0-2: Real Numbers

3.14

(e)

Natural Numbers: Whole Numbers: Integers:	1, 2, 3, 0, 1, 2, 3, 3, -2, -1, 0, 1, 2, 3,
Rational Numbers:	Every number in the previous three categories, as well as all fractions, decimals that end (such as 0.23) and decimals that repeat (such as $0.\overline{61}$).
Irrational Numbers:	Non-perfect squares (such as $\sqrt{10}$) and π . Basically, decimals that continue forever, without any pattern.
Real Numbers:	All rational and irrational numbers.

Ex #1: Please name the set or sets of numbers that apply to each real number.

(a)	8	(b)	$\frac{3}{7}$
(c)	-2	(d)	√25

Ex #2: Please order the following numbers from *least* to *greatest*.

(a)
$$\frac{3}{5}$$
, $-\frac{1}{5}$, $\frac{2}{5}$, 0, $-\frac{3}{5}$ (b) $\sqrt{2}$, $0.\overline{8}$, -0.7 , $\frac{3}{10}$, $-\sqrt{3}$

Ex #3: Please make a list of the first twelve perfect squares. Remember that a *perfect square* is defined as a *number times itself.*

 $\sqrt{24}$

(f)

Ex #4: Between which two Natural Numbers are the following square roots located?

For example, $\sqrt{6}$ is more than <u>2</u>, and less than <u>3</u>.

Ex #5: Please simplify the following square roots.

(a) $\sqrt{1}$ (b) $\sqrt{64}$

(c)
$$\sqrt{.04}$$
 (d) $\sqrt{\frac{9}{25}}$