProgrammableLib/comparison_callbacks

Step 1 : Callback Implementation

/* Return 0 if equal,

* -1 if stud1 < stud2

* 1 if stud1 > stud2*/

static int

student_comparison_fn(void *stud1, void *stud2); < Note that, function signature is generic

Comparison Callback

Develop & build Linux System C/C++ libraries - from scratch

Step 2 : Now, Next we will going to define a callback fn pointer in DLL library

typedef struct dll_{

dll_node_t *head;

int (*key_match)(void *, void *);

int (*comparison_fn)(void *, void *); /*Function Pointer Added*/

} dll_t;

Step 3 : Comparison Callbacks Registration

/*Add a new function to DLL library* and provide its implementation in source file*/

void

register_comparison_callback(dll_t *dll, int (*comparison_cb)(void *, void *));

Step 4 : Add a new generic insert function in Library. This function can be insert the new appln data in DLL in a sorted order

int /*0 on success, -1 on failure*/

dll_priority_insert_data (dll_t *dll, void *data);

Comparison Callback

Develop & build Linux System C/C++ libraries - from scratch

Step 5 : After creating a DLL in application, register the appropriate comparison callback function with DLL using

register_comparison_callback() API

Step 6 : Done !!

Now, insert the elements in the DLL using dll_priority_insert_data and verify the output.

DLL Must insert the data into DLL as per the comparison function

Programmable Libraries ->

Summary

Develop & build Linux System C/C++ libraries - from scratch

➢ We can always Program our libraries using Callbacks to how to

1. Search based on key

2. Compare two data elements

➢ Application Developer need to specify key_match and Comparison_fn and register with Library

➢ Library uses registered application specific Callbacks to perform application specific operations on its data

➢ Library code stays generic and application agnostic all the time

Application Library

register_key_match_callback ()

register_comparison_callback()

Iterative Macros

Develop & build Linux System C/C++ libraries - from scratch

➢ To iterate data structures such as Linked lists, Trees etc we need to write Iterative macros

➢ We need to iterate over common data structures in our application many times

➢ Iterative macros makes Iteration over these DS very easy and handy

Iterating over a Linked List

Using traditional approach

dll_node_t *current = dll->head;

while (current){

/*process current node*/

current = current->next;

}

dll_node_t *current = NULL;

ITERATE_LIST_BEGIN (listptr, current) {

/*process current node */

} ITERATE_LIST_END (listptr, current) ;

Iterating over a Linked List

Using a Macro

• More readable

• No error prone

• Handy and easy

• Soon, with complex DS such as tree or graph, you cannot

survive without writing Iterative macroscurrent = head

for loop semantics

Develop & build Linux System C/C++ libraries - from scratch

➢ Let us revise the syntax of the for loop

for (Initialization ; Condition ; next iteration) {

Body;

}

1 2

3
4

5

➢ We will write our Iterative macros over the for loops

Writing an Iterative Macro for a List

Develop & build Linux System C/C++ libraries - from scratch

#define ITERATE_LIST_BEGIN(list_ptr, node_ptr) \

{ \

dll_node_t *_node_ptr = NULL; \

node_ptr = list_ptr->head; \

for(; node_ptr != NULL ; node_ptr = _node_ptr){ \

if(!node_ptr) break; \

_node_ptr = node_ptr->right;

#define ITERATE_LIST_END }}

Code : LibraryDesigning/IterativeMacros/dll.h

 If you apply text substation carefully, you will see that this Iterative macro expands into mere for loop in source file

to iterate over our DLL. Do this as an exercise.

Also, note that, it is delete safe loop !

The highlighted line is responsible to make this loop delete safe.

This is used to balance the parentheses

Writing an Iterative Macro for a BST

Develop & build Linux System C/C++ libraries - from scratch

Let us take one more example of how to iterate (Inorder traversal) over a BST using iterative macro. This will make you

realize that how powerful and necessary is writing iterative macros while walking over data structures

➢ First, you should know the algorithm to iterate over a BST in inorder sequence.

➢ Assume, each node of the Tree has a pointer to its parent

➢ Because of above assumption, there is no need (and you are not suppose to) to write any recursive function

➢ Recursive logic performs very poorly as compared to equivalent iterative logic

typedef struct tree_node {

struct tree_node *left;

struct tree_node *right;

struct tree_node *parent;

int data;

} tree_node_t;

➢ I expect you that you at-least know already how to insert a node in a BST

➢ Now, we need to do some homework before we could write an iterative macro

typedef struct tree {

tree_node_t *root;

} tree_t;

Writing an Iterative Macro for a BST

Develop & build Linux System C/C++ libraries - from scratch

10

5

1
8

7

20

50

30

Goal : Given a BST, Write a macro to iterate in in-order

sequence over all nodes Of a BST

Constraints :

• You are not allowed to write any recursive logic

• You should be able to start Iteration from any starting node

• Every node in a BST also has pointer to its parent

• We need to implement below macro

tree_node_t *treenodeptr = NULL;

ITERATE_BST_BEGIN(tree, treenodeptr) {

do_something(treenodeptr->data);

} ITERATE_BST_END;

Want to Try before we discuss the approach ??

Develop & build Linux System C/C++ libraries - from scratch

We Need to Write two pre-requisite functions :

tree_node_t *

get_left_most (tree_node_t *node);

tree_node_t *

get_next_inorder_succ (tree_node_t *node);

➢ Again, it is my expectation that you know how to implement above two functions

➢ This is not a Data structure Course ! I am sorry ! 

➢ Henceforth, I assume, you have correctly implemented above two functions

➢ Code : LibraryDesigning/IterativeMacros/tree.c & tree.h

10

5

1
8

7

20

50

30

1 5 7 8 10 20 30 50

Writing an Iterative Macro for a BST

Inorder ->

Develop & build Linux System C/C++ libraries - from scratch

Iterative macro for BST:

#define ITERATE_BST_BEGIN(treeptr, currentnodeptr) \

{ \

tree_node_t *_next = NULL; \

for (currentnodeptr = get_left_most (treeptr->root); currentnodeptr ; \

currentnodeptr = _next){ \

_next = get_next_inorder_succ(currentnodeptr);

#define ITERATE_BST_END }}

Usage :

tree_node_t *treenodeptr = NULL;

ITERATE_BST_BEGIN(tree, treenodeptr) {

do_something(treenodeptr->data);

} ITERATE_BST_END;

10

5

1
8

7

20

50

30

You can use usual continue & break !

Writing an Iterative Macro for a BST

Summary

Develop & build Linux System C/C++ libraries - from scratch

➢ Iterative macros makes it easy and handy to iterate over data structures

➢ With complex data structures, Iterative macros becomes a necessity

➢ Iterative macros are a wrapper over for/while loops

➢ You must ensure that all parenthesis are balanced for iterative macros, else compiler error

➢ Apply text substitution to see, what C code Iterative macros translates to in Source files

➢ In C++/Java, equivalent is class iterators

➢ In Industry, you will see Iterative macros all over the code base. You are not allowed to iterate over Data-structures

using traditional ways

➢ Your Library must provide delete-safe Iterative macros

➢ Exercises !!

Coding Exercises

Develop & build Linux System C/C++ libraries - from scratch

➢ Write an Iterative macros to Iterate for Heap memory

➢ Write an Iterative macros to iterate over TLVs

Develop & build Linux System C/C++ libraries - from scratch

The Glue Way

of Organizing

Data structures !

Glue Concept

Develop & build Linux System C/C++ libraries - from scratch

➢ Let me introduce you to a new way of using Standard Data structures – the Glue way

➢ We shall redefine our DLL library in a new way altogether

➢ You will realize the benefits of using Glued Libraries over Traditional Library

➢ Just FYI, Linux kernel code uses GLUEd version of standard data structures such as Trees, Linked List etc

➢ Even in industry, it is easier to find glue libraries being used instead of traditional libraries

➢ Let us call our GLUEd Doubly linked list as glthreads – Just a name change, it is still a doubly linked list

➢ The GLUE concept that you will learn with DLL as an example are applicable to any other Data structures

➢ Code : https://github.com/csepracticals/DevelopLibrary/glthreads

files : glthread.h , glthread.c

https://github.com/csepracticals/DevelopLibrary

Glthreads – Glued Doubly Linked List

Develop & build Linux System C/C++ libraries - from scratch

typedef struct dll_node_ {

void *data;

struct dll_node_ *left;

struct dll_node_ *right;

} dll_node_t;

tyepdef struct dll_ {

dll_node_t *head;

int (*key_match)(void *, void *);

int (*comparison_fn)(void *, void *);

} dll_t;

Traditional DLL

typedef struct glthread_node_ {

struct glthread_node_ *left;

struct glthread_node_ *right;

} glthread_node_t;

typedef struct gldll_

glthread_node_t *head;

int (*key_match)(void *, void *);

int (*comparison_fn)(void *, void *);

unsigned int offset;

} gldll_t;

Glthreads DLL

➢ Glthread nodes do not have void *data member

➢ Then how do glthreads hold the application data ?

➢ Before Jumping into this point, let us learn some more C

➢ Looks like you are very Curious to know now !!

Pictorial difference :

Glthreads Vs Traditional DLL

Develop & build Linux System C/C++ libraries - from scratch

App data

N

App data App data

N

App data App data App data

Traditional DLL

Glued DLL

(Think of it like an application data has some

Sticky gum using which it can stick itself to

any linked list)

struct app_data_ {

. . .

. . .

. . .

<node of Glthread> → Glue

}

Offset manipulation in C structures

Develop & build Linux System C/C++ libraries - from scratch

Q. Write a C macro which computes the offset of a given field in a given C structure ?

For example :

Fields Size offset

name 30 0

salary 4 30

designation 30 34

emp_id 4 64

#define offsetof(struct_name, field_name) \

(unsigned int)&((struct_name *)0)->field_name

<name> <salary> <designation> <emp_id>
typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

} emp_t ;

Memory foot print of object

Offset manipulation in C structures

Develop & build Linux System C/C++ libraries - from scratch

Q. Print the Employee details.

emp_t *emp = <pointer to emp_t object>

print_emp_details (&emp->glnode);

void print_emp_details(glthread_node_t *glnode){

/* print employee details */

}

Hint :

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_node_t glnode;

} emp_t ;

<name> <salary> <designation> <emp_id> <glnode>

Memory Layout of the object of type emp_t

This is What you have !This is What you need !

Offset manipulation in C structures

Develop & build Linux System C/C++ libraries - from scratch

Q. Print the Employee details. You are given the pointer to glthread member of the object of type emp_t;

emp_t *emp = <pointer to emp_t object>

print_emp_details (&emp->glthread);

void print_emp_details(glthread_t *glthread){

/* print employee details */

emp_t *emp = (emp_t *)((char *)glthread –

offsetof(emp_t, glthread));

printf(“emp_name = %s\n”, emp->name);

printf(“emp_salary = %u\n”, emp->salary);

printf(“emp_des = %s\n”, emp->designation);

printf(“emp_id = %u\n”, emp->emp_id);

}

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_t glthread;

} emp_t ;

Cool !!

This is the backbone of our Glue Linked List - glthreads

Develop & build Linux System C/C++ libraries - from scratch

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_node_t glnode;

} emp_t ;

Notice that, to add an object to glthread DLL , glthread node

itself has to be a member of structure

It means, While designing the application, Developer knew beforehand

that he would going to glue (add) the object of emp_t type to glthread DLL

Glthreads – Node insertion

Develop & build Linux System C/C++ libraries - from scratch

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_node_t glnode;

} emp_t ;

Glthreads – Node insertion

/*An API to insert a new glthread node after the current node*/

void

glthread_add (glthread_t *lst, glthread_node_t *new);

/* Code to insert elements in glthread DLL*/

/*The first node is the head of glthread DLL*/
emp_t *emp1 = <pointer to Object of type emp_t>

glthread_add (lst, &emp1->glnode);

emp_t *emp2 = <pointer to Object of type emp_t>

glthread_add (lst, &emp2->glnode);

emp_t *emp3 = <pointer to Object of type emp_t>

glthread_add (lst, &emp3->glnode);

Arun

Mgr

61

N

31000

Abhishek

Dev

62

51000

Neha

Team Ld

71

30000

N

Memory Layout of Objects

Hold by the glthread DLL

Develop & build Linux System C/C++ libraries - from scratch

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_node_t glnode;

} emp_t ;

Glthreads – Iteration

Arun

Mgr

61

31000

Abhishek

Dev

62

51000

Neha

Team Ld

71

30000

N

Memory Layout of Objects

Hold by the glthread DLL

Iterating over glthread DLL

void print_emp_db (glthread_node_t *head) {

emp_t *data = NULL;

if(!head) return;

while(head){

data = (emp_t *)((char *)head - offsetof(emp_t, glnode));

printf_emp_details(data);

head = head->right;

}

}

Develop & build Linux System C/C++ libraries - from scratch

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_node_t glnode;

} emp_t ;

Glthreads – Node Removal

Removing a Node from DLL

void glthread_remove(glthread_node_t *glnode) {

/*Simply remove like you delete a middle node

from traditional DLL

TC : O(1)

*/

}

Develop & build Linux System C/C++ libraries - from scratch

Glthreads – Code Walk

➢ Code : https://github.com/csepracticals/DevelopLibrary/glthreads

files : glthread.h , glthread.c, main.c, Makefile

https://github.com/csepracticals/DevelopLibrary

Develop & build Linux System C/C++ libraries - from scratch

Glthreads – Benefits

➢ Why we have twisted things a little if we are accomplishing the same end goals before by traditional DLL ?

➢ Let us discuss the benefits of glthread DLL over traditional DLL

➢ Let us see the problem with traditional DLL. This problem applies to traditional Trees, Queues etc

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

} emp_t ;

empt_t *empx = <pointer to emp_t object>

Your application is maintaining three DLL :

1. L1 : DLL to maintain the records of employees

2. L2 : DLL to maintain records of employees above Mgr level

3. L3 : DLL to maintain the records of employees whose promotions are due

Let us suppose, our favorite employee empx qualifies all three criteria,

therefore empx record need to be inserted into all three DLLs

Develop & build Linux System C/C++ libraries - from scratch

Glthreads – Benefits Arun

VP

61

31000

L1 L2

L3

➢ Now suppose, Arun leaves the company, and you need to remove his record from all Lists

➢ So, Iterate over all Lists one by one , find the record matching with Arun, and un-reference it from all Lists

➢ Finally free(empx)

empx

Time Complexity for Deletion:

3 * O(n)

Multi-reference scenarios – Traditional DLL case

To add a data empx to three Lists,

3 malloc’s are required

Develop & build Linux System C/C++ libraries - from scratch

Glthreads – Benefits Arun

VP

61

31000

L1 L2

L3

➢ Now suppose, Arun leaves the company, and you need to remove his record from all Lists

➢ So, Iterate over List L1 (or any one), find the record matching with Arun, and un-reference it from L1

➢ Now you have pointer to empx object

empx

Time Complexity for Deletion:

O(n) + O(1) + O(1)

Multi-reference scenarios – glthread DLL case

glthread_remove(l2, &empx->n2);

glthread_remove(l3, &empx->n3);

free(empx);

To add a data empx to three Lists,

0 malloc’s are required

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_node_t n1;

glthread_node_t n2;

glthread_node_t n3;

} emp_t ;

Develop & build Linux System C/C++ libraries - from scratch

Glthreads – Glued Doubly Linked List

➢ Changes to Callbacks registered with glthread DLL

➢ Registration of key_match_fn (finding the particular data element based on key)

➢ Registration of comparison_fn (Inserting the particular data element in sorted order)

➢ We need to tell the library the offset so that library would know how to get pointer to application data

from glthread embedded node (glue)

tyepdef struct glthread_ {

gl_thread_node_t head;

int (*key_match)(void *, void *);

int (*comparison_fn)(void *, void

*);

unsigned int offset;

} glthread_t;

glthread_t *

get_new_gldll (unsigned int offset){

glthread_t * glthread = calloc . . .

glthread->offset = offset;

}

glthread_t *emp_list =

get_new_gldll (offsetof(emp_t, glue));

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_node_t glue;

} emp_t ;

Develop & build Linux System C/C++ libraries - from scratch

Glthreads – Glued Doubly Linked List

➢ Changes to Callbacks registered with glthread DLL

➢ Write a macro in glthread.h which helps to get pointer to application data from embedded glue glthread node

#define GET_APP_DATA(glthreadnodeptr, offset) \

((char *) glthreadnodeptr - offset)

typedef struct emp_ {

char name[30];

unsigned int salary;

char designation[30];

unsigned int emp_id;

glthread_node_t glue;

} emp_t ;

<name> <salary> <designation> <emp_id> <glue>

offset

glthreadnodeptrAppln data ptr

Develop & build Linux System C/C++ libraries - from scratch

Glthreads – Glued Doubly Linked List

➢ Changes to Callbacks registered with glthread DLL

➢ key_match_fn

/*Generic Search function*/

void *

gldll_search_by_key (gldll_t *gldll, void *key){

if(!gldll || !gldll->head) return NULL;

gldll_node_t *head = gldll->head;

unsigned int offset = gldll->offset;

while(head){

if (gldll->key_match (GL_APP_DATA(head, offset) , key) == 0)

return (void *)(GL_APP_DATA(head, offset));

head = head->right;

}

return NULL;

}

Glthread DLL

/*Generic Search function*/

void *

dll_search_by_key (dll_t *dll, void *key){

if(!dll || !dll->head) return NULL;

dll_node_t *head = dll->head;

while(head){

if(dll->key_match (head->data , key) == 0)

return (void *)head->data;

head = head->right;

}

return NULL;

}

Traditional DLL
No change in application specific

Key match function !

Same

logic

Develop & build Linux System C/C++ libraries - from scratch

Glthreads – Glued Doubly Linked List

➢ Changes to Callbacks registered with glthread DLL

➢ Comparison function

< Show code changes in Diff editor >

➢ No Change in application specific comparison function either, we only care to feed the argument to comparison

function correctly in gldll.c file

➢ This bottom line is : We need to use the offset to get the application specific data pointer

from embedded glue glthread node

➢ In case of traditional Library, application data pointer was readily available using dll_node_t->data;

Opaque Pointers

Opaque Pointers

➢ Opaque Pointers are very extensively used in the industry

➢ Opaque pointers are a way to isolate one code with another , while at the same time, ensure seamless integration

between them

➢ In OOPs Terminology , A class with all its instance variables private is an Opaque Class

class LinkedListNode {

private int data;

private LinkedListNode left;

private LinkedListNode right;

};

LinkedListnode L1 = new LinkedListNode();

➢ L1 is an Opaque Object

➢ How to define opaque pointers in C ?

➢ What’s the use ?

➢ Let’s explore …

Opaque Pointers -> Defining Opaque Pointers

linkedlist.h

typedef struct ll_node_ {

int data;

struct ll_node_ *left;

struct ll_node_ *right;

} ll_node_t;

/*public APIs*/

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node);

linkedlist.c

#include <linkedlist.h>

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node){

if (!current_node->right){

current_node->right = new_node;

new_node->left = current_node;

return;

}

glthread_t *temp = current_node->right;

current_node->right = new_node;

new_node->left = current_node;

new_node->right = temp;

temp->left = new_node;

}

application.c

#include <linkedlist.h>

int

Main(){

ll_node_t *node1 = malloc …

/*You can access */

node1->data;

node1->left;

node1->right;

}

Opaque Pointers -> Defining Opaque Pointers

linkedlist.c

#include <linkedlist.h>

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node){

if (!current_node->right){

current_node->right = new_node;

new_node->left = current_node;

return;

}

glthread_t *temp = current_node->right;

current_node->right = new_node;

new_node->left = current_node;

new_node->right = temp;

temp->left = new_node;

}

application.c

#include <linkedlist.h>

int

Main(){

What if somebody tries to re-

invent the wheel, and try to

Write his own node insertion

code in his application, which

is buggy !!

He was able to introduce a bug

because he was spoiled child,

Had privileges to all wealth

(node’s members) and he

exploited them because he

didn’t know how to use wealth

wisely

}

linkedlist.h

typedef struct ll_node_ {

int data;

struct ll_node_ *left;

struct ll_node_ *right;

} ll_node_t;

/*public APIs*/

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node);

Opaque Pointers -> Defining Opaque Pointers

linkedlist.c

#include <linkedlist.h>

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node){

if (!current_node->right){

current_node->right = new_node;

new_node->left = current_node;

return;

}

glthread_t *temp = current_node->right;

current_node->right = new_node;

new_node->left = current_node;

new_node->right = temp;

temp->left = new_node;

}

application.c

#include <linkedlist.h>

int

Main(){

To prevent this problem, if we

take away access of all wealth

from spoiled brad, he can’t

misuse the wealth, even if he

wants to !

If we restrict the access the

node’s member’s in this file,

nobody shall be able to write

any new code which requires

access to node’s internal

members

}

linkedlist.h

typedef struct ll_node_ {

int data;

struct ll_node_ *left;

struct ll_node_ *right;

} ll_node_t;

/*public APIs*/

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node);

Opaque Pointers -> Defining Opaque Pointers

linkedlist.c

#include <linkedlist.h>

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node){

if (!current_node->right){

current_node->right = new_node;

new_node->left = current_node;

return;

}

glthread_t *temp = current_node->right;

current_node->right = new_node;

new_node->left = current_node;

new_node->right = temp;

temp->left = new_node;

}

application.c

#include <linkedlist.h>

int

Main(){

node1->data ; /*Compilation error*/

node->left; /*Compilation error*/

node1->right; /*Compilation error*/

sizeof (node_t); /*Compilation error*/

linklist_insertion (node1, node2); ✓

}

Goal : But how to achieve it !

linkedlist.h

typedef struct ll_node_ {

int data;

struct ll_node_ *left;

struct ll_node_ *right;

} ll_node_t;

/*public APIs*/

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node);

Opaque Pointers -> Defining Opaque Pointers

➢ To define the structure (ll_node_t) as opaque to external world (application.c), define the structure definition in library’s

source files rather than header files

➢ The intent is not to expose the structure definition to outside world, so outside world would never know its internal

members details

Opaque Pointers -> Defining Opaque Pointers

linkedlist.h

typedef

struct ll_node_ ll_node_t;

/*public APIs*/

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node);

ll_node_t *

malloc_new_node();

linkedlist.c

#include <linkedlist.h>

typedef struct ll_node_ {

int data;

struct ll_node_ *left;

struct ll_node_ *right;

};

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node){

…

}

ll_node_t *

malloc_new_node(){

return malloc(sizeof(ll_node_t));

}

application.c

#include <linkedlist.h>

int

Main(){

ll_node_t *node =

malloc_new_node();

ll_node_t *node2 =

malloc_new_node();

linklist_insertion (node1, node2);

}

Compiler never sees the internal member

Of ll_node_t , Hence direct access to any

Internal member of ll_node_t is prevented.

Opaque Pointers -> Defining Opaque Pointers

application.c

#include <linkedlist.h>

int

Main(){

ll_node_t *node =

malloc_new_node();

ll_node_t *node2 =

malloc_new_node();

linklist_insertion (node1, node2);

}

linkedlist.h

typedef

struct ll_node_ ll_node_t;

/*public APIs*/

void

linkedlist_insertion (

ll_node_t *current_node,

ll_node_t *new_node);

ll_node_t *

malloc_new_node();

• Simple ! Stick to basics to know why

Opaque pointers work

• Apply text substitution On application.c

• Compiler never sees the definition of

ll_node_t

• Hence, compiler nevers knew what

Members are there in ll_node_t

• Neither compiler knows the

sizeof (ll_node_t)

Opaque Pointers -> Benefits

➢ The production Code base is huge, millions of lines of code across thousands of files and hundreds of libraries in use and

tens of teams working on them independently

➢ Opaque Pointers ensure Code Isolation across component while seamless integration

➢ Opaque library is like a black box to external world, application owners can use it through exposed public APIs but must

not bother about its internal design and implementation

➢ If public exposed API gives wrong result in application.c , application developer can say – there is something wrong with

library code and blame the team owning the library maintenance/development work ☺

➢ Library owning team can enhance the library functionality independent of applications using the library public APIs as long

as public APIs in-and-out is not impacted.

➢ Opaque pointers ensure that you are the mere user of Library

➢ They way you write a code shows your maturity/experience as a programmer !

BIT Manipulation

➢ Most programming language provide developer to manipulate memory at the finest granularity level of 1 Byte

(char data type)

➢ In C/C++/Java etc , you cannot have a data type smaller than 1B

➢ Meaning, your program cannot manipulate memory less than 1 Byte using primitive/inbuilt data types

➢ But some problem statement requires to manipulate memory at a bit level

➢ A Bit is 0 or 1

➢ We use Logical operators to manipulate memory at a bit level

➢ Use case and relevance :

➢ Boolean is used to say yes or no

➢ Size of Boolean is 4B on most compilers

➢ Why not just use a bit to track Boolean status since bit also have two states – yes or no

➢ Bit manipulation makes tracking of a set of Booleans very easy

➢ Very important from interview perspective

➢ We will do some interview questions as an exercise on bit manipulation

➢ Pre-requisite : Memorize basics of Boolean algebra (And , OR and NOT Operators)

BIT Manipulation → Inbuilt BitWise Operators

➢ AND Operator : &

a & b

➢ Or Operator : |

a | b

➢ Complement Operator : ~

~a

➢ XOR Operator

a ^ b

➢ Shift Operators

>> Right shift (divide by 2)

a = a >> n

<< Left shift (Multiply by 2)

a = a << n

➢ Every data type is stored in computer memory in bits

uint16_t A = 1234;

0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

MSB LSB

Homework :

= = = = = = = =

➢ Pls browse internet and learn about these operators if you

are not familiar

➢ We shall be going to learn some advanced learning in this course

➢ Write a Truth table for C = a XOR b

BIT Manipulation → XOR specialty

➢ XOR has a supernatural power to segregate the mixture of two things :

- like separating milk from water

- Separating dissolved sugar from water

R = A xor B

R xor A = B

R xor B = A

struct list_node {

int data;

struct list_node *next;

} ;

< Implement a doubly linked list using this struct list_node structure !

1 2 3 4

➢ You need to cache the address of

Prev node in local variable to compute

address of next node during traversals

(In either direction)A B C D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

MSB LSB

1 << 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

MSB LSB

1 << 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

MSB LSB

1 << 2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

MSB LSB

1 << 3

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

MSB LSB
1 << 8

Attributes of a Student :

1. Is Student a native citizen ?

#define STUD_NATIVE_CITIZEN_F (1 << 0)

2. Is student male ?

#define STUD_MALE_F

3. Is student graduate ?

#define STUD_GRAD_F

4. Is Student Post-graduate ?

#define STUD_POST_GRAD_F

5. Has student avail any prev

scholarship ?

#define STUD_PREV_SCHOL_F (1 << 4)

6. Is Student born after 1 Jan 2020 ?

#define STUD_BIRTH_F

7. Does Student posses dual citizen ship ?

#define STUD_DUAL_CZN_F

uint16_t A = 1;

A = 2;

A = 4;

A = 8;

A = 256;

BIT Manipulation → Using Bits as Boolean Flags

BIT Manipulation → Using Bits as Boolean Flags

Attributes of a Student :

1. Is Student a native citizen ?

#define STUD_NATIVE_CITIZEN_F (1 << 0)

2. Is student male ?

#define STUD_MALE_F (1 << 1)

3. Is student graduate ?

#define STUD_GRAD_F (1 << 2)

4. Is Student Post-graduate ?

#define STUD_POST_GRAD_F (1 << 3)

5. Has student avail any prev

scholarship ?

#define STUD_PREV_SCHOL_F (1 << 4)

6. Is Student born after 1 Jan 2020 ?

#define STUD_BIRTH_F (1 << 5)

7. Does Student posses dual citizen ship ?

#define STUD_DUAL_CZN_F (1 << 6)

uint16_t alex_f ;

. . .

Alex is Native USA Citizen.

alex_f = alex_f | STUD_NATIVE_CITIZEN_F ;

Alex is Male

alex_f |= STUD_MALE_F;

Alex has dual Membership

alex_f |= STUD_DUAL_CZN;

Alex is not post-graduate

alex_f &= ~STUD_POST_GRAD_F

#define SET_BIT(n, BIT_F) \

(n |= BIT_F)

#define UNSET_BIT(n, BIT_F) \

(n &= ~BIT_F)

#define IS_BIT_SET(n, BIT_F) \

(n & BIT_F)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

#define TOGGLE_BIT(n, BIT_F) \

<provide definition>

#define COMPLEMENT16(n) \

(n ^ 0xFFFF) OR (~n)

1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0

uint16_t n = 0xFFFF; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BIT Manipulation → Using Bits as Boolean Flags

BIT Manipulation → Using Enums as bit Flags

Sometimes, it make sense sometimes to define enums in power of 2 so that :

• We can use enums like constants

• We can use enums like BITs

typedef enum col_ {

RED = 1 << 0,

GREEN = 1 << 1,

BLACK = 1 << 2,

BLUE = 1 << 3,

COL_MAX = 1 << 4

} COL;

uint8_t col_av = 0;

col_av |= RED;

col_av |= BLUE;

if (col_av & RED) {

printf (“RED color Available”);

}

else if (col_av & BLUE) {

printf (“BLUE color Available”);

}

• Disadvantage : it shall be memory inefficient to use enums as index of arrays

COL col_available[COL_MAX];

BIT Manipulation → Bit pattern matching

Input Binary String Base Bit Pattern Result

1101 1XX1 match

1110 1XX1 no match

1101 1XX1 match

1011 1XX1 match

0101 1XX1 no match

X – don’t care bit

Real world use case :

Block all traffic with Dest IP Address : 100.100.X.X

m-trie - A data structure based on bit pattern matching, used to implement ACLs in Firewalls

BIT Manipulation → Bit pattern matching

Input Binary String Base Bit Pattern Result

1101 1XX1 match

1110 1XX1 no-match

X – don’t care bit

Template :

1001

Mask :

1001

• Replace all bits to be matched by 1

• Represent all X by 0

• Represent all X by 0

0000 10xx 10xx xxx0

Mask:

1111 1100 1100 0001
template:

0000 1000 1000 0000

if (Input & Mask == Template)

match

else

no match

Ex 2 :

Input String : 0000 1011 1010 1100 (match)

Input String : 0010 1011 1101 1100 (no match)

BIT Manipulation → Bit Maps

BitMap – Array of Bits

➢ Person comes with a theatre tkt having seat no 13 (between 1 to 28 inclusive)

➢ Mark the corresponding seat no as reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31

Memory is always allocated in units of bytes, and not bits !

So, you need to create wrapper APIs which work on Byte-Addressable memory but able to perform operation at bit level

Not used

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31

malloc(4)

Memory which is allocated to our program

Memory snapshot which our program suppose to see (Illusion)

snapshot

1

snapshot

2

BIT Manipulation → Bit Maps

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31

Q. How to create bit arrays of size n bits ?

typedef struct bitmap_ {

char *bit_arr;

int arr_size;

} bitmap_t;

int N_bytes = n / 8 + (n % 8) ? 1 : 0;

Bitmap_t*bitmap = (bitmap_t *)calloc (1, sizeof(bitmap_t));

bitmap->bit_arr = (char *) calloc(N_bytes, sizeof(char));

bitmap->arr_size = n;

Ex : if n = 45

Create a char array by mallocing 6 Bytes

But access bits only in index range : [0, 44]

BIT Manipulation → Bit Maps → Implementation

Q. Write a bitmap library :

bitmap.c/.h

APIs :

bitmap_t * bitmap_create (int n_bits);

void bitmap_print (bitmap_t *bitmap);

void bitmap_set_bit (bitmap_t *bitmap, int index);

void bitmap_unset_bit (bitmap_t *bitmap, int index);

bool bitmap_is_bit_set (bitmap_t *bitmap, int index);

void bitmap_clear (bitmap_t *bitmap); /* Write efficient code */

void bitmap_set_all (bitmap_t *bitmap); /* Write efficient code */

void bitmap_free (bitmap_t *bitmap);

typedef struct bitmap_ {

char *bit_arr;

int arr_size;

} bitmap_t;

1 0 0 1 0 0 1 0

0 1 2 3 4 5 6 7

BIT Manipulation → Bit Maps

BitMap – Array of Bits

Q. Write a bitmap library :

bitmap.c/.h

typedef struct bitmap_ {

char *bit_arr;

int arr_size;

} bitmap_t;

#define SET_BIT(n, r) (n = n | r)

void

bitmap_set_bit(bitmap_t *bitmap, int index) {

assert (index >= 0 && index < bitmap->arr_size);

int byte_no = index / 8;

uint8_t bit_no = 7 - (index % 8);

uint8_t temp = 1 << bit_no;

SET_BIT (*(bitmap->bit_arr + byte_no) , temp);

}

0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Home-Work : Understand bloom filter Data Structure

The Concept of TLVs

Type Length Value

The Concept of TLVs

• TLV – Type Length Value

• Let us first try to understand the problem which TLV solves, and then we shall discuss What TLVs are and how they are used

• It is a very common scenario in Networking that Machines often exchange messages with each other. Many Internet routing

protocols necessitate Machines to exchange various messages with each other periodically.

• For example, If you remember, Interior Gateway protocols such as OSPF exchange their Link state packets with other routers

in the network for their proper functioning.

• To understand the problem, Let’s say Machines A, B and C are

exchanging the following msg with other as a part of hypothetical

functionality P

struct xmsg{

uint loopbck_ip;

char router_name[32];

uint if_addr1;

uint if_addr2;

uint link1_bw;

uint link2_bw;

}

A
B

lo:1 100.100.1.3/32

C

lo:1 100.100.1.1/32 lo:1 100.100.1.2/32

12.1.1.1/24 12.1.1.2/24

The Concept of TLVs

struct xmsg{

uint loopbck_ip;

char router_name[32];

uint if_addr1;

uint if_addr2;

uint link1_bw;

uint link2_bw;

}

A
B

lo:1 100.100.1.3/32

C

lo:1 100.100.1.1/32 lo:1 100.100.1.2/32

12.1.1.1/24 12.1.1.2/24

struct xmsg{

100.100.1.1

A

10.1.1.1

12.1.1.1

100

200

}

struct xmsg{

100.100.1.2

B

11.1.1.1

12.1.1.2

110

220

}

struct xmsg{

100.100.1.3

C

10.1.1.2

11.1.1.2

90

190

}

A B C

The Concept of TLVs

struct xmsg{

uint loopbck_ip;

char router_name[32];

uint if_addr1;

uint if_addr2;

uint link1_bw;

uint link2_bw;

}

A
B

lo:1 100.100.1.3/32

C

lo:1 100.100.1.1/32 lo:1 100.100.1.2/32

12.1.1.1/24 12.1.1.2/24

• So, When machine B/C when receive this msg from machine A over the network, B/C can simply read the msg as

as usual :

struct xmsg *recv_msg = (struct xmsg *)buffer;

recv_msg->uint_loopback_ip;

recv_msg->router_name;

recv_msg->if_addr1;

recv_msg->if_addr2;

recv_msg->link1_bw;

recv_msg->link2_bw;

So ?? What’s the problem ?

The Concept of TLVs

• The problem in such exchange of messages arises due to heterogeneity of communicating machines

• Heterogeneity reasons could be mannnyyy ….

• Different manufacturing vendors

• Using different Hardware and Technologies

• Using Different C compilers

• And so on . . .

• We cannot ask all the vendors around the world to

manufacture their network equipment's using

Identical technologies and hardware !

The Concept of TLVs

• So let us try to understand the technical glitches that

arises due to heterogeneity of the communicating

machines in the network

We will discuss two scenarios :

• When machines are distinct and incompatible

• When selective machines in the network are upgraded

The Concept of TLVs

Ok, before going forward , let us revise our C knowledge a bit …

struct xmsg{

uint loopbck_ip;

char router_name[32];

uint if_addr1;

uint if_addr2;

uint link1_bw;

uint link2_bw;

}

Fields Size offset

loopbck_ip 4 0

router_name 32 4

if_addr1 4 36

if_addr2 4 40

link1_bw 4 44

link2_bw 4 48
loopbck_ip

router_name

if_addr1

if_addr2

link1_bw

link2_bw

On a 32 bit system

Struct xmsg *ptr;

ptr->if_addr2 -- reading/writing 4 bytes @40th byte from starting address

The Concept of TLVs

• Ok, now let us see the real problem

• Let us Say Machine A is a 32 bit machine, and machine

B is a 64 bit machine.

• It means, sizeof(uint) on A is 4 bytes,

whereas it is 8 bytes on B

• Now, let see the xmsg layout

on wire when they are

generated by machine

A and B respectively.

A
B

lo:1 100.100.1.3/32

C

lo:1 100.100.1.1/32 lo:1 100.100.1.2/32

12.1.1.1/24 12.1.1.2/24

100.100.1.1 A 10.1.1.1 12.1.1.1 100 200
4 32 4 4 4 4

100.100.1.2 B 11.1.1.1 12.1.1.2 110 220
8 32 8 8 8 8

A

B

32 bit 64 bit

struct xmsg{

uint loopbck_ip;

char router_name[32];

uint if_addr1;

uint if_addr2;

uint link1_bw;

uint link2_bw;

}

The Concept of TLVs

100.100.1.1 A 10.1.1.1 12.1.1.1 100 200
4 32 4 4 4 4

100.100.1.2 B 11.1.1.1 12.1.1.2 110 220
8 32 8 8 8 8

A

B

When A receives xmsg from B, A will typecast the msg according to its belief of definition of xmsg:

• So, When machine A receive the xmsg from machine B over the network, A will type cast the msg according to its own

definition of struct xmsg :

struct xmsg *recv_msg = (struct xmsg *)buffer;

recv_msg->uint_loopback_ip; /*Instead of reading 8 bytes, A will read only 4 bytes*/

recv_msg->router_name; /*From B’s perspective, it is 8th byte from start of msg, from A’s perspective it is 4th byte from start of msg*/

recv_msg->if_addr1;

recv_msg->if_addr2;

recv_msg->link1_bw;

recv_msg->link2_bw;

So, A ends up in reading a Garbage, leading to Data corruption on A. It happened because size of Data types on B is different from that of A.

struct xmsg{

uint loopbck_ip;

char

router_name[32];

uint if_addr1;

uint if_addr2;

uint link1_bw;

uint link2_bw;

}

The Concept of TLVs

• Lets see the same problem due to other reason.

• Let us Say Machine A’s software is upgraded such that

it introduces a new member in the structure.

A
B

lo:1 100.100.1.3/32

C

lo:1 100.100.1.1/32 lo:1 100.100.1.2/32

12.1.1.1/24 12.1.1.2/24

100.100.1.1 A 10.1.1.1 12.1.1.1 100 200
4 32 4 4 4 4

100.100.1.2 B 11.1.1.1 12.1.1.2 If1_MAC If2_MAC
8 32 8 8 6 6

A

A.1

struct xmsg{

uint loopbck_ip;

char router_name[32];

uint if_addr1;

uint if_addr2;

char if_mac1[6];

char if_mac2[6];

uint link1_bw;

uint link2_bw;

}

100 200
4 4

The Concept of TLVs

100.100.1.1 A 10.1.1.1 12.1.1.1 100 200
4 32 4 4 4 4

100.100.1.2 B 11.1.1.1 12.1.1.2 If1_MAC If2_MAC
8 32 8 8 6 6

A

A.1

A.1

struct xmsg{

uint loopbck_ip;

char router_name[32];

uint if_addr1;

uint if_addr2;

char if_mac1[6];

char if_mac2[6];

uint link1_bw;

uint link2_bw;

}

100 200
4 4

Machines B and C, when receives the new msg A.1 generated by machine A, they will try to read the msg according

to their own definition of struct xmsg. Again Data corruption !

So many problems !! Vendor manufacturer has invented his new patented technology but he cannot upgrade his software with new

technology because other machines in the network wont work with his new version of Software ! Competitors are happy ! Funny !!

B and C

struct xmsg{

uint loopbck_ip;

char router_name[32];

uint if_addr1;

uint if_addr2;

uint link1_bw;

uint link2_bw;

}

The Concept of TLVs

• Networking is a field where various network equipment's being manufactured by various vendors, need to work In complete

cooperation and harmony with each other for the network protocol to work.

• Machines need to comply with each other for the network functionality to work correctly, yet at the same time Network Vendors

should be free to innovate/upgrade/update their software without breaking the existing compliance with the other Machines

deployed in the network.

The concept of TLVs Solves these problems very easily

The Concept of TLVs

• TLV (Type length value)

• Is a mechanism to encode the data in the format that is independent of

• Machine Architecture

• Underlying Operating system

• Compiler

• Programming language

• TLVs has three components :

TLV TYPE

DATA LENGTH

Actual Data

1 byte

1 byte

“Data Length” bytes

T

L

V

TLV TYPE – TLV UNIQUE IDENTIFER (0-255)

TLV LENGTH – The length of the actual data

The Concept of TLVs

• Example :

• Suppose Machine A wants to send machine B, the set of all IP addresses which is

configured on all its interfaces

• We can take any number as TLV type. Let’s take it as 132.

• Next we need to define the definition of TLV 132 :

• 4 byte integer number (which is ip address)

• 1 byte mask value

• This is called TLV definition

• Any machine which is suppose to process this TLV when received, us suppose

to be aware of TLV definition.

14.1.1.1/24

12.1.1.1/24

13.1.1.1/24

11.1.1.1/24

132

20

201392385

24

234946817

24

218169601

24

184615169

24

The Concept of TLVs

132

20

201392385

24

234946817

24

218169601

24

184615169

24

• When receiving machine receives this TLV :

• It reads first byte

• Now it knows that it is TLV 132

• It means, its unit data size is 5 bytes,

4 bytes of ip address followed by 1 byte of mask value

• Read next 1 byte which is 20

• Divide 20 by 5 = 4

• Now, machine knows it has four occurrence of unit data type

• Iterate over rest of the data and read all units of data

The Concept of TLVs

A

B

C

132

20

201392385

24

234946817

24

218169601

24

184615169

24

Let us suppose, machine A sends this TLV to machine B and C

Let say, machine B is 32 bit machine, and C is 16 bit machine

Let us see, how B and C decode this TLV . . .

How TLVs solve the problem of machine heterogeneity ?

The Concept of TLVs

132

20

201392385

24

234946817

24

218169601

24

184615169

24

32/16 bit machine

Code discussion ….

The Concept of TLVs

Had we sent the data as simple C structure on the wire as below :

struct tlv132{

unsigned int ip_address;

char mask;

}

Then it would have been problem for receiving machines, if their hardware architecture differs from sending machine.

For 32 bit machine : structure size is 5 bytes

For 16 bit machine : structure size is 3 bytes

Receiving Machines which are non compliant with sending machine would end up reading garbage !

struct tlv132 *ptr = (struct tlv132 *)recv_msg; /*recv_msg us 4 byte ip address, and 1 byte mask*/

ptr->ip_address ; /*This line would read 4 bytes on 32 bit machine, and 2 bytes on 16 bit machine*/

To Sum up : TLVs are all about Send and Read data byte by byte , and every machine MUST

know TLV TYPE definition

We have just learned, how TLVs solves the problem of machine heterogeneity !!

The Concept of TLVs

A

B

C

132

20

201392385

24

234946817

24

218169601

24

184615169

24

222

12

08:00:27:3e:97:62

08:00:27:ce:90:78

How TLVs solve the problem of Software Upgrade ?

132

20

201392385

24

234946817

24

218169601

24

184615169

24

I know TLV 132
I know TLV 222

I know TLV 132

I know TLV 222
I know TLV 132

I do not know TLV 222

TLV definition :
• 6 bytes (which is mac address)

Upgraded

Upgraded

Not Upgraded

It simply skips TLV222

in default case, Nothing

Breaks !

We have just learned, how TLVs solves the problem of software Upgrade !!

The Concept of TLVs

Streams

• Design a Data structure to create (serialize) and read (De-serialize) TLVs

• Data structure : Stream

• It resembles to type writer – start with the next line when there is no space

left in the current line

The Concept of TLVs

Coding Assignment

• Streams (also called serialize-buffer)

typedef struct serialized_buffer{

char *b;

int size;

int next;

} ser_buff_t;

D A T A available

char *b

size

next

The Concept of TLVs

Coding Assignment

• Streams (also called serialize-buffer)

void

init_serialized_buffer (ser_buff_t **b){

(*b) = (ser_buff_t *)calloc(1, sizeof(ser_buff_t));

(*b)->b = calloc(1, SERIALIZE_BUFFER_DEFAULT_SIZE); /*const , say 100*/

(*b)->size = SERIALIZE_BUFFER_DEFAULT_SIZE;

(*b)->next = 0;

}

Usage :

ser_buff_t *stream;

init_serialized_buffer(&stream);

available

char *b

Next = 0

Size = 100

typedef struct serialized_buffer{

char *b;

int size;

int next;

} ser_buff_t;

The Concept of TLVs

Coding Assignment

• Streams (also called serialize-buffer)

void serialize_data (ser_buff_t *buff, char *data, int nbytes){

int available_size = buff->size - buff->next;

char isResize = 0;

while(available_size < nbytes){

buff->size = buff->size * 2;

available_size = buff->size - buff->next;

isResize = 1;

}

if(isResize == 0){

memcpy((char *)buff->b + buff->next, data, nbytes);

buff->next += nbytes;

return;

}

// resize of the buffer

buff->b = realloc(buff->b, buff->size);

memcpy((char *)buff->b + buff->next, data, nbytes);

buff->next += nbytes;

return;

}

D A T A available

char *b next size

New data

nbytes

data

The Concept of TLVs

Coding Assignment

• Streams (also called serialize-buffer)

void serialize_data (ser_buff_t *buff, char *data, int nbytes){

int available_size = buff->size - buff->next;

char isResize = 0;

while(available_size < nbytes){

buff->size = buff->size * 2;

available_size = buff->size - buff->next;

isResize = 1;

}

if(isResize == 0){

memcpy((char *)buff->b + buff->next, data, nbytes);

buff->next += nbytes;

return;

}

// resize of the buffer

buff->b = realloc (buff->b, buff->size);

memcpy((char *)buff->b + buff->next, data, nbytes);

buff->next += nbytes;

return;

}

D A T A
available

char *b next size

New data

If there is no space to accommodate new data,

Double the size of entire buffer while preserving the

Exiting content

The Concept of TLVs

Coding Assignment

• Serializing the TLVs 132

20

201392385

24

234946817

24

218169601

24

184615169

24

222

12

08:00:27:3e:97:62

08:00:27:ce:90:78

ser_buff_t *stream;

init_serialized_buffer(&stream);

char data = 32;

serialize_data (stream, &data, 1);

data = 20;

serialize_data (stream, &data, 1);

unsigned int ip = 201392385;

serialize_data (stream, &ip, 4);

char mask = 24;

serialize_data (stream, &mask, 1);

ip = 234946817;

serialize_data (stream, &ip, 4);

mask = 24;

serialize_data (stream, &mask, 1);

ip = 218169601;

serialize_data (stream, &ip, 4);

mask = 24;

serialize_data (stream, &mask, 1);

ip = 184615169;

serialize_data (stream, &ip, 4);

mask = 24;

serialize_data (stream, &mask, 1);

char data = 222;

serialize_data (stream, &data, 1);

data = 12;

serialize_data (stream, &data, 1);

char mac1[6] = {8, 0, 27, 3e, 97, 62};

serialize_data (stream, mac1, 6);

char mac2[6] = {8, 0, 27, ce, 90, 78};

serialize_data (stream, mac2, 6);

Data to be send as TLV :

stream->b with size stream->next

The Concept of TLVs

Coding Assignment

• De-Serializing the TLVs

void

de_serialize_data (char *dest, ser_buff_t *b, int size){

memcpy(dest, b->b + b->next, size);

b->next += size;

}

D A T A

char *b

Next = 0

unsigned int dest;

de_serialize_data ((char *)&dest, b, 4);

D A T A

char *b

Next = 4
de_serialize_data ((char *)&dest, b, 4);

The Concept of TLVs

Type Length Value

Linux Timers

Project Src code : git clone https://github.com/sachinites/WheelTimer/WheelTimer/libtimer

Agenda and Pre-requisites

➢After this section, you will be able to :

➢ Create, Update, Delete Linux Timers

➢ Restart, Pause, Resume, Reschedule Timers

➢ Fire Periodic Or One Shot or Exponential back off timers

➢ Create an application using Timers

➢ Implement Timer biased Algorithms and state machines

➢ Build your own Custom Timer Library (libtimer)

Pre-requisites :

1. Linux OS

2. Callbacks / Function Pointers

3. C Programming Skills

Note that :

We are learning programming concepts,

not programming Language Or linux !

Timers Relevance

➢ One of the most common programming concept that you would come across is the Timers

➢ Timers helps in scheduling the events in future Or periodically

➢ Timers are extensively used in many domain of Computer science, especially in Networking

➢ TCP Timers

➢ OTP Time outs

➢ Session log out

➢ Periodically sending out Network packets

➢ Deferring/Scheduling the computation

➢ In this Section, We shall Study Linux Inbuilt Posix Compliant Timer APIs and built our own custom more

controllable timers on top of those

Timers Types

Timers

One shot

Timers

Periodic

Timers

Exponential

Back off

timers

• Triggers only once

• Ex :

• Delete X after 10 sec

• Send Terminate request

after 10 sec

• Triggers periodically at

regular intervals

• Ex :

• Send Hello pkts at an interval

of 5 sec

• Triggers at exponentially places

temporal points

• Ex :

• Send re-try event at t = 1, t = 2,

t = 4, t = 8, t = 16 .. So on

• Used in protocols such as TCP

• We will use Linux In-built API to create Timers, and use those to implement all three type of timers

Timers -> POSIX APIs

➢ POSIX provides four basic APIs to manipulate timers on Unix compliance platforms

➢ timer_create()

• Create a Timer Data structure (but do not fire it)

➢ timer_settime ()

• Used to start / stop the timers depending on the arguments

➢ timer_gettime ()

• Returns the time remaining for the timer to fire

➢ timer_delete()

• Delete the timer data structure

Suppose you want to send a network packet after 10 seconds

At t = 0, you start or Alarm the timer

At t = 10 , timer fires Or timer Expires

 We will use the above 4 APIs as

building blocks to build our custom

timer library

Terminologies 

Linux Timers -> How timer Works

➢ Timer Works in the context of separate code flow (thread or process)

foo(arg) {

}

main() {

. . .

. . .

. . .

. . .

<new_timer_launch

(foo, arg) >

. . .

. . .

Process P

foo (arg) ;

Thread T1, Expiration time = 5sec

blocked

5 sec

When foo() has completed its execution in the

Context of timer thread, Timer is tuned off

(timer thread is killed by kernel)

Application (P) should free all

Resources that were occupied by timer (

In the end of foo () only

foo() is called timer callback

Same mechanics for :

One shot timer

Periodic Timer

Exponential back off timer

Linux Timers -> POSIX APIs -> timer_create ()

int timer_create (<Type of Timer >,

< Timer Controlling Parameters >,

< Timer pointer >);

Returns 0 on success, -1 on error, and errno (errno.h) is set to errcode

struct sigevent evp;

evp.sigev_notify_function = <ptr to callback fn >

evp.sigev_value.sival_ptr = < address of argument to callback arg >

evp.sigev_notify = SIGEV_THREAD; / * asking the kernel to launch a timer thread to invoke callback >

void timer_callback (union sigval arg){

foo(arg.sival_ptr);

}

arg.sival_ptr gives the actual

Argument to callback foo

timer_callback () is actually

A generic wrapper over 

Application callback

Linux Timers -> POSIX APIs -> timer_create () -> Specifying time & timer_settime()

➢ We need a way to specify expiration time of the timer

➢ For this, POSIX standard provide a data structure :

struct itimerspec ts;

ts.it_value.tv_sec = 5;

ts.it_value.tv_nsec = 0; /*nano sec granularity*/

➢ And final step is to arm the timer (start the timer)

int timer_settime(<timer > , 0, &ts, NULL) ;

struct itimerspec {

struct timespec it_interval; /* next value */

struct timespec it_value; /* current value */

};

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

Now, let us put all pieces together and write our timer demo program

Linux Timers -> POSIX APIs -> Demo 1

➢Demo for first Timer implementation

WheelTimer/WheelTimer/libtimer/Course/timerExampleDemo1.c

➢Converting one shot timer into periodic timer

Endian-ness of Machines

What are big-Endian and Little-Endian machines

➢ Endianness refers to the sequential order in which bytes of data are stored in computer memory

➢ Best understood with the help of example

➢ Let’s us you have a number : 3066773545

Binary representation of this number is : (10110110 11001011 01000000 00101001)

10110110 11001011 01000000 00101001

3 2 1 0

This is big endian representation

(Least significant byte at higher address)

Network Byte Order

2000 2001 2002 2003Address ->

Byte no ->

00101001 01000000 11001011 10110110

3 2 1 0

This is little endian representation

(Least significant byte at lower address)

Host Byte Order

2000 2001 2002 2003Address ->

Byte no ->

Endian-ness of Machines

What are big-Endian and Little-Endian machines

➢ Machines of different endianness may need to communicate over the network

➢ IETF (Internet Engineering Task Force) has standardized the Data flowing over the network MUST be in

Network Byte order

Network

Big Endian Little Endian

1 2 3 4 4 3 2 1

printf : 4.3.2.1printf : 1.2.3.4LA HA LA HA

Endian-ness of Machines

What are big-Endian and Little-Endian machines

➢ Interview Question :

Write a C program which determines whether your machine is big endian or little endian ?

0 1 1 0

Big-Endian Little-Endian

/* return 0 – Big endian, 1 for Little endian*/

int

machine_endianness_type() {

unsigned short int a = 1;

char ist_byte = *((char *)&a);

if (ist_byte == 0)

return 0;

else if (ist_byte == 1)

return 1;

}

Memory Management in Linux

Memory

Management

In

Linux

Memory Management in Linux

Agenda

Memory Management in Linux

Stack

Memory

Heap

Memory

Procedure

call

Procedure

return
malloc free

➢ To understand the Linux Memory Management, we first need to understand some basics :

➢ Virtual Address Space

➢ Virtual Memory

➢ Memory layout of a process

Memory Management in Linux

Pre-requisite knowledge

What exactly is Virtual Memory and Virtual Address space ?

➢ Virtual Memory is the total amount of memory your system has. It is different from physical memory and is computer

architecture dependent

For example :

You have a 32 bit system, Total virtual memory is 2^32 bytes (Fixed)

You can extend its physical memory to 4GB, 8GB or 16GB (Variable)

➢ 2^32 bytes !! Every byte has an address. Therefore, there are 2^32 addresses in a 32 bit system. This set of addresses is called

global virtual address space (VAS) of a system

➢ Computer Programs works with Virtual memory, means, your C programs access only virtual addresses

➢ Each process in execution is allotted virtual memory for its usage from System’s Global Virtual address space

➢ The Memory assigned to a process is called process’s virtual address space.

Virtual Address space & Virtual Memory

Memory Management in Linux

➢ It is a diagrammatic representation of the of the Process’s memory layout in Linux/Unix OS

➢ MLoP helps us to understand how process’s virtual memory works during the course of execution of a process

➢ Let us see how Memory Layout of a process looks like for a linux process . . .

Memory Management in Linux

Memory Layout of a Process

Memory Layout of a Process

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth Total System Available memory. The Heap region expands or shrinks

When the process malloc Or free the memory

Memory assigned for process execution. It cannot grow beyond a

certain limit.

Content : All local variables, arguments passed, Return address, Caller’s info

Memory which stores the process initialized global and static variables, fixed

Memory which stores the compiled process assembly code in text format, fixed

Dynamic memory assigned to a process

Cmd line arguments argc & argv[i]

Uninitialized data (bss) Memory which stores the process uninitialized global and static variables, fixed

HA

LA

int global_var = 10;

int global_var2;

int

main(int argc, char **argv){

int i = 0;

char *my_name = “Abhishek”;

static int j = 5;

int *k;

k = malloc(100);

foo(j);

return 0;

}

VAS = Code + Data +

Heap + Stack + CLACode

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

Cmd line arguments

Uninitialized data (bss)

HA

LA

Memory Layout of a Process

➢ Heap: When program allocate memory at runtime using calloc and malloc

function, then memory gets allocated in heap. when some more memory need

to be allocated using calloc and malloc function, heap grows upward as shown in

diagram

➢ Stack: Stack is used to store your local variables, passed arguments to the functions

along with the return address of the instruction which is

to be executed after the function call is over. When a new stack frame needs to be

added (as a result of a newly called function), the stack grows Downward.

Stack Memory supports procedure calls and procedure returns.

➢ Data Segment : Global and Static variables

➢ Stack-Memory grows from HA to LA, Heap Memory grows from LA to HA

Very Important for interview perspective

Asked from fresher's to 10 yrs of experience, every time !

Memory Layout of a Process

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

Cmd line arguments

Uninitialized data (bss)

HA

LA

Summary :

Stack Memory

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

Cmd line arguments

Uninitialized data (bss)

HA

LA

➢ What is stack Memory ?

➢ What is the purpose ?

➢ How it is organized by OS ?

Memory Management in Linux

Stack Memory

➢ Region of Memory in process’s Virtual address space where data is added or removed in Last-in-first-out manner

➢ When a new function call is invoked, Data is added to stack memory and when a current fn call

returns, data is removed from stack Memory. This “Data” is called a stack-frame. Thus every fn has its stack frame.

main() -> A() -> B() -> C()

➢ Any data which is stored in Stack Memory is said to reside on a stack

➢ Every process has its own fixed (configurable) stack memory. When process terminates, stack memory is reclaimed

back by OS

➢ For the F() to execute, its stack frame should be setup up first on the stack memory. This is joint effort of Caller and Callee.

C()

B()

A()

main()

Stack frame/

Activation RecordCall Stack

Memory Management in Linux

Stack Memory contents

void foo (int a, int b){

int k = 10;

. . .

. . .

ready();

}

void bar (int c) {

statement 1;

statement 2;

foo (4, 5) ;

statement 3;

}

➢ Stack frame contains four types of information

1. Parameter Passed to the callee

2. Return Address of the caller fn – 4B

3. Base pointer – 4B

4. Local Variables of a function

Stack Frame of foo()

Parameters of foo()

b =5

a= 4

Return Address of bar:statement3 (4B)

Base pointer of caller (4B)

Local Variables of foo()

k = 10

Higher Address
Stack Frame of bar()

<Stack frame data>

Lower Address

Stack grows

downwards

Stack Frame of ready()

<Stack frame data>

Frame Pointer/

Base pointer

Stack Pointer

Max stack size limit

Memory Management in Linux

Stack Overflow

➢ If you write a program such that there are is a long

chain of function calls, you can cause

stack overflow

➢ Stack overflow is a situation where program stack

grows beyond the maximum stack fixed size

➢ Recursive functions often cause stack overflow

int add(int n) {

return n + add(n+1);

}

➢ You are discouraged to write recursive functions

in Industry

➢ To see stack memory max size on your machine

ulimit –s (shows in MB)

Higher Address

F1()

Lower Address

Stack grows

downwards

Stack Pointer

Max stack size limit

F2()

F3()

F4()

F5()

F6()

F7()

F8()

F6()

F7()

F8()

Memory Management in Linux

Stack Corruption

➢ Stack corruption is a situation where we corrupt

the stack data by copying the data more than the

memory limits

void foo (char *bar)

{

char c[12];

strcpy(c, bar); // no bounds checking...

}

int main (int argc, char **argv)

{

foo(argv[1]);

printf(“exiting…”);

}

Call using :

ILOVEMYCOUNTRYBRAZIL

Stack Frame of foo()

char *bar;

Return Address of main:printf

Base pointer value of caller

c[8] c[9] c[10] c[11]

c[4] c[5] c[6] c[7]

c[0] c[1] c[2] c[3]

Stack Frame of main()

<Stack frame data>

Stack Frame of main()

<Stack frame data>

Stack Frame of foo()

char *bar;

A Z I L

R Y B R

O U N T

E M Y C

I L O V

Stack Frame of main()

Before copy After copy

Stack Frame of foo()

char *bar;

Return Address of main:printf

Base pointer value of caller

c[8] c[9] c[10] c[11]

c[4] c[5] c[6] c[7]

c[0] c[1] c[2] c[3]

Memory Management in Linux

Stack Corruption

➢ Stack corruption is a situation where we corrupt

the stack data by copying the data more than the

memory limits

void foo (char *bar)

{

char c[12];

strcpy(c, bar); // no bounds checking...

}

int main (int argc, char **argv)

{

foo(argv[1]);

printf(“exiting…”);

}

Call using :

ILOVEMYCOUNTRYBRAZIL

Stack Frame of foo()

Return Address of main:printf

Base pointer value of caller

char *bar;

c[8] c[9] c[10] c[11]

c[4] c[5] c[6] c[7]

c[0] c[1] c[2] c[3]

Stack Frame of main()

<Stack frame data>

Stack Frame of main()

<Stack frame data>

Stack Frame of foo()

char *bar;

A Z I L

R Y B R

O U N T

E M Y C

I L O V

Stack Frame of main()

<Stack frame data>

Before copy After copy

Stack Frame of foo()

char *bar;

Return Address of main:printf

Base pointer value of caller

c[8] c[9] c[10] c[11]

c[4] c[5] c[6] c[7]

c[0] c[1] c[2] c[3]

Memory Management in Linux

Procedure Call and Return

➢ Let us understand how Function Call is implemented in Linux OS using Stack Memory

➢Goal :
➢ When Caller makes a call to Callee, Callee should start execute from beginning

➢ When Callee finishes Or returns, Caller resumes from the point where it left

➢ Return Value by Callee, if any, should be available to Caller

➢ Let us understand at the low level how to achieve the above stated Goals

Memory Management in Linux

Procedure Call and Return

➢ Terminologies :

➢ Call Stack is a collection of stack frames, each function when called in program create a new frame in stack

➢ A frame that is being executed is always the topmost frame of stack, pointer to top most frame in the stack is called frame pointer also

called base pointer

➢ Pointer to the top of stack is called the stack pointer. In other words, stack pointer points to the end of the top-most frame in the

stack

➢ Now, let us see in depth how function calls happen, how values are returned from Callee and how caller resume its execution when

Callee returns

➢ Program Counter (PC) is a pointer which always pointes to the current instruction to be executed, also called Instruction pointer

➢ We understand already that Stack Memory is Managed by Data structure called Stack on which two basic operation are supported –

Push & Pop

➢ We Use Push when we need to store the new data into the stack. Increment the Stack Pointer after Push Operation

➢ We Pop when we need to remove data from top of stack. Decrement the Stack Pointer after Pop Operation

Memory Management in Linux

Procedure Call and Return

Let’s divide our discussion into two parts :

1. Procedure Call : Caller calling the callee, control transfer to callee

2. Procedure Return : Callee terminates and control return back to Caller

We will see the mechanism behind each of the above two Scenarios in detail.

Lets gather some basics first . . .

Memory Management in Linux

Understanding CPU Registers

➢ We need to understand the purpose of three registers which are used to implement the mechanism of procedure

call and return

• eip - Instruction pointer register which stores the address of very next instruction to be executed

• esp - Stack pointer register, always stores the address of top of stack (lowest address)

• ebp - Base pointer register, stores the starting address in callee’s stack frame where caller’s base pointer value is

copied (record’s history)

Just, have the definition of these in mind, Now Let us understand how these register values are used.

Note : these registers are per cpu, not per frame.

Memory Management in Linux

Registers Usage In case of

Procedure Call : eip, ebp and esp

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

➢ eip stores the address of instruction in execution, since f1() is executing, hence eip will store the address of instruction being executed. eip keeps on

incrementing as subsequent instructions are executed.

➢ Green and Orange slabs are 4 bytes each, and are used to store historical data (Caller’s frames information). This information helps the caller to resume its

execution when callee returns.

➢ When Caller invokes the Callee, the current value of ebp and eip are saved in Callee’s stack frame, and ebp and eip registers are updated as per the Callee’s

stack frame.

ebp = 84

esp = 76

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

ebp = 60

esp = 52

arg2_f3

arg1_f3

store %eip = 0x2004

60

local_var2_f3

local_var1_f3

52

48

40

44

36

32

28

Stack frame of f3()

ebp = 36

esp = 28

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

Memory Management in Linux

Use of ebp register

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

ebp = 60

esp = 52

➢ For a frame in execution, ebp register value is used

as a reference to access all local variables and

local arguments of the frame

Example :

ebp + 0 = address where caller’s base pointer is saved

ebp + 4 = address where caller’s next instruction address

is saved

ebp + 8 = arg1

ebp + 12 = arg2

ebp – 4 = var2

ebp – 8 = var1

➢ CPU accesses all of the data of current stack frame in execution through ebp register value.

➢ This for a frame to execute its instruction, ebp value must be set

➢ ebp by definition, is the address where caller’s base pointer address is saved in Callee’s stack frame

➢ When Callee returns, Caller’s must restore the value of ebp register to point to locn where Caller’s Caller’s base pointer

address is stored in Caller’s Stack frame :p

Memory Management in Linux

Procedure Call Algorithm

➢ When Caller Calls the Callee f, following steps take place on most common linux system architectures

1. Caller : Push the Argument list in reverse order

push y

push x . . .

2. Caller : Push the address of next instruction in caller as Return Address in the callee’s stack frame

push %eip

3. Caller : Set PC = next instruction in callee to be executed

mov %eip , <address of first instruction in callee>

4. Callee : Push the Previous frame’s base pointer and copy esp to eab

push %ebp

mov %ebp %esp << ebp now stores the address where caller;s ebp’s Value is stored

5. Callee : Push the local Variables of Callee

push temp1

push temp2

6. Callee : Execute the Callee

• With every push, esp is decremented

• With every pop, esp is incremented

Note, Programmer don’t have

To do step 2 and 3 manually,

It is implicitly done when

Caller invokes the callee via

call system call at assembly level

We shall see this with the help of example

shortly

Memory Management in Linux

Procedure Call -> Realistic example

3 int B (int a , int b , int c) {

4

5 int res = 0; /*I4*/

6 res = a + b + c;

7 return res;

8 }

11 int A (int a, int b) {

12

13 int c = 0 ; /*I2*/

14 c = a + b;

15 int d = B (c, a, b);

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5); /* I1 : 0x8048469*/

23 return 0;

24 }

Stack Frame of main()

<Stack frame data>

b = 5sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 (= eab value of main())

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

0xbffff0c8
Local Var d

Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

➢ ebp register stores 0xbffff0c8 which is the address of old ebp’s value

➢ eip stores Address of Ist instruction to be executed

➢ esp as usual points to top of stack memory

Now Stack frame for function A has been setup, Function can execute now

Note :
• Starting address of stack frame of fn A is 0xbffff0d0, that is, arguments of callee are part of

caller’s stack frame and not callee’s stack frame

I2

ebp eip esp

Memory Management in Linux

Registers Usage : eip, ebp and esp

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

arg2_f3

arg1_f3

store %eip = 0x2004

60

local_var2_f3

local_var1_f3

52

48

40

44

36

32

28

Stack frame of f3()

ebp = 36

esp = 28

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

➢ At the moment when f3() returns, ebp = 36, eip = <return instruction in f3>, esp = 28

➢ Now, for f2() to resume its execution, Stack frame of f3() should be popped out of stack

➢ Also, Value of esp should be restored to 52, ebp = 60, and eip = 0x2004

➢ Let us go through it step by step

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

arg2_f3

arg1_f3

store %eip = 0x2004

60

local_var2_f3

local_var1_f3

52

48

40

44

36

32

28

Stack frame of f3()

ebp = 36

esp = 28

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

➢ Step 1 : Pop out all local variables

esp = 32

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

arg2_f3

arg1_f3

store %eip = 0x2004

60

52

48

40

44

36

Stack frame of f3()

ebp = 36

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

esp = 36

➢ Step 1 : Pop out all local variables

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

arg2_f3

arg1_f3

store %eip = 0x2004

60

52

48

40

44

36

Stack frame of f3()

ebp = 36

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

➢ Step 2 : copy Caller’s base address into ebp register

mv %ebp %esp

pop

esp = 36

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

ebp = 60

arg2_f3

arg1_f3

store %eip = 0x2004

60

52

48

40

44

36

Stack frame of f3()

ebp = 36

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

esp = 36

copied

ebp = 60

➢ Step 2 : copy Caller’s base address into ebp register

mv %ebp %esp

pop

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

ebp = 60

arg2_f3

arg1_f3

store %eip = 0x2004

52

48

44

Stack frame of f3()

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

➢ Step 2 : copy Caller’s base address into ebp register

mv %ebp %esp

pop

esp = 4040

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

ebp = 60

arg2_f3

arg1_f3

store %eip = 0x2004

52

48

40

44

Stack frame of f3()

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

esp = 40

eip

➢ Step 3 : Restore the Caller’s last instruction address into eip register

mv %eip %esp

pop

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

ebp = 60

arg2_f3

arg1_f3

52

48

Stack frame of f3()

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

esp = 44

eip

➢ Step 3 : Restore the Caller’s last instruction address into eip register

mv %eip %esp

pop

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

➢ Let us suppose , f1() -> f2() -> f3()

arg2_f1

arg1_f1

Ret_addr_f0

ebp_f0

local_var2_f1

local_var1_f1

100

96

88

92

84

80

76

Stack frame of f1()

arg2_f2

arg1_f2

store %eip = 0x1002

84

local_var2_f2

local_var1_f2

76

72

64

68

60

56

52

Stack frame of f2()

ebp = 60

arg2_f3

arg1_f3

52

48

Stack frame of f3()

f1(arg1, arg2){

.....

…..

f2(arg3, arg4); 0x1002

}

f2(arg1, arg2){

.....

…..

f3(arg3, arg4); 0x2004

}

f3(arg1, arg2){

.....

…..

}

➢ Step 4 : Pop all arguments

➢ Stack frame 3 is completely destroyed now

➢ Now, stack frame f2 is restored, f2() can resume its execution as normal

esp = 44

eip

esp = 52

Registers Usage In case of Procedure

Return : eip, ebp and esp

Memory Management in Linux

Procedure Return Algorithm

➢ When Callee f returns, following steps take place

1. Callee : Set the return value of the Callee in eax register

2. Callee : “Increase” the stack pointer by the amount = size of all local variables of the frame

(This releases the local stack memory assigned to local variables)

3. Callee : Restore %ebp to point to caller’s stack frame and POP the previous frame’s base pointer from the stack

mov %ebp %esp << Caller’s base pointer is restored, now caller can access all its local variables and arguments using ebp as a reference

pop ebp

4. Callee : set %eip = “Return address” saved in the callee’s stack, and POP the saved “Return Address” from the stack

(This gives control back to calling function)

mov %eip , %esp

pop eip

5. Caller : POPs all the argument it had passed onto the stack

6. Caller : reads the value stored in eax register, and resumes execution from %eip + 1 (Next instruction)

Memory Management in Linux

Procedure Call and Return -> Procedure Call

3 int B (int a , int b , int c) {

4

5 int res = 0; /*I4*/

6 res = a + b + c;

7 return res;

8 }

11 int A (int a, int b) {

12

13 int c = 0 ; /*I2*/

14 c = a + b;

15 int d = B (c, a, b);

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5); /* I1 : 0x8048469*/

23 return 0;

24 }

Stack Frame of main()

<Stack frame data>

b = 5sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 (= eab value of main())

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

0xbffff0c8
Local Var d

Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

➢ ebp register stores 0xbffff0c8 which is the address of old ebp’s value

➢ ebp register value is used by the processor to reference arguments and

local variables of the current stack in execution

(-4)%ebp -- address of local variable d

(-8)%ebp -- address of local variable c

%ebp – Address of prev frame ebp’s value

(4)%ebp – Address where Return address is saved

(8)%ebp -- address of argument a

(12)%ebp -- address of argument b

I2

ebp eip esp

Memory Management in Linux

Procedure Call and Return -> Procedure Call

3 int B (int a , int b , int c) {

4

5 int res = 0; /*I4*/

6 res = a + b + c;

7 return res;

8 }

11 int A (int a, int b) {

12

13 int c = 0 ; /*I2*/

14 c = a + b;

15 int d = B (c, a, b); /*I3 0x8048440 */

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5);

23 return 0; /* I1 : 0x8048469*/

24 }

Stack Frame of main()

<Stack frame data>

b = 5sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 (= ebp value of main())

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

0xbffff0c8
Local Var d

Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

I3

ebp eip esp

c = 5

b = 4

a = 9

0xbffff0bc

0xbffff0b8

0xbffff0b4

sizeof(int)

sizeof(int)

sizeof(int)

0x8048440 <Return Address>4B 0xbffff0b0

0xbffff0c8 (= ebp value of A())4B
0xbffff0ac

Memory Management in Linux

Procedure Call and Return -> Procedure Call

3 int B (int a , int b , int c) {

4

5 int res = 0; /*I4*/

6 res = a + b + c;

7 return res;

8 }

11 int A (int a, int b) {

12

13 int c = 0 ; /*I2*/

14 c = a + b;

15 int d = B (c, a, b); /*I3 0x8048440 */

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5);

23 return 0; /* I1 : 0x8048469*/

24 }

Stack Frame of main()

<Stack frame data>

b = 5sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 (= eab value of main())

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

0xbffff0c8
Local Var d

Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

I4

ebp eip esp

c = 5

b = 4

a = 9

0xbffff0bc

0xbffff0b8

0xbffff0b4

sizeof(int)

sizeof(int)

sizeof(int)

0x8048440 <Return Address>4B 0xbffff0b0

0xbffff0c8 (= ebp value of A())4B
0xbffff0ac

Local Var res
0xbffff0a8

sizeof(int)

Memory Management in Linux

Lab Session – Stack Memory Analysis using gdb

3 int B (int a , int b , int c) {

4

5 int res = 0;

6 res = a + b + c;

7 return res;

8 }

11 int A (int a, int b) {

12

13 int c = 0 ; /*I2*/

14 c = a + b;

15 int d = B (c, a, b); /*I3 0x8048440 */

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5);

23 return 0; /* I1 : 0x8048469*/

24 }

Stack Frame of main()

<Stack frame data>

b = 5sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 (= ebp value of main())

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

0xbffff0c8
Local Var d

Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

I4

ebp eip esp

c = 5

b = 4

a = 9

0xbffff0bc

0xbffff0b8

0xbffff0b4

sizeof(int)

sizeof(int)

sizeof(int)

0x8048440 <Return Address>4B 0xbffff0b0

0xbffff0c8 (= ebp value of A())4B
0xbffff0ac

Local Var res
0xbffff0a8

sizeof(int)

 Final Status : When main() calls A() and

A() calls B() and B() just starts its execution

Now, Let us verify our analysis using gdb

Memory Management in Linux

Procedure Call and Return -> Procedure Call

3 int B (int a , int b , int c) {

4

5 int res = 0;

6 res = a + b + c;

7 return res;

8 }

11 int A (int a, int b) {

12

13 int c = 0 ;

14 c = a + b;

15 int d = B (c, a, b);

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5); /* I1 : 0x8048469*/

23 return 0;

24 }

(gdb) info f 0

Stack frame at 0xbffff0ac:

eip = 0x80483f3 in B (frame.c:5); saved eip = 0x8048440

called by frame at 0xbffff0d0

source language c.

Arglist at 0xbffff0a4, args: a=9, b=4, c=5

Locals at 0xbffff0a4, Previous frame's sp is 0xbffff0ac

Saved registers:

ebp at 0xbffff0a4, eip at 0xbffff0a8

(gdb)

(gdb) info f 1

Stack frame at 0xbffff0d0:

eip = 0x8048440 in A (frame.c:15); saved eip = 0x8048469

called by frame at 0xbffff0f0, caller of frame at 0xbffff0ac

source language c.

Arglist at 0xbffff0c8, args: a=4, b=5

Locals at 0xbffff0c8, Previous frame's sp is 0xbffff0d0

Saved registers:

ebp at 0xbffff0c8, eip at 0xbffff0cc

(gdb) info f 2

Stack frame at 0xbffff0f0:

eip = 0x8048469 in main (frame.c:22); saved eip = 0xb7e2eaf3

caller of frame at 0xbffff0d0

source language c.

Arglist at 0xbffff0e8, args: argc=1, argv=0xbffff184

Locals at 0xbffff0e8, Previous frame's sp is 0xbffff0f0

Saved registers:

ebp at 0xbffff0e8, eip at 0xbffff0ec

(gdb) bt

#0 B (a=9, b=4, c=5) at frame.c:7

#1 0x0804848a in A (a=4, b=5) at frame.c:15

#2 0x080484b7 in main (argc=1, argv=0xbffff184) at frame.c:22

(gdb)

Memory Management in Linux

Procedure Call and Return -> Procedure Call

3 int B (int a , int b , int c) {

4

5 int res = 0;

6 res = a + b + c;

7 return res;

8 }

11 int A (int a, int b) {

12

13 int c = 0 ;

14 c = a + b;

15 int d = B (c, a, b);

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5); /* I1 : 0x8048469*/

23 return 0;

24 }

Stack Frame of main()

<Stack frame data>

b = 5 sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 <Address of ebp register>

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

Starting address of Local variables : 0xbffff0c8
Address of Local Var d

Address of Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

eip register = 0xbffff0cc

Address of instruction

Executed last in this frame

(gdb) info f 1

Stack frame at 0xbffff0d0:

eip = 0x8048440 in A (frame.c:15); saved eip = 0x8048469

called by frame at 0xbffff0f0, caller of frame at 0xbffff0ac

source language c.

Arglist at 0xbffff0c8, args: a=4, b=5

Locals at 0xbffff0c8, Previous frame's sp is 0xbffff0d0

Saved registers:

ebp at 0xbffff0c8, eip at 0xbffff0cc

Memory Management in Linux

Procedure Return Example

3 int B (int a , int b , int c) {

4

5 int res = 0;

6 res = a + b + c;

7 return res; /*I5*/

8 }

11 int A (int a, int b) {

12

13 int c = 0 ; /*I2*/

14 c = a + b;

15 int d = B (c, a, b); /*I3 0x8048440 */

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5);

23 return 0; /* I1 : 0x8048469*/

24 }

Stack Frame of main()

<Stack frame data>

b = 5sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 (= ebp value of main())

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

0xbffff0c8
Local Var d

Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

I5

ebp eip esp

c = 5

b = 4

a = 9

0xbffff0bc

0xbffff0b8

0xbffff0b4

sizeof(int)

sizeof(int)

sizeof(int)

0x8048440 <Return Address>4B 0xbffff0b0

0xbffff0c8 (= ebp value of A())4B
0xbffff0ac

Local Var res
0xbffff0a8

sizeof(int)

Memory Management in Linux

Procedure Return Example

3 int B (int a , int b , int c) {

4

5 int res = 0;

6 res = a + b + c;

7 return res; /*I5*/

8 }

11 int A (int a, int b) {

12

13 int c = 0 ; /*I2*/

14 c = a + b;

15 int d = B (c, a, b); /*I3 0x8048440 */

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5);

23 return 0; /* I1 : 0x8048469*/

24 }

Stack Frame of main()

<Stack frame data>

b = 5sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 (= ebp value of main())

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

0xbffff0c8
Local Var d

Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

c = 5

b = 4

a = 9

0xbffff0bc

0xbffff0b8

0xbffff0b4

sizeof(int)

sizeof(int)

sizeof(int)

0x8048440 <Return Address>4B 0xbffff0b0

0xbffff0c8 (= ebp value of A())4B
0xbffff0ac

Local Var res
0xbffff0a8

sizeof(int)

Setup the return value :

Memory Management in Linux -> Stack Memory in Action

Procedure Call Algorithm

➢ When Caller Calls the Callee f, following steps take place on most common linux system architectures

1. Caller : Push the Argument list in reverse order

push y

push x . . .

2. Caller : Push the address of next instruction in caller as Return Address in the callee’s stack frame

push eip

3. Caller : Set PC = next instruction in callee to be executed

mov eip , <address of first instruction in callee>

4. Callee : Push the Previous frame’s base pointer and copy esp to eab

push %ebp

mov %ebp %esp << ebp now stores the address where caller;s ebp’s Value is stored

5. Callee : Push the local Variables of Callee

push temp1

push temp2

6. Callee : Execute the Callee

• With every push, esp is decremented

• With every pop, esp is incremented

Note, Programmer don’t have

To do step 2 and 3 manually,

It is implicitly done when

Caller invokes the callee via

call system call at assembly level

We shall see this with the help of example

shortly

Procedure Return Algorithm

➢ When Callee f returns, following steps take place

1. Callee : Set the return value of the Callee in eax register

2. Callee : “Increase” the stack pointer by the amount = size of all local variables of the frame

(This releases the local stack memory assigned to local variables)

3. Callee : Restore %ebp to point to caller’s stack frame and POP the previous frame’s base pointer from the stack

mov ebp esp << Caller’s base pointer is restored, now caller can access all its local variables and arguments using ebp as a reference

pop ebp

4. Callee : set eip = “Return address” saved in the callee’s stack, and POP the saved “Return Address” from the stack

(This gives control back to calling function)

mov eip , esp

pop eip

5. Caller : POPs all the argument it had passed onto the stack

6. Caller : reads the value stored in eax register, and resumes execution from %eip + 1 (Next instruction)

Memory Management in Linux -> Stack Memory in Action

Steps

7

To

12

Memory Management in Linux

Goals :

1. How malloc() and free() works ?

2. Internal management of Heap Memory

by Linux OS

3. Understanding the problem of

fragmentation and its Solution

4. System calls related to Heap Memory Mgmt

5. Prepare Technical Interview Questions

Fasten your Seat Belts for another drive !! ☺

Heap Memory

Management

In Linux

Memory Management in Linux

Heap Memory Management - >Introduction

➢ Heap Memory of the process is the continuous part of Virtual Address space of the process

from which a process claims and reclaims Memory during runtime (Dynamic Memory Allocation)

➢ glibc APIs to harness the functionality of Heap :

➢ malloc, calloc, free, realloc,

➢ System Calls : brk, sbrk

➢ Unlike Stack memory which is reclaimed back upon procedure return automatically, it is programmer’s responsibility to

free the dynamic memory after usage

➢ malloc/calloc are used to allocate a block of memory from heap segment of the process

➢ free is used to release the memory back to heap segment which was claimed by malloc/calloc

➢ As a System Programmer, you must know how dynamic memory allocation works

Memory Management in Linux

Heap Memory Management - > malloc ?

➢ You must have used malloc/calloc in your program to assign memory chunks dynamically to your process

➢ malloc is a Standard C Library function that allocates (i.e. reserves) memory chunks from process Virtual Address Space,

particularly from, Heap memory segment

➢ malloc allocates at least the number of bytes requested

➢ The pointer returned by malloc points to an allocated space i.e. a space where the program can read or write successfully

➢ No other call to malloc will allocate the reserved space or any portion of it, unless the space has been freed before.

➢ malloc should also provide resizing and freeing.

➢ In this section we shall explore the science behind malloc and free.

Memory Management in Linux

Heap Memory Management - > malloc ?

void *ptr = malloc (20);

➢ if ptr points to address location, say, 0xffff0d0, then this address will

be some address in Heap Segment of the process Virtual address space

strncpy (ptr, “Hello”, 5);

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

Lower

Address

20B
0xffff0d0

MMU

Translates

VA to PA

“Paging”

Hello World

Physical Memory

Virtual address

!! This course do not cover paging, this course

Covers only management of Virtual memory

(Heap and Stack) by Linux like OS !!

Higher

Address

Actual Data/Content is written on physical memory

Virtual memory do not contain any data !

break
Point upto which heap memory is being used

by process

Memory Management in Linux

Heap Memory Management - > break pointer

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

Start of the Heap

➢ Break is the pointer maintained by OS per process, it points to top of Heap Memory

segment

➢ Any memory above break pointer is not a Valid memory to be used by the process

➢ Break pointer moves towards higher address, increasing the Heap region, as

process claims more Heap memory

➢ Break pointer moved back towards lower address as process frees the Heap

memory

Higher

Address

Lower

Address

break

Memory Management in Linux

Heap Memory Management - > brk and sbrk

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

➢ Linux OS provide two system calls – brk and sbrk using which we can claim

more memory from Heap segment

➢ brk Synopsis :

int brk(const void *addr);

brk() expands the heap memory segment such that break moves towards

higher memory address and points to the addr which is provided as

argument. addr should be valid address.

Return : 0 on success and -1 on failure

int rc = brk (0xffff0d0);

Higher

Address

Lower

Address

break =

0xffff0d0

Memory Management in Linux

Heap Memory Management - > brk and sbrk

Code

Initialized Data

Heap

Stack

Available for stack growth

Cmd line arguments

Uninitialized data (bss)

Higher

Address

Lower

Address

➢ Linux OS provide two system calls – brk and sbrk using which we can claim

more memory from Heap segment

➢ brk Synopsis :

int brk(const void *addr);

brk() expands the heap memory segment such that break moves towards

higher memory address and points to the addr which is provided as

argument. addr should be valid address.

Return : 0 on success and -1 on failure

int rc = brk (0xffff0d0);

break

Memory Management in Linux

Heap Memory Management - > brk and sbrk

Code

Initialized Data

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

➢ Linux OS provide two system calls – brk and sbrk using which we can claim

more memory from Heap segment

➢ sbrk Synopsis :

void *sbrk(intptr_t incr);

sbrk() expands the heap memory segment such that break moves towards

higher memory by incr bytes which is provided as argument.

Return : old break pointer address on success and NULL on failure

Higher

Address

Lower

Address

Heap

break

Memory Management in Linux

Heap Memory Management - > brk and sbrk

Code

Initialized Data

Stack

Available for stack growth

Cmd line arguments

Uninitialized data (bss)

➢ Linux OS provide two system calls – brk and sbrk using which we can claim

more memory from Heap segment

➢ sbrk Synopsis :

void *sbrk(intptr_t incr);

sbrk() expands the heap memory segment such that break moves towards

higher memory by incr vytes which is provided as argument.

Return : old break pointer address on success and NULL on failure

Ex : void *ptr = sbrk(10);

/*ptr = break (old break pointer address)*/

/*break’ is the new value of break pointer*/

Special case :

sbrk(0) – returns the value of break pointer

Higher

Address

Lower

Address

break’

Heap
break

Heap

Memory Management in Linux

Heap Memory Management - > Problem Statement

20

15

10

10

break

20

void *p1 = malloc (20);

void *p2 = malloc (10);

void *p3 = malloc (10);

void *p4 = malloc (15);

void *p5 = malloc (20);

free(p3);

Q1. How OS would know how much memory to free on invoking free(p3) ?

Q2. How, OS organizes the memory blocks assigned by malloc ?
OS need to know that p3 is associated with 10 bytes of block of memory

and free(p3) should release only 10 bytes of memory

Q3. How, OS ensures that p3 is a valid memory address, and memory pointed by

p3 is occupied and is not freed already ?

Let us understand the concept of Memory Block Management to find

our Answers !

Basically we want to understand how Heap Memory Management is done by Linux OS
P1

P2

P3

P4

P5

Memory Management in Linux

Heap Memory Management - > malloc basic Implementation

➢ Now, We know that we use malloc/calloc to allocate dynamic memory to our program from Heap Region

➢ malloc/calloc are actually not a system calls , but they are functions provided by standard C library

➢ They are wrapper over sbrk() system call. Malloc/calloc internally invoke sbrk() to claim the memory from heap segment.

The returned break pointer address is what is returned by malloc/calloc

➢ A very simple implementation of malloc could be written as below :

void *malloc (int size) {

void *p;

p = sbrk(0);

if (sbrk(size) == NULL)

return NULL;

return p;

}

Memory Management in Linux

Heap Memory Management - > Memory Block Management

➢ Let us suppose, you are given a huge chunk of contiguous memory, which represents the Process’s Virtual address space

➢ Process should be able to allocate smaller chunks of memory as per the requested size from this heap segment memory

when needed

➢ Process should be able to return back those smaller chunks of memory it had requested back to heap segment

➢ You are not allowed to use any supporting data structures, as your DS would in-turn need separate memory which is not

available to you

➢ Let us see how can we implement this scheme . .

H E A P S E G M E N T

LA HA

Memory Management in Linux

Heap Memory Management - > Metablock and Datablock

H E A P S E G M E N T

void *ptr1 = malloc (14);

14→
14

F

ptr1

Actual memory to be

used by the process

Meta information

struct meta_block_t {

int size; /*= 14*/

struct meta_block_t *next; /*= NULL*/

bool is_free; /*= FALSE*/

}

Note that, OS inserts additional padding bytes at the end to make the total block size (Meta block + Data block) integer

multiple of 4. This is called 4 bytes alignment.

But Process should use only 14 bytes of memory starting from address ptr1

2

void *malloc (int size) {

struct meta_block_t *p;

p = (struct meta_block_t *)sbrk(0);

if (sbrk (size + sizeof(meta_block_t)) == NULL)

return NULL;

p->size = size;

p->next = NULL;

p->is_free = FALSE;

return p + 1;

}

Enhanced

malloc

H E A P S E G M E N T

Memory Management in Linux

Heap Memory Management - > Memory Allocations and Deallocations

void *ptr1 = malloc (14);

14→
14

F

void *ptr2 = malloc (16);

16→
16

F

void *ptr3 = malloc (20);

20→
20

F

void *ptr4 = malloc (16);

16→
16

F

void *ptr5 = malloc (20);

20→
20

F

ptr1 ptr2 ptr3 ptr4 ptr5

2

Memory Management in Linux

void *ptr1 = malloc (14);

14→
14

F

void *ptr2 = malloc (16);

16→
16

F

void *ptr3 = malloc (20);

20→
20

F

void *ptr4 = malloc (16);

16→
16

F

void *ptr5 = malloc (20);

20→
20

F

ptr1 ptr2 ptr3 ptr4 ptr5

free(ptr2);

16→
16

T
2

free(ptr4);

16→
16

T

Heap Memory Management - > Memory Allocations and Deallocations

Memory Management in Linux - deprecated

Heap Memory Management - > Memory Block Management

14→
14

F
16

12

F
20→

20

F
16

12

F
20→

20

F

ptr1 ptr2 ptr3 ptr4 ptr5

16→
16

T
2 16→

16

T

Now, Suppose OS maintains a pointer which points to start of the Heap Segment of the process. Initially it will be NULL

as process has not requested any memory from Heap Segment when it starts

struct meta_block_t *block_list_base = NULL; /*Exist in process’s initialized data segment part*/

Now Suppose, the process invokes malloc (x), write an enhanced malloc function to allocate x bytes of Heap memory

void * malloc (int size);

Let us see the implementation next . . .

Memory Management in Linux

Heap Memory Management - > Memory Block Management

/* Pseudocode */

void * malloc (int size) {

struct meta_block_t *p;

if (!block_list_base) {

p = sbrk(0); /*Get starting address of Heap Segment*/

if (! sbrk (size + sizeof(struct meta_block_t)))

return NULL;

p->size = size;

p->next = NULL;

p->is_free = FALSE;

block_list_base = p;

return p + 1;

}

/*block list is not empty*/

struct meta_block_t *last = NULL;

/*Find the block which is atleast big as size from

block list, if no such block exist, set last to point to

last block of list */

p = search_free_block_list (block_list_base, size, &last);

/* Pseudocode continued . . . */

if (p) {

p->size = size;

p->next = no_op; /*No need to modify it*/

p->is_free = FALSE;

return p + 1;

}

/*if p is NULL*/

p = sbrk (size + sizeof(struct meta_block_t));

if(!p) return NULL;

last->next = p;

p->size = size;

p->next = NULL;

p->is_free = FALSE;

return p + 1;

} /*pseudocode ends*/

size→
size

F

Case 1

Create the First Block

On First malloc

Memory Management in Linux

Heap Memory Management - > Memory Block Management

/* Pseudocode */

void * malloc (int size) {

struct meta_block_t *p;

if (!block_list_base) {

p = sbrk(0); /*Get starting address of Heap Segment*/

if (! sbrk (size + sizeof(struct meta_block_t)))

return NULL;

p->size = size;

p->next = NULL;

p->is_free = FALSE;

block_list_base = p;

return p + 1;

}

/*block list is not empty*/

struct meta_block_t *last = NULL;

/*Find the block which is atleast big as size from

block list, if no such block exist, set last to point to

last block of list */

p = search_free_block_list (block_list_base, size, &last);

/* Pseudocode continued . . . */

if (p) {

p->size = size;

p->next = no_op; /*No need to modify it*/

p->is_free = FALSE;

return p + 1;

}

/*if p is NULL*/

p = sbrk (size + sizeof(struct meta_block_t));

if(!p) return NULL;

last->next = p;

p->size = size;

p->next = NULL;

p->is_free = FALSE;

return p + 1;

} /*pseudocode ends*/

14→
14

F
16

16

F
20→

20

F
16

12

F
20→

20

F

ptr1 ptr2 ptr3 ptr4 ptr5

16→
16

T
2 16→

16

T

Case 2.1, take size param = 16

Use Reusable Block

Case 2

Memory Management in Linux

Heap Memory Management - > Memory Block Management

/* Pseudocode */

void * malloc (int size) {

struct meta_block_t *p;

if (!block_list_base) {

p = sbrk(0); /*Get starting address of Heap Segment*/

if (! sbrk (size + sizeof(struct meta_block_t)))

return NULL;

p->size = size;

p->next = NULL;

p->is_free = FALSE;

block_list_base = p;

return p + 1;

}

/*block list is not empty*/

struct meta_block_t *last = NULL;

/*Find the block which is atleast big as size from

block list, if no such block exist, set last to point to

last block of list */

p = search_free_block_list (block_list_base, size, &last);

/* Pseudocode continued . . . */

if (p) {

p->size = size;

p->next = no_op; /*No need to modify it*/

p->is_free = FALSE;

return p + 1;

}

/*if p is NULL*/

p = sbrk (size + sizeof(struct meta_block_t));

if(!p) return NULL;

last->next = p;

p->size = size;

p->next = NULL;

p->is_free = FALSE;

return p + 1;

} /*pseudocode ends*/

14→
14

F
16

12

F
20→

20

F
16

12

F
20→

20

F

ptr1 ptr2 ptr3 ptr4 ptr5

16→
16

T
2 16→

16

T

Case 2.1, take size param = 16

Use Reusable Block

Case 2

Case 2.2, take size param = 24

Extend the Heap Segment further

24→
24

F

ptr6

last

Memory Management in Linux

Heap Memory Management - > Block Splitting

14→
14

F
16

12

F
20→

20

F
16

12

F
20→

20

F
30→

30

T
2 16→

16

T

➢ Now, Given the snapshot of the heap memory segment as above, What should happen if Process issues the request :

void *ptr = malloc (10);

➢ Our malloc should search the block from the list which could satisfy the request of 10 bytes

➢ Such a block is pointed to by ptr2

➢ Common Sense says ptr2 block should be reused to assign 10B of memory, whereas remaining 20 bytes should still be

maintained as free block in the block list

➢ We achieve this by splitting the 30B block into two blocks – 10B and 20B respectively. 10B block should be marked as

is_free = FALSE, and 20B block should be marked as is_free = TRUE

ptr2

Memory Management in Linux

14→
14

F
16

12

F
20→

20

F
16

12

F
20→

20

F
30→

30

T
2 16→

16

T

14→
14

F

12

F
20→

20

F
16

12

F
20→

20

F
10→

10

F
2 16→

16

T
8

T
8→

➢ Total No of Blocks increased from 5 to 6 in block list

➢ Our malloc function should be enhanced to split the block large enough to provide the requested memory.

➢ Just for simplicity , I am not ignoring taking care of 4 byte alignment

Heap Memory Management - > Block Splitting

Memory Management in Linux

Heap Memory Management - > Block Merging

14→
14

F

12

F
20→

20

F
16

12

F
20→

20

F
10→

10

F
2 16→

16

T
6

T
6→

➢ Consider the snapshot of the Heap memory segment as shown in the above diagram

➢ Suppose the process issues free(ptr2). OS knows from meta info that it has to free 10B of memory

➢ All consecutive free blocks must be merged together to form a bigger free block

➢ 10B block pointed by ptr2 is freed and merged with 6B free block to form one single 22B free block

➢ Total no of blocks are reduced from 6 to 5 in the block list

ptr2

14→
14

F

12

F
20→

20

F
16

12

F
20→

20

F
10→

10

T
2 16→

16

T
6

T
6→

ptr2

14→
14

F
16

12

F
20→

20

F
16

12

F
20→

20

F
22→

22

T
2 16→

16

T

Memory Management in Linux - deprecated

Heap Memory Management - > Block Allocation Algorithms

14→
14

F

12

F
20→

20

F
16

12

F
20→

20

F
10→

10

F
16→

16

T
6

T
6→

When a process request an additional k bytes of memory, OS can follow one of these algorithms

to satisfy the process’s request :

Best Fit

First Fit

Worst Fit

1

2

3

Memory Management in Linux - deprecated

Heap Memory Management - > Memory Block Management

->Block Merging

➢ The merging logic should be implemented in a new function

void merge_free_heap_blocks (struct meta_block_t *ptr)

where ptr is a pointer to block which needs to be merged with its adjacent

free blocks until all contiguous free blocks are merged to form one big single free block

➢ The function merge_free_heap_blocks() should be called when process release the non-free block using free()

Memory Management in Linux

Heap Memory Management - > Fragmentation

➢ Consider a snapshot of the heap memory segment as shown above

➢ Suppose process issues malloc(20);

➢ Now there are two free blocks of 16B each, together they can satisfy this new malloc request, but since they are not

consecutive blocks, these blocks together cannot be used to provide 20B of requested memory

➢ This is called the problem of Memory fragmentation. Despite having enough free memory already, we still need to

extend the heap region further to satisfy the new memory request

14→
14

F
16

12

F
20→

20

F
16

12

F
20→

20

F
16→

16

T
16→

16

T

break

Memory Management in Linux

Heap Memory Management - > Internal Fragmentation

14→
14

F
16

12

F
20→

20

F
16

12

F
20→

20

F
30→

30

T
16→

16

T

14→
14

F

12

F
20→

20

F
16

12

F
20→

20

F
10→

10

F
16→

16

T
8

T
8→

➢ Suppose malloc(10) request is issued by the process, 30B free block will undergo split

➢ 8B block in the second diagram, which results from block splitting, is unusable memory for all malloc(x) requests, where

x > 8.

➢ In other words, 8B of memory is internally fragmented which results from block splitting

Internal F

Memory Management in Linux

Heap Memory Management - > External Fragmentation

14→
14

F
16

12

F
20→

20

F
16

12

F
20→

20

F
16→

16

T
2 16→

16

T

➢ Consider a process issues a request of malloc(20)

➢ We have two free 16B blocks of memory which is suffice to satisfy request of 20 B,

but still we cannot allocate this requests because 16B are non-contiguous and hence cannot be merged

➢ These free blocks are said to be externally fragmented memory which is unusable by virtue of being non-contiguous

➢ So, our Heap Memory Management suffers from Fragmentation Problems !

➢ There was no such fragmentation problem for stack memory

External FExternal F

Memory Management in Linux

Heap Memory Management - > Performance

Consider the program snippet below :

int i = 0 ;

void *p = NULL;

for (i = 0 ; i < 100; i++){

p = malloc(10);

/*do something with p*/

list_add (some_list, p);

}

➢ Process request 10 Bytes of memory 100 times

➢ malloc invoked sbrk() 100 times in a very short time

➢ Heap region extends 100 times

➢ Note that, malloc is not a system call, whereas brk()/sbrk()

are system calls

➢ Invoking system calls is a costly operation

➢ Let us briefly discuss why system call invocation is costly

operation

Memory Management in Linux -> Paging

Paging

Memory Management in Linux -> Paging

➢ Paging is one of the most discussed concepts in the world of OS

➢ It is the backbone of all modern OS today

➢ There are not one, but many benefits of paging :

➢ On a 32 bit system with RAM size of 8GB, Paging create the illusion to a process in execution as if system has

2^32 bytes of physical memory for execution, whereas actually is has just 8GB

➢ Allows the process to store its data in non-contiguous addresses in physical memory

➢ Allows, Multiple processes to re-use the same physical memory addresses to store its data, one process at a time

➢ Paging is implemented by a special hardware unit called MMU (Memory Management Unit)

➢ Let us dive deep into concepts of Paging

Memory Management in Linux -> 32 | 64 bit System

➢ What is meant when we say my system is 32|64 bit system ?

➢ 32 bit system simply means :

➢ All processes in execution have theoretically 2^32 virtual addresses

in its process VAS

➢ Virtual addresses are 32 bit integers which identifies virtual memory locations

➢ CPU reads/writes 32 bits of data in one CPU clock cycle, not more than that

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

Cmd line arguments

Uninitialized data (bss)

LA = 0

HA

= 2^32 -1

<data type> a = <value>;

printf (“address of a = %p”, %a);

long var1 = 10.0; /*will take 2 cpu clock cycles to store data in physical memory on 32 bit

System, and 1 cpu clock cycle on 64 bit OS*/

The fact that machine is 32 bit or 64 bit is determined by Machine hardware

64 bit machine can run 32 and 64 bit OS

32 bit machine can run only 32 bit (or lower) OS

L
o

gical A
d

d
re

sse
s

Memory Management in Linux -> Virtual Addresses

➢ Whenever you run a Program, it deals only with the virtual addresses which belongs to its virtual

address space

➢ Program never deals directly with physical addresses, Our Program are not even aware that there is something called physical

Memory (RAM) which have physical addresses

➢ Virtual addresses are also called logical addresses

➢ Virtual Memory is conceptual, it is not an actual hardware

➢ Process spend its entire life believing the virtual addresses as memory locations where it reads and writes all its data

➢ Let us understand it with high level diagram

Memory Management in Linux -> Virtual Addresses

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

20B

L
o

gical A
d

d
re

sse
s

ptr = malloc(20);

0xffff0d0 = ptr

Higher

Address

Lower

Address
0

2^32 -1

Memory Management in Linux -> Physical Addresses

➢ Your System has a physical memory, also called, Main Memory which is actually a piece of hardware, famously called as RAM

➢ If, suppose, your RAM is 4GB in size, it means it is

4 * 1024 MB = 4 * 1024 * 1024KB = 4 * 1024 * 1024 * 1024 B

= 2 ^ 32 Bytes of memory

➢ Lowest unit of memory which has an address is Byte. Therefore every Byte of memory (Virtual or physical) has an address

➢ Therefore, 4GB RAM chip will have 2^32 physical addresses which denote actual memory locations on RAM chip

RAM

Q. How many bits you need to uniquely represent an address

Of physical memory location on 4GB RAM chip and 8GB RAM chip ?

Ans : 32 and 33 bits

Physical Address space is defined as the size of Main memory

P
h

ysical A
d

d
re

sse
s

0

2^32 -1

Memory Management in Linux -> Physical and Virtual Memory Comparison

Virtual Memory Physical Memory

Every process has its own Virtual Memory

in the range [0-2^32 -1]

All processes running on the system share

the physical memory

Process is aware of only virtual memory Physical Memory is completely hidden

from processes. MMU acts as a middle-

man between process’s Virtual Memory

and Physical Memory

It is conceptual (not a hardware), software

based simulation, do not actually store any

data

It is actual piece of hardware called RAM

chips, Actually stores data

You cannot change it for a given system.

Fixed.

You can increase or decrease by installing

more or less no of RAM chips

Memory Management in Linux -> CPU generates only Virtual Addresses

➢ Variables in the programs are just symbolic names of addresses

➢ Variables are there for our convenience so that we can read and write computer instruction in human readable

format

➢ At the lowest level, programs are translated into Machine code which only deals with virtual addresses

➢ We have already learnt that, all local variables and arguments of a function are accessed by CPU

by adding or subtracting to base pointer register ebp of the current stack frame

➢ Let us recap in the next slide …

Memory Management in Linux -> CPU generates only Virtual Addresses

Recap

3 int B (int a , int b , int c) {

4

5 int res = 0; /*I4*/

6 res = a + b + c;

7 return res;

8 }

11 int A (int a, int b) {

12

13 int c = 0 ; /*I2*/

14 c = a + b;

15 int d = B (c, a, b);

16 return d;

17 }

19 int main (int argc, char **argv) {

20

21 int res = 0;

22 res = A (4, 5); /* I1 : 0x8048469*/

23 return 0;

24 }

Stack Frame of main()

<Stack frame data>

b = 5sizeof(int)

a = 4

0x8048469 <Return Address>

0xbffff0e8 (= ebp value of main())

4B

4B

sizeof(int)
0xbffff0d4

0xbffff0d0

0xbffff0c8
Local Var d

Local Var c
0xbffff0c4

0xbffff0c0

0xbffff0cc

sizeof(int)

sizeof(int)

➢ ebp register stores 0xbffff0c8 which is the address of old ebp’s value

➢ ebp register value is used by the processor to reference arguments and

local variables of the current stack in execution

(-4)%ebp -- address of local variable d

(-8)%ebp -- address of local variable c

%ebp – Address of prev frame ebp’s value

(4)%ebp – Address where Return address is saved

(8)%ebp -- address of argument a

(12)%ebp -- address of argument b

I2

ebp eip esp

Memory Management in Linux -> CPU generates only Virtual Addresses

➢ Hence, CPU generates millions of Virtual addresses during the course of execution of a process

➢ These generated Virtual addresses are then mapped to corresponding physical addresses by MMU using concept called

Paging

➢ CPU then issue the instruction to either read or write the data on the mapped physical addresses

Memory Management in Linux -> Virtual Addresses to physical address Mapping

void *ptr = malloc (20);

➢ if ptr points to address location, say, 0xffff0d0, then this address will

be some address in Heap Segment of the process Virtual address space

strncpy (ptr, “Hello”, 5);

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

Lower

Address

20B
0xffff0d0

MMU

Translates

VA to PA

“Paging”

Hello

Physical Memory

Virtual address

Higher

Address

Actual Data/Content is written on physical memory

Virtual memory do not contain any data !

Same goes with any address which belong to Process’s stack memory

(i.e. local variables) or data segments (i.e. global/static variables)

(Infact any VA which belong to VAS of a process)

Virtual Memory

L
o

gical A
d

d
re

sse
s

Memory Management in Linux -> Virtual Addresses to physical address Mapping

Consider Keys As Virtual Addresses Consider Lockers as Actual storage

On Physical Memory where Data is kept

Which Key belongs to which

Locker

MMU

“Paging”

Memory Management in Linux -> Physical Pages & Physical Frames

RAM

P
h

ysical A
d

d
re

sse
s

0

2^32 -1

➢ Shown is the System’s Main Memory whose size is 4GB

➢ If we fragment this main memory in blocks of equal size, each block

is called a frame

➢ On Most System architectures, size of frames is taken as 4KB (4096B)

➢ So, how many frames are there in 4GB of physical memory ?

= size of physical memory / size of Frame = 2^32 / 2 ^ 12 = 2^ 20 frames

➢ The SNAPSHOT of the data stored in a frame of physical memory is called a Physical

page

➢ Obviously, size of page = size of Frame

➢ Think frames as container of pages

Analogy : You have a container (Main Memory) which can contain max of 3 apples

(max 3 frames), and you have to carry 9 apples (9 physical)from one place to another

f1

f0

f3

f2

f5

f4

f6

Memory Management in Linux -> Page swapping

RAM

P
h

ysical A
d

d
re

sse
s

0

2^32 -1

P1

P3

P7

P9

P4

P10

P2

➢ Consider the snapshot of the main memory at some random time when

it has some pages in its frames

➢ Swap is the operation in which Main memory saves the page in one of its frame

to the secondary storage and reload other page from secondary storage into the frame

➢ When Main Memory do not left with a free frame it may chose to temporarily

store the pages on secondary storage

➢ For example, MM can save Page P3 in frame f1 to swap it with frame P5

➢ Main Memory uses various page replacement algorithm to choose which page

to be chosen to be replaced with new page from disk, its not random

Algorithms : LRU, FIFO etc

Secondary Storage

P5 P11 P12 P14

f1

f0

f3

f2

f5

f4

f6

100GB

swap

Memory Management in Linux -> Virtual Memory Pages

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

Lower

Address

Higher

Address

Virtual Memory

L
o

gical A
d

d
re

sse
s

P2^20-1

P2^20-2

P…

P…

P…

P…

P…

P…

P4

P3

P2

P1

P0

➢ Just like Main Memory is divided into frames which store pages,

Virtual Memory of the process is also fragmented into pages

of same size (4096B). These pages are called Virtual pages.

➢ So, if size of Virtual Memory of a process is 2^32 B, and page size is 4096B,

then total no of pages into which VAS of a process is divided are 2^20 pages

➢ To uniquely identify a page in VAS of a process we need 20 bits !

➢ Since size of each page is 4096B (2^12B), 12 bits are required to uniquely

assign an address to a Byte with in a page (Remember every Byte is supposed

to have an address)

4096B

0

4095

Virtual Memory

Page

Memory Management in Linux -> 1:1 relationship between Physical and Virtual page

➢ Remember, We equate Virtual addresses as a key and Physical addresses as lockers

➢ A Virtual page is a collection of 4096 keys, each key unlocks one byte of data in physical memory, means, each VA

provide an access to 1B of data present at some physical address in main memory

➢ If there is a key, then there has to be a locker, precisely saying, if there is a Virtual page, there exists a corresponding physical

page (may be on disk on in main memory)

P4

P3

P2

P1

P0

RAM

P4

P3

P2

P1

P0

A1

A2

A3

A4

A5

A6

A7

A8

1BData1

1BData2

1BData3

1BData4

1BData5

1BData6

1BData7

1BData8

Virtual Page

contents

Physical Page

contents

• For every VA, there is 1 Byte of Data In physical page

Process Virtual

Pages

Always Contiguous

Process Physical

Pages

Stored in Non-Contiguous

Frames in MainMemory

Memory Management in Linux -> 1:1 relationship between Physical and Virtual page

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

Lower

Address

20B

Higher

Address

Virtual Memory

L
o

gical A
d

d
re

sse
s

P4

P2

P1

P0

P3

P0

P1

P2

P3

P4

P5P5

➢ Physical Pages are created Or destroyed as process

uses or frees corresponding virtual pages during the

course of execution

➢ OS allocates or releases the Virtual Memory (hence Physical Pages also)

in units of PAGE SIZE (4096 Bytes)

➢ Thus malloc(10) , will not result in creation of new physical/Virtual page

if top-most V.page in Heap Segment of Process’s VAS has 10 spare bytes

to satisfy malloc request

Physical Pages

Memory Management in Linux -> Virtual Address Composition

➢ Suppose, during the course of execution of the process, CPU generates a

virtual address of 32 bits, ex, 0xffff0d00

➢ These 32 bits is split into two parts

➢ Thus the Virtual address means 0xffff0d00 simply means an address

which is within page no 1048560, at offset 3328

Code

Initialized Data

Heap

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

Lower

Address

0xffff0d00
Virtual address

Higher

Address

Virtual Memory

L
o

gical A
d

d
re

sse
s

20 bits 12 bits

ffff0 d00

V Page no =

1048560

Byte no with in a page =

3328

4096B

0

4095

3328
V page no

1048560

1048560

Memory Management in Linux -> Page Table

➢ Page Table is a Data structure maintained by OS for every process running on the system

➢ Page Table is used to MAP the virtual address of process’s VAS to a physical address of RAM

➢ No of rows in page table = No of pages in process VAS

➢ Let us now take an example to illustrate how address mapping from Virtual address to physical address happens !

V. Page

No

Phy Page

No

Frame

no

0 0 3

1 1 5

2 2 1

3 3 2

4 4 -

P4

P3

P2

P1

P0

RAM

P2

P3

P0

P1

f1

f0

f3

f2

f5

f4

f6
Virtual Memory

Pages (Contiguous)
Physical Memory

Pages (Non-Contiguous)

Page Table

Memory Management in Linux -> Paging In Action

➢ In our example, consider the following configuration of the system

➢ Size of Virtual address space of a process = 16B = 2 ^ 4

➢ Virtual address is of 4 bits

➢ Page size = 4B

➢ Main Memory Size = 32B

➢ No of Bits to represent a V page uniquely = 2bits

➢ No of Bits to represent an address with in V page uniquely = 2bits

Vir

Page

No

Phy

Page

No

Frame

no

0 0 3

1 1 5

2 2 1

3 3 2

P0

Virtual Memory Pages
Physical Memory

P1

P2

P3

0
1

2

3

4
5

6

7

8
9

10

11

12
13

14

15

10 01

f0

f1

f2

f3

f4

f5

f6

f7

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

Offset = 1F = 1

Result :

Logical Address 9 Maps to physical address 5

CPU performs read/write operation at physical address 5

Memory Management in Linux -> Paging In Action

➢ In our example, consider the following configuration of the system

➢ Size of Virtual address space of a process = 16B = 2 ^ 4

➢ Virtual address is of 4 bits

➢ Page size = 4B

➢ Main Memory Size = 32B

➢ No of Bits to represent a V page uniquely = 2bits

➢ No of Bits to represent an address with in V page uniquely = 2bits

Vir

Page

No

Phy

Page

No

Frame

no

0 0 3

1 1 5

2 2 1

3 3 2

P0

Virtual Memory Pages
Physical Memory

P1

P2

P3

0
1

2

3

4
5

6

7

8
9

10

11

12
13

14

15

10 01

f0

f1

f2

f3

f4

f5

f6

f7

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

Offset = 1F = 1

Similarly, LA 6 (0110) maps to 22 PA

LA 13 (1101) maps to 9 PA

LA 15 (1111) maps to 11 PA

LA 3 (0011) maps to 15 PA

Memory Management in Linux -> Multiple Processes Scenario

Vir

Page

No

Phy

Page

No

Frame

no

0 0 3

1 1 5

2 2 1

3 3 2

P2_P0

Process 1

Physical Memory

P1_P2

P1_P3

P1_P0

P2_P1

P1_P1

P2_P2

P2_P3

f0

f1

f2

f3

f4

f5

f6

f7

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

➢ Physical Memory frames are shared between processes running on the system

➢ Physical Pages need not be contiguous in physical memory

➢ Ex, Page 0 and page 1 of Process 1 are in frames f3 and f5 respectively

➢ Any free frame can be allocated to a process’s physical page (Depending on Page replacement

algorithms)

Process 2

Vir

Page

No

Phy

Page

No

Frame

no

0 0 0

1 1 4

2 2 6

3 3 7

Memory Management in Linux -> No External Fragmentation

➢ Why Frame size = Physical Page Size ?

➢ A Physical Page is always loaded at the frame Boundary

External Fragmentation

Memory Management in Linux -> Memory Allocation to a Process

➢ OS allocates/frees memory to/from a process in units of PAGE_SIZE (4096B)

➢ So, if your process invokes malloc(12) for example, does OS allocates (12 + MBS) bytes or PAGE_SIZE bytes

of memory to a process , where MBS = size of meta data block (recall !)

➢ Answer is Both :

➢ OS allocates PAGE_SIZE bytes of virtual memory to your process (and creates a

corresponding physical page), out of those PAGE_SIZE bytes, (12 + MBS) bytes is assigned to your process

> Remaining (PAGE_SIZE – (12 + MBS)) Virtual Memory is cached by glibC malloc implementation

> Next time when process request, say 20, bytes of memory, malloc checks if it has a virtual page

which has unassigned virtual addresses to meet the new request, if yes, then (20 + MBS) bytes

are assigned from remaining portion of the virtual page.

> Memory remaining now : (PAGE_SIZE – 12 – 20 – 2 * MBS) Bytes in a virtual page

> In case Virtual page do not have enough memory left to satisfy the process request, malloc request OS to

assign another brand new virtual page altogether

> A Diagram worth 1000 words . . .

Memory Management in Linux -> Memory Allocation to a Process

Heap

malloc()

{

. . .

}

glibC

malloc(100)

New Virtual Page

• Out of 4KB, only (100 + MBS) Bytes are

given to the process to use

• OS is not aware that glibC is playing this efficient

game, all it believes that it has assigned 4KB of

memory to a requesting process

Memory Management in Linux -> Memory Allocation to a Process

Heap

malloc()

{

. . .

}

glibC

malloc(100)

New Virtual Page

• Out of 4KB - 100 -MBS , only (200 + MBS) Bytes

are given to the process to use from cached Virtual page

• OS is not disturbed again !

malloc(200)

Why this Game by malloc ?

➢ To Minimize no of System Calls invocation (sbrk()) for every memory requests by

a process

Memory Management in Linux -> Memory Allocation to a Process -> A Bigger Picture

➢ We had already learnt in Heap Memory Management Section show block splitting and block

merging is done

➢ Now let us combine Paging and Heap Memory Management Techniques (splitting and merging) together and try

to see a bigger picture

➢ It shall give you overall picture how Heap Memory Management is done for a process

Memory Management in Linux -> Shared Physical Pages

➢ A Shared physical page is a physical page which is shared by two or more running processes

➢ A Physical page is said to be shared, if it is present in page tables of two or more processes

➢ In our example, consider the following configuration of the system

➢ Size of Virtual address space of a process = 16B = 2 ^ 4

➢ Virtual address is of 4 bits

➢ Page size = 4B

➢ Main Memory Size = 32B

➢ No of Bits to represent a V page uniquely = 2bits

➢ No of Bits to represent an address with in V page uniquely = 2bits

Memory Management in Linux -> Shared Physical Pages

Vir

Page

No

Phy

Page

No

Frame

no

0 0 3

1 1 5

2 Y 1

3 3 2

P2_P0

Process 1

Physical Memory

Y

P1_P3

P1_P0

P2_P1

P1_P1

P2_P2

P2_P3

f0

f1

f2

f3

f4

f5

f6

f7

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

Process 2

Vir

Page

No

Phy

Page

No

Frame

no

0 0 0

1 1 4

2 2 6

3 Y 1

P1

P2

1001 (9)

1101 (13)

• It means, P1 and P2 are accessing the

same Physical memory location

• It means, whatever P1 write at physical

address 5, modification will be

available to P2 also

• It means, P1 and P2 are sharing the

same physical memory page in frame f1

• If P1 executes

strncpy(9, “Hell”, 4);

And P2 executes

printf(“%s”, str);

where str points to virtual

address 13

then output of printf will be

“Hell”

Memory Management in Linux -> Shared Physical Pages

P1 P2 P3

Shared Region of

Physical Memory

Shared Memory End Goal :

Memory Management in Linux -> Shared Physical Pages

Summary on Shared Pages

➢ So, if Virtual Page of multiple processes maps to same physical Page, that particular physical page is shared

by multiple processes

➢ Linux/Unix OS officially calls this concepts as “shared Memory”

➢ Shared Memory is one of the IPC (Inter process Communication) technique

➢ Linux/Unix OS provide a system call using which a Multiple process can create a shared memory region and

exchange data through it using

➢ We have learnt the conceps behind shared memory, we shall learn later how to write programs using shared memory

Memory Management in Linux -> Internal Fragmentation

P0

Virtual Memory

Pages

P1

P2

P3

0
1

2

3

4
5

6

7

8
9

10

11

12
13

14

15

Stack Memory

|

V

^

|

Heap Memory

➢ Consider the process whose VAS is shown here, fragmented into 4 pages

➢ Pages P1 and P2 are being partially used, yet OS needs to allocate one full frame

to pages P1 and P2 also

f0

f1

f2

f3

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

These frames are partially used, remaining

Space is unused -> Internal fragmentation

Larger the page size, higher the internal fragmentation

Vir

Page

No

Phy

Page

No

Frame

no

0 0 3

1 1 0

2 2 1

3 3 2

Memory Management in Linux -> Problems With Page Tables

Now That we have learnt the core concept of Paging and Page tables, Let us see what are

the challenges and problems we come across with Page Tables/Paging

There are basically three problems with Page tables :

1. Page Table Size Matters !!

Soln -> Multi Level Paging (Paging of Page tables)

2. Contiguous Main Memory allocation

Soln -> Multi Level Paging (Paging of Page tables)

3. Page Tables Hollowness for small processes

Soln -> Inverted Page Tables

Let us discus each one by one , and try to analyze what solution has been proposed for each of these problems

Problems With Page Tables

Memory Management in Linux -> Problems With Page Tables

1. Page Table Size Matters

Scenario 1 :

32 bit System, Main Memory size 4GB, page size 4KB, Page table entry size = 4B

➢ Size of Page Table = 2 ^ 22 B = 4MB per process.

➢ Looks Ok

Scenario 2 :

64 bit System, Main Memory size 8GB, page size 4KB, Page table entry size = 4B

➢ Size of Page Table = 2 ^ 22 B = 2 ^ 34 MB , and this is for each Process , lol !!

➢ Not feasible !

Thus, Problem of Page table size grows more aggrieved as Virtual address size supported by the system increases

Remember, 32 bit system cannot access RAM beyond 4GB, therefore, today we have 64 bit systems so as to access more RAM

And hence enhances the speed and multi-tasking ability of the system

But , with 64 bit system, Having a Page table of this giant size is also not feasible !

Memory Management in Linux -> Problems With Page Tables

2. Contiguous Main Memory Allocation

➢ Page tables, like Physical Pages, are not fragmented and need a contiguous region in Main Memory

> For ex : 4MB of Page table would need 4MB of contiguous region in Main Memory

➢ With the increase in the size of Virtual Address support , Page table size tends to increase drastically

➢ Finding the continuous region in Main Memory becomes more and more challenging to load the page Tables

of increased size

MM

➢ Let us suppose, there are three processes in the system whose page tables

needs 3 frames each to be stored in main memory

➢ Process P1

➢ Process P2

➢ Process P3

➢ Page Tables of processes could be loaded in any 3 consecutive frames of MM

➢ With the increase in size of Page tables, chances to find more available consecutive frames

grows more rare

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

100

200

280

Soln : Multi Level Paging !

Let us break the large page tables into smaller size, load it in non-contiguous

Frames in Main-Memory !

Memory Management in Linux -> Problems With Page Tables

Memory Management in Linux -> Problems With Page Tables

3. Page Tables Hollowness for small processes

➢ 32 bit System, Main Memory size 4GB, page size 4KB, Page table entry size = 4B

Size of Page Table = 2 ^ 22 B = 4MB per process.

➢ As soon Process runs, OS creates its Page table of size 4MB and load in Main Memory, irrespective whether process has

malloc’d any memory or not

➢ Not all Processes running on the system are memory intensive, in-fact most of them are not

➢ Let us visualize how does the Memory Look like when you run your favorite hello-world program which

consume almost no memory from heap of stack segment

Memory Management in Linux -> Problems With Page Tables

3. Page Tables Hollowness for small processes

Code

Initialized Data

Stack

Available for stack growth

Available for Heap growth

& mmap

Cmd line arguments

Uninitialized data (bss)

Higher

Address

Virtual Memory

L
o

gical A
d

d
re

sse
s

Vir Page

No

Phy Page

No

Frame no

0 0 3

1 1 5

2 2 1

3 3 2

. . . X -

. . . X -

. . . X -

.

.

2 ^ 20 -2 2 ^ 20 -2 111

2 ^ 20 -1 2 ^ 20 -1 120

P0

P1

P2

P3

P2^20 -1

P2^20-2

In Use

In Use
In Use

In Use

Not In Use

Not In Use

Memory Management in Linux -> Problems With Page Tables

3. Page Tables Hollowness for small processes

➢ Thus, For small Processes, more than 99% of the page table is wasted

➢ Wastage of Main-Memory

➢ Soln :

➢ Inverted Page table

(One global single Page table for all processes running on the system)

Memory Management in Linux -> Multi Level Paging

➢ We already discussed the problems of Page tables

➢ Let us see how Multi-Level Paging address the problems of Page tables :

➢ Larger size of Page tables

➢ Need for contiguous Main Memory

➢ Hollow region of Page tables

➢ The end goal of page tables is : Given a virtual address, locate the physical frame, and then locate the exact physical address

In Main Memory

➢ Multi level Page tables is like a Book with multi-level Indexing of TOC :

➢ Section 1

➢ Unit 3

➢ Chapter 5

➢ Topic 6

➢ Page-No 5

➢ <topic of interest>

➢ In Multi-Level Paging, each Section, Unit, Chapter, Topic , Page-No in-turn are a Page table, and data item of our interest,

i.e. topic of interest is the main-memory frame-no

Memory Management in Linux -> Multi Level Paging

➢ The main Idea behind Multi-level paging scheme is to break the large page tables into smaller sizes and fit each individual

smaller page tables at dispersed location in main memory

➢ Since, Main-Memory itself is logically fragmented into frames of size PAGE_SIZE, designers chose to fragmented PAGE_SIZE

as the optimal size into which large page table must be fragmented. This would allow smaller fragmented page tables to

fully occupy the entire physical frame of main-memory

➢ Thus, In Multi-Level Paging Scheme, each Page table must be of size PAGE_SIZE

➢ Multi-Level Paging scheme take the shape of Tree-Like Structure, we shall shortly witness this

➢ Let us See Multi-Level Paging in Action

Memory Management in Linux -> Multi Level Paging

➢ Let us assume the following system configuration :

➢ Size of Virtual address generated by CPU : 8bits

➢ PAGE_SIZE = 4B

➢ Main Memory = 64B

➢ Each page table entry size = 1B

➢ Calculated Data :

➢ Virtual address space size = 2 ^ 8 = 256B

➢ Frame size = 4B

➢ Virtual Address composition = 6 + 2 bits

➢ Page Table Size = PAGE_SIZE = 4B

➢ No of entries in Page table = 4

➢ No of bits required to index into a single page table = 2

➢ Therefore : 6 = 2 (Ist level) + 2 (2nd level) + 2 (3rd level)

➢ Physical Address size = 6 bits

Thus, we need to map 8bit VA to 6bits PA

Let us see the above configuration pictorially

Memory Management in Linux -> Multi Level Paging

idx Phy

Addr

0 8

1 4

2 24

3 NULL

idx Phy

Addr

0 NULL

1 0

2 NULL

3 NULL

idx Phy

Addr

0 NULL

1 NULL

2 12

3 NULL

idx Phy

Addr

0 NULL

1 NULL

2 20

3 NULL

idx Frame

No

0 5

1 7

2 -

3 3

idx Frame

No

0 4

1 -

2 -

3 11

Physical Memory

f0

f1

f2

f3

f4

f5

f6

f7

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

8

4

24

0

20

Top Level Page

P0

First Level Pages

Second Level Pages

Second Level Pages

8 bit VA : 10 10 11 01

Top Lvl

Index

First Lvl

Index

Second Lvl

Index

Offset

P1.1

P1.2

P1.3

P2.1

P2.3

40

idx Frame

No

0 5

1 7

2 -

3 3

Second Level Pages

12

f8

f9

f10

f11

f12

f13

f14

f15

32
33
34
35
36
37
38
39

40
41
42
43

44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

P2.2

Memory Management in Linux -> Multi Level Paging

Single Level Paging Scheme Multi Level Paging Scheme

Page table Size = PT Entry Size * No Of

Virtual Pages of a Process

Page table Size = Frame Size

PT Size = 1B * ((2 ^ 8)/4) = 64B PT Size = Frame Size = 4B

of Page tables per process = 1 # of Page tables per process = 2 ^ 6 + 1=

65

Here, 1 is for Top level Page table

Memory references to map VA -> PA = 1 Memory references to map VA -> PA = 3

(Slow !!)

Most of the page table is empty Create/Delete Page tables on demand

Ex :

VAS 0100XXXX is not being used by the

process, hence no page tables created for

VA->PA mapping for this range of VAs,

where X = don’t care

Similarly, 001XXXXX

Memory Management in Linux -> Demand Paging

Demand Paging

➢ On a 32 bit system with PAGE_SIZE = 4KB, and Main Memory size = 4GB

➢ Max no of physical pages for each process = 2 ^ 32 / 2 ^ 12 = 2 ^ 20

➢ No of Main Memory frames = 4GB / 4KB = 2 ^ 32 / 2 ^ 12 = 2 ^ 20

➢ So, in the worst case, Only one process would eat up entire main memory !

➢ No Multi-tasking !

➢ In-fact, OS also needs main-memory to run !

Memory Management in Linux -> Demand Paging

Demand Paging

➢ Keep only required physical pages of a process in main-memory, rest swap them out to disk

➢ Benefits :

➢ Increase multi-tasking

➢ Less main-memory is consumed per process

➢ More Users

Vir

Page

No

Phy

Page

No

Frame

no

V/I

bit

0 0 3 0

1 1 0 1

2 2 1 1

3 3 2 0

There is a bit In page table which represents whether the

Physical page is present in a frame Or has been swapped

Out of physical memory to disk

If V bit set – Physical page is present in Frame

If V bit is not set – Physical page is not present in Frame

Memory Management in Linux -> Demand Paging

Page Fault

➢ When page table dictates that a physical page is not present in a frame, then a special signal

is raised to CPU called trap, also called page fault

➢ Now let us see the Demand Paging scheme combined with the page fault in totality with the help of diagram

➢ Let us continue with the same configuration of the system:

➢ Size of Virtual address space of a process = 16B = 2 ^ 4

➢ Virtual address is of 4 bits

➢ Page size = 4B

➢ Main Memory Size = 32B

➢ No of Bits to represent a V page uniquely = 2bits

➢ No of Bits to represent an address with in V page uniquely = 2bits

Memory Management in Linux -> Demand Paging

Vir

Pag

e

No

Phy

Page

No

Frame

no

V

Bit

0 0 - 0

1 1 5 1

2 2 - 0

3 3 - 0

P0

Virtual Memory Pages

P1

P2

P3

0
1

2

3

4
5

6

7

8
9

10

11

12
13

14

15

10 01

Demand Paging Example

CPU

MM

1

VA generated

2

Frame lookup

Page

Fault

3

4

Locate Phy

Page on Disk

5

Page Fault

Service

6

Update

Page Table

f0

f1

f2

f3

f4

f5

f6

Disk

Frame chosen

Based on

Page replacement

Algorithm

Memory Management in Linux -> Demand Paging

Demand Paging Performance

If P is the probability of page fault occurrence, 0 <= p <= 1

if p = 0; no page fault

if p = 1; every memory access attempt is a page fault

EAT (Effective access time) for memory access :

EAT = (1 - p) x memory_access_time +

p x (Page fault overhead +

swap page out +

swap page in +

restart overhead)

EAT is directly proportional to page fault rate

Page fault increase the memory access time by the CPU

Memory Management in Linux -> Demand Paging

End Result

Only required Physical Pages belonging to different processes running on the system are present in

different frames of physical memory at the same time

➢ Process P1

➢ Process P2

➢ Process P3

MM

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

Increased Multi-tasking !

Optimal main-Memory utilization

MM

➢ Let us suppose, there are three processes in the system whose page tables

needs 3 frames each to be stored in main memory

➢ Process P1

➢ Process P2

➢ Process P3

➢ Page Tables of processes could be loaded in any 3 consecutive frames of MM

➢ With the increase in size of Page tables, chances to find more available consecutive frames

grows more rare

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

100

200

280

Soln : Multi Level Paging !

Let us break the large page tables into smaller size, load it in non-contiguous

Frames in Main-Memory !

Memory Management in Linux -> Problems With Page Tables

Memory Management in Linux for Multi-threaded Processes

➢ A process can give birth to multiple threads, threads in-turn can generate more threads

➢ Threads share almost every-thing amongst each other and with parent process

➢ Code Segment

➢ Data Segment (initialized and uninitialized)

➢ Open File descriptors (sockets, msgQs, etc)

➢ Heap Memory

➢ BUT NOT STACK MEMORY

➢ Each thread has its own execution flow, hence, it is required that they have separate stack memory. It is the stack memory

which is responsible for program execution (procedure call and returns)

➢ Because threads share many things among themselves, Kernel/OS don’t have to work too hard to create and destroy threads.

That is why, they are also called light weight process

➢ Let us see what changes happen to process VAS and how page tables are setup when it creates a new thread !

Memory Management in Linux for Multi-threaded Processes -> Change in Virtual Memory

Code

Initialized Data

P_Stack

Uninitialized data (bss)

Heap

P()

{

t = new_thread();

}

P

Code

Initialized Data

P_Stack

Uninitialized data (bss)

Heap

P

t_Stack

• No Separate Virtual Memory for

thread t

• All threads share the same VAS

• But this segment of Virtual Memory MUST be

accessible only by thread t

Modified to

Memory Management in Linux for Multi-threaded Processes -> Change in Virtual Memory

P_Stack

T1_Stack

T2_Stack

T3_Stack

Process P stack memory

Thread T1 thread memory

Thread T2 thread memory

Thread T3 thread memory

> Threads have their private stack

Memory

> Rest of the regions of VAS are shared

By all threads

Virtual Address Space

Memory Management in Linux for Multi-threaded Processes -> Change in Page Tables

Code

Initialized Data

P_Stack

Uninitialized data (bss)

Heap

P

Code

Initialized Data

P_Stack

Uninitialized data (bss)

Heap

P’

t_Stack

P14

P15

P14

P15

P12

P13

P0

P1

P2

p3

P4

P5

P0

P1

P2

p3

P4

P5

V. Page

No

Phy Page

No

Frame

no

0 0 X

1 1 X

2 2 X

3 3 X

4 4 X

5 5 X

6 - -

7 - -

.

.

12 - -

13 - -

14 14 X

15 15 X

Page Table of P

V. Page

No

Phy Page

No

Frame

no

0 0 X

1 1 X

2 2 X

3 3 X

4 4 X

5 5 X

6 - -

7 - -

.

.

12 12 X

13 13 X

14 14 X

15 15 X

Page Table of P after thread creation

Thread and P share same page table

Memory Management in Linux for Multi-threaded Processes

➢ A new thread shares the VAS of the parent process

➢ Virtual pages which belongs to new thread’s stack memory are created. Corresponding physical pages are created

and loaded in main-memory frames

➢ New thread shares the same page tables as that of a parent process P, except new VP -> PP mapping is created for

new stack memory for a new thread

➢ New thread can access Virtual address which belong to any virtual page of a process, except the stack memory which

belong to other threads/parent process

Memory Management in Linux for Multi-threaded Processes -> Thread Termination

➢ When thread terminates its execution :

➢ Only Virtual pages corresponding to stack memory

are freed

➢ Only Physical pages corresponding to stack memory

are freed

Code

Initialized Data

P_Stack

Uninitialized data (bss)

Heap

P’

t_Stack

P14

P15

P12

P13

P0

P1

P2

p3

P4

P5

V. Page

No

Phy Page

No

Frame

no

0 0 X

1 1 X

2 2 X

3 3 X

4 4 X

5 5 X

6 - -

7 - -

.

.

12 12 X

13 13 X

14 14 X

15 15 X

Page Table of P after thread creation

Thread and P share same page table

Memory Management in Linux for Multi-threaded Processes -> Thread Termination

➢ When thread terminates its execution :

➢ Only Virtual pages corresponding to stack memory

are freed

➢ Only Physical pages corresponding to stack memory

are freed

➢ Page table is updated to mark page table entries

corresponding to virtual pages freed above as empty

➢ This understanding lays the foundation for discussion of

mmap/fork()/vfork() calls !

Code

Initialized Data

P_Stack

Uninitialized data (bss)

Heap

P’

P14

P15

P0

P1

P2

p3

P4

P5

V. Page

No

Phy Page

No

Frame

no

0 0 X

1 1 X

2 2 X

3 3 X

4 4 X

5 5 X

6 - -

7 - -

.

.

.

.

14 14 X

15 15 X

Page Table of P after thread creation

Thread and P share same page table

V. Page

No

Phy Page

No

Frame

no

0 0 X

1 1 X

2 2 X

3 3 X

4 4 X

5 5 X

6 - -

7 - -

.

.

12 12 X

13 13 X

14 14 X

15 15 X

Memory Management in Linux -> Size of Page Table

➢ # no of MM frames a Page Table needs

➢ Lets do some class 8th Maths :p

➢ Size of page table entry = 4B (let’s say frame no is 4B integer)

➢ No of entries in a page table = No of pages into which VAS of a process is fragmented

= 2 ^ 32 / 2^12 = 2 ^ 20

➢ Size of Page table = 2 ^ 20 * 4B

= 2 ^ 22 B = 4MB

➢ MM frame size = 4096 B

➢ No of MM frames requires to store one complete PT

= 2 ^ 22 / 4096 = 2^10 frames = 1024 Frames

➢ Thus, one page table needs 1024 frames of Main Memory on a 32 bit system

➢ Note that, these 1024 frames needs to be contiguous

https://stackoverflow.com/questions/16323890/calculating-page-table-size

Memory Management in Linux -> Paging Summary

➢ Process VAS and Main Memory both are fragmented in pages, page size is usually 4096B

➢ Page Table is the bridge which implements mapping between virtual address and physical addresses. This mapping is

hidden from User and is controlled by OS

➢ Page Table includes only those pages which process owns

➢ Every Logical Address is bound to a physical address

➢ Every Access to Physical Memory goes through Page Table

➢ Illusion : The user program views memory as one single space (Virtual Memory), containing only this one program

➢ But, in reality the user program data is scattered throughout physical memory, which also holds other Program’s data

➢ There is no external fragmentation in Main Memory, but some internal fragmentation is there, and will always be

Page Replacement

Algorithms

Consider 3 processes are running on the system, and their respective physical pages are loaded in a main memory which contains

Total of 8 frames.

➢ Process P1

➢ Process P2

➢ Process P3

MM

P1_1

P1_2

P1_3

P1_4

P2_1

P2_2

P2_3

P2_4

f0

f1

f2

f3

f4

f5

f6

f7

Memory Management in Linux -> Page Replacement Algorithms

➢ All frames of main memory are exhausted

➢ Suppose process P1 make a reference to virtual address V,

which maps to a physical page P1_5

➢ From Page table of P1, OS would find that P1_5 physical page is not already

allocated any frames in physical memory – Page Fault

➢ OS would locate the physical Page P1_5 from Disk and try to replace it with some page already present in physical memory

➢ Which Page the OS should choose to be replaced with P1_5 ? The Page may not necessarily belong to process P1. That’s

Where Page replacement Algorithm comes into picture.

> The Target of all Page Replacement Algorithms is to Minimize Page faults

Consider 3 processes are running on the system, and their respective physical pages are loaded in a main memory which contains

Total of 8 frames.

➢ Process P1

➢ Process P2

➢ Process P3

MM

P1_1

P1_2

P1_3

P1_4

P2_1

P2_2

P2_3

P2_4

f0

f1

f2

f3

f4

f5

f6

f7

Memory Management in Linux -> Page Replacement Algorithms

➢ Interview :

➢ Describe the Page replacement Algorithm.

➢ Which Data Structure you would use to implement that page replacement

scheme ?

Memory Management in Linux -> Page Replacement Algorithms

Page Replacement Algorithms

• FIFO Page Replacement Algorithm (Queue)

• Optimal (OPT) Page Replacement Algorithm (Hypothetical, not Implemented)

• Least Recently Used (LRU) Page Replacement Algorithm (Doubly Linked List)

• Least Frequently Used (LFU) Page Replacement Algorithm (Min-Heap)

• Most frequently Used (MFU) Page Replacement Algorithm (Max-Heap)

Memory Management in Linux

Memory Management

In

Linux

Thank you

