0-2: Real Numbers

Natural Numbers:
Whole Numbers:
Integers:
Rational Numbers: Every number in the previous three categories, as well as all fractions, decimals that end (such as 0.23) and decimals that repeat (such as $0 . \overline{61}$).

Irrational Numbers: \quad Non-perfect squares (such as $\sqrt{10}$) and π. Basically, decimals that continue forever, without any pattern.

Real Numbers: All rational and irrational numbers.

Ex \#1: Please name the set or sets of numbers that apply to each real number.
(a) 8
(b) $\frac{3}{7}$
(c) -2
(d) $\sqrt{25}$
(e) $3 . \overline{14}$
(f) $\sqrt{24}$

Ex\#2: Please order the following numbers from least to greatest.
(a) $\frac{3}{5},-\frac{1}{5}, \frac{2}{5}, 0,-\frac{3}{5}$
(b) $\sqrt{2}, 0 . \overline{8},-0.7, \frac{3}{10},-\sqrt{3}$

Ex \#3: Please make a list of the first twelve perfect squares. Remember that a perfect square is defined as a number times itself.

Ex \#4: Between which two Natural Numbers are the following square roots located?
For example, $\sqrt{6}$ is more than 2 , and less than 3 .
(a) $\sqrt{17}$ is more than \qquad , and less than \qquad .
(b) $\sqrt{40}$ is more than \qquad , and less than \qquad .
(c) $\sqrt{85.5}$ is more than \qquad , and less than \qquad . (Hint: what perfect square is 80 -something?)

Ex \#5: Please simplify the following square roots.
(a) $\sqrt{1}$
(b) $\sqrt{64}$
(c) $\sqrt{.04}$
(d) $\sqrt{\frac{9}{25}}$

