Skill: Proof by exhaustion

Questions

Attempt these questions independently showing full and clear solutions. Check each answer as you go.

1. Use the method of exhaustion to prove the following result:
"No 1 - digit or 2 - digit perfect square ends in 2,3,7 or 8"
State a generalisation of this result.
2. Suppose x and y are odd integers less than 7 .

Prove that their sum is divisible by 2 .
3. Use the method of exhaustion to prove the following result:
" 2 p -1 is a prime number for all prime numbers p less than 11 "
4. Use the method of exhaustion to prove the following result:

If n is even and $4 \leq n \leq 26$, then n can bewritten as the sum of two prime numbers.
5. Use the method of exhaustion to prove the following result:

All regular polygons with fewer than 7 sides have external angles which are an integer number of degrees.
6. Let $N(n)$ denote the number of factors of the integer n.

For example $N(12)=6$, since 12 has the factors $1,2,3,4,6,12$.
Prove, using the method of exhaustion, that for any single digit positive number integer $n, N(n) \leq n$.
7. Prove, using the method of exhaustion, that for the positive integers n, where $n \leq 4$, that:

$$
(1+n)^{3} \geq 3^{n}
$$

8. Use the method of exhaustion to prove the following result:

Every integer n on the interval $6 \leq n \leq 14$ can be written as the sum of three prime numbers.
9. Use the method of exhaustion to prove the following result:

Every odd integer n on the interval $7 \leq n \leq 21$ can be written as the sum of a prime number and the double of a prime number.

