Reading and Working with the Java API Documentation

(References used: https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html and
https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html)

Purpose

The purpose of this document is to explain how a Java APl works and how to use it to determine
appropriate syntax while working with Java code. By the end of the document, the information
provided in the Java APl documentation should be fully understandable.

|. Examining the Header

€« C' | @ https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3

java.lang o

Class Math @)

java.lang.Object o
java.lang.Math

public final class Math o
extends Object o

Figure 1 - The Header contains the class name and hierarchy information, including package and inheritance references.

The first part of the documentation for an API contains critical naming and inheritance information
regarding the class library. Each of the numbered sections above helps to determine the class hierarchy
and package imports that are needed to use the code.

1. The information on the first line is the package where this class exists. For java.lang.Math, this
first line is telling us the “Math” class is in the “java.lang” package. (java.lang is imported into
every project by default, so “Math” is always accessible).

2. The second line contains the declaration of the object type (here it is a Class). Choices can be
Package, Class, Abstract Class, Interface, or Enum. The second part of the line contains the
name of the object (also called the “identifier”). In this example we know that this object is a



“Class” and its identifier (name) is “Math.” From line 1, we know this Class Math exists in the
package java.lang.

Lines 3 and 4 here show the object-inheritance hierarchy. In this case, we see that the line
java.lang.Object. In this instance, there is only one “superclass” to “Math”. In other APlIs, the
tree may show multiple lines here denoting the hierarchy in depth. For example, take a look at
the API for the “Vector” class:

java.util

Class Vector<gE>

java.lang.Object
java.util. AbstractCollection<E>
java.util. AbstractList<E>
java.util. Vector<g=>

Using what we know already, Vector is the name of the class, and it lives in the package
“java.util.” Note the object inherits directly from “java.util.AbstractList” which inherits from
“java.util.AbstractCollection” which inherits from “java.lang.Object.”
B Now we know three things:

o How to read the hierarchy tree of an object

o All Classes (Object Types) we create in Java will ultimately inherit from

“java.lang.object”, in some direct or indirect way

o Classes in one package may inherit from classes in another package
Line 4 is once again the identifier for this class, fully referenced with its direct package
implementation (i.e. “java.lang.Math” or “java.util.Vector”).
Lines 5 and 6 also go together. In the last part of the header shown in figure one, we get the
class declaration as it would appear in code. In this case, “public final class Math extends
Object”. Line 5 will be the public declaration of the object.
Line 6 may be multiple lines depending on the implementation. In the “Math” class there is only
one item to extend, “Object”. Remember that the “extends Object” is implicit on any class
declaration so it is never directly typed in code.



There is one last part of the header to consider. Going back to the Vector class is a great way to show
this missing part, because there is a class that extends Vector, and Vector also implements interfaces.
When classes implement interfaces or are extended by other classes, they are listed in the header. This
not only reiterates the hierarchy, but allows the user to click on each item to see those specific
implementations:

compactl, compact2, compact3
java.util

Class Vector<E>

java.lang.Object . .
java.util AbstractCollection| All interfaces implemented by

java.util. AbstractList< the Class are listed here
java.util.Vector<E

All Implemented Interfaces: ~
Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess

Direct Known Subclasses:
Stack g

All subclasses that extend this
class are listed here

public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

Figure 2- The Vector class implements interfaces and has a subclass that extends the Vector class



[I. The Description

The next part of the documentation contains a description of the object that is created. This often gives
in-depth information that is critical to understanding the operation of the object in our code. Therefore
it is important to read through the information when we are not familiar with the obect. For example,
the Calendar Object has an intense description because of the complexity of how the calendar works:

https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html

(Oracle)

Direct Known Subclasses:

GregorianCalendar N

public abstract class Calendar
extends Object
implements Serializable, Cloneable, Comparable<Calendar>

The Calendar class is an abstract class that provides methods for converting between a specific instant in time and a set of calendar fields such as YEAR, MONTH, DAY_OF_MONTH, HOUR, and so on, and for
manipulating the calendar fields, such as getting the date of the next week. An instant in time can be represented by a millisecond value that is an offset from the Epoch, January 1, 1970 00:00:00.000 GMT
(Gregorian).

The class also provides additional fields and methods for implementing a concrete calendar system outside the package. Those fields and methods are defined as protected.

Like other locale-sensitive classes, Calendar provides a class method, getInstance, for getting a generally useful object of this type. Calendar's getInstance method returns a Calendar object whose
calendar fields have been initialized with the current date and time:

Calendar rightNow = Calendar.getInstance();
A Calendar object can produce all the calendar field values needed to implement the date-time formatting for a particular language and calendar style (for example, Japanese-Gregorian, Japanese-
Traditional). Calendar defines the range of values returned by certain calendar fields, as well as their meaning. For example, the first month of the calendar system has value MONTH == JANUARY for all
calendars. Other values are defined by the concrete subclass, such as ERA. See individual field documentation and subclass documentation for details.
Getting and Setting Calendar Field Values

The calendar field values can be set by calling the set methods. Any field values set in a Calendar will not be interpreted until it needs to calculate its time value (milliseconds from the Epoch) or values of
the calendar fields. Calling the get, getTimeInMillis, getTime, add and roll involves such calculation.

Leniency
Calendar has two modes for interpreting the calendar fields, lenient and non-lenient. When a Calendar is in lenient mode, it accepts a wider range of calendar field values than it produces. When a
Calendar recomputes calendar field values for return by get(), all of the calendar fields are normalized. For example, a lenient GregorianCalendar interprets MONTH == JANUARY, DAY_OF_MONTH == 32as

February 1

When a Calendar is in non-lenient mode, it throws an exception if there is any inconsistency in its calendar fields. For example, a GregorianCalendar always produces DAY_OF_MONTH values between 1 and
the length of the month. A non-lenient GregorianCalendar throws an exception upon calculating its time or calendar field values if any out-of-range field value has been set.

First Week

Calendar defines a locale-specific seven dav week usina two parameters: the first dav of the week and the minimal davs in first week (from 1 to 7). These numbers are taken from the locale resource data

Figure 3- The Calendar class has a very lengthy description as only part of it is shown here. This is based on the complexity of the
Calendar object.

[ll. Nested Classes

If the object we are viewing has any nested classes within the object, they will be the next item listed in
the API. For example, the Calendar object has a nested class “Builder,” which can be used to create a
Calendar object with specific settings.

Nested Class Summary

Modifier and Type Class and Description

static class Calendar.Builder
Calendar.Builder is used for creating a Calendar from various date-time parameters.

Figure 4 - The nested Calendar.Builder class is listed in the API for Calendar



IV. Fields and Constants

Some classes will expose fields to the public for use. This is again very common in the Calendar object,
because we have a lot of properties we want direct access to, such as “DAY_OF_MONTH”, “FRIDAY”,
“JANUARY”, “HOUR”, etc. Because we want to be able to quickly get access to these values, they are
exposed to be easily retrieved. We can see many fields that are exposed in the “Calendar” object, and
we will use these, often when we want to do any type of loop or condition check against standard values
(i.e. current month < October, current day == Friday, etc).

Fleld Summary

Modirner and Type Field and Description
static int ALL_STYLES
A style specifier for getDisplayNames indicating names in all styles, such as “January” and "Jan".
static int AM
Value of the AM_PM field indicating the period of the day from midnight to just before noon.
static int AM_PM
Field number for get and set indicating whether the HOUR is before or after noon
static int APRIL
Value of the MONTH field indicating the fourth month of the year in the Gregorian and Julian calendars.

protected boolean areFieldsSet
True if fields[] are in sync with the currently set time.

static int AUGUST

Value of the MONTH field indicating the eighth month of the year in the Gregorian and Julian calendars.
static int DATE

Field number for get and set indicating the day of the month.
static int DAY_OF_MONTH

Field number for get and set indicating the day of the month.

static int DAY_OF_WEEK
Field number for get and set indicating the day of the week.

static int DAY_OF_WEEK_IN_MONTH
Field number for get and set indicating the ordinal number of the day of the week within the current month.

static int DAY_OF_YEAR
Field number for get and set indicating the day number within the current year.

static int DECEMBER
Value of the MONTH field indicating the twelfth month of the year in the Gregorian and Julian calendars.

static int DST_OFFSET
Field number for get and set indicating the daylight saving offset in milliseconds.

static int ERA
Field number for get and set indicating the era, e.g., AD or BC in the Julian calendar.

static int FEBRUARY
Value of the MONTH field indicating the second month of the year in the Gregorian and Julian calendars.

static int FIELD_COUNT

Figure 5 - Some of the fields that are listed for the Calendar object are shown here.

The Math API also has fields for constants such as E and PI:

Fleld Summary

Modirier and Type Fleld and Description

static double E
The double value that is closer than any other to e, the base of the natural logarithms.

static double PI
The double value that is closer than any other to pi, the ratio of the circumference of a circle to its diameter.

Figure 6 - Math fields include values for the constants E and Pl



In the absence of “Fields,” objects like an Enum (Enumeration) would list their “Constants” instead. For
example, the Enum for “DayOfWeek” shows the following Constants:

Enum Constant Summary

Enum Constant and Description

FRIDAY
The singleton instance for the day-of-week of Friday.

MONDAY
The singleton instance for the day-of-week of Monday.

SATURDAY
The singleton instance for the day-of-week of Saturday.

SUNDAY
The singleton instance for the day-of-week of Sunday.

THURSDAY
The singleton instance for the day-of-week of Thursday.

TUESDAY
The singleton instance for the day-of-week of Tuesday.

WEDNESDAY
The singleton instance for the day-of-week of Wednesday.

Figure 7- The constants from the Enum "DayOfWeek" https.//docs.oracle.com/javase/8/docs/api/java/time/DayOfWeek.html|




V. Constructors

Constructors are the defining methods in a Class that allow creation of the object in code. All Java
objects have a default constructor, and some will also contain explicit constructors. Whenever an
explicit constructor (one that takes parameters) exists, then the default is not implicit and needs to be
specifically defined in order to be used. The Math class does not have a constructor defined, because all
of the methods are static in the class. This means the object can be used in code directly, without
instantiation. Most classes will contain one or more constructors, however. The Java class “String” has
a multitude of constructors, which allows creating Strings in quite a few different ways:

Constructor Summary

Constructors

Constructor and Description

String()

Initializes a newly created String object so that it represents an empty character sequence.

String(byte[] bytes)
Constructs a new String by decoding the specified array of bytes using the platform's default charset

String(byte[] bytes, Charset charset)

Constructs a new String by decoding the specified array of bytes using the specified charset.

String(byte[] ascii, int hibyte)

Deprecated.

This method does not properly convert bytes into characters. As of JDK 1.1, the preferred way to do this is via the String constructors that take a Charset, charset name, or that use the platform's default charset.
String(byte[] bytes, int offset, int length)

he specified subarray of bytes using the platform's default charset

Constructs a new String by decodin

String(byte[] bytes, int offset, int length, Charset charset)
Constructs a new String by decoding the specified subarray of bytes using the specified charset.

String(byte[] ascii, int hibyte, int offset, int count)

Deprecated.

This method does not properly convert bytes into characters. As of JDK 1.1, the preferred way to do this is via the String constructors that take a Charset, charset name, or that use the platform's default charset
String(byte[] bytes, int offset, int length, String charsetName)

Constructs a new String by decoding the specified subarray of bytes using the specified charset.

String(byte[] bytes, String charsetName)
Constructs a new String by decoding the specified array of bytes using the specified charset.
String(char[] value)

Allocates & new String so that it rep: the seq of ch

s currently ¢ d in the character array argument

r[] value, int offset, int count)
haracters from a subarray of the character array argument

String(

Allocates a new String that cont

String(int[] codePoints, int offset, int count)
Allocates & new String that contains characters from a subarray of the Unicode code point array argument

String(String original)
Initializes a newly created String object so that it represents the same sequence of characters as the argument; in other words, the newly created string is a copy of the argument string.

String(StringBuffer buffer)
Allocates a new string that contains the sequence of characters currently contained in the string buffer argument

String(StringBuilder builder)

Allarates a new ctrina that rantaine the cermence nf charactere rirrently cantained in the etrine hnilder arrmment

Figure 8- The list of constructors for the String class in Java is extensive

Notice that even Deprecated methods are shown. When the constructor or method (or even object) is
listed as “Deprecated,” it is wise to find another alternative to using that method, constructor, or object.



VI. Methods

Methods are how the code is able to be used to perform some functionality. Often methods will require
one or more parameters. The APl helps us determine how to correctly call methods, as well as gives us
the ability to get a brief description of the method functionality. Clicking on the method will give more
specific detail. Additionally, the method will have a return type.

Method Summary

~

Modirier and Type Method and Description

char~ charAt(int index)
\'\ Returns the char value at the specified index.
int Method return codePointAt(int index)
: Returns the character (Unicode code point) at the specified index.
types are listed = =
int codePointBefore(int index)
on the left Returns the character (Unicode code point) before the specified index.
int codePointCount(int beginIndex, int endIndex)
Returns the number of Unicode code points in the specified text range of this String.
int e compareTo(String anotherString)
---- ~" = Compares two strings lexicographically.
int T he methOd hame, fouowed compareToIgnoreCase(String str)

by the para meter list in ()'S is Compares two strings lexicographically, ignoring case differences.
String |ISted on the fiI'St Iine concat(String str)\l -~if""~~-<,__
s th - =
conesene Be I The second line contains a short
description of the method's
boolean contentEquals(CharSe expeCted funCtlonahty'

Compares this string to the specified CharSequence.

boolean contains (CharSequenc
Returns true if and only

boolean contentEquals(StringBuffer sb)
Compares this string to the specified StringBuffer.

static String copyValueOf(char[] data)
Equivalent to valueOf(char[]).

static String copyValueOf(char[] data, int offset, int count)
Equivalent to valueOf(char[], int, int).

boolean endsWith(String suffix)
Tests if this string ends with the specified suffix.

Figure 9- Some of the methods from "String" are listed here, with callouts to show how the section is organized

The method summary also allows filtering by clicking on the columns at the top. For example, if only the
static methods are of interest, a user can click on “Static Methods” to see just the list of those methods
that are static on the object:



Method Summary

Modirier and Type Method and Description

static String copyValueOf(char[] data)
Equivalent to value0f(char(])

static String copyValueOf(char[] data, int offset, int count)
Equivalent to value0f(char([], int, int)

static String format(Locale 1, String format, Object args)
Returns a formatted string using the specified locale, format string, and arguments.

static String format(String format, Object... args)
Returns a formatted string using the specified format string and arguments.

static String join(CharSequence delimiter, CharSequence... elements)
Returns a new String composed of copies of the CharSequence elements joined together with a copy of the specified delimiter.

static String join(CharSequence delimiter, Iterable<? extends CharSequence> elements)
Returns a new String composed of copies of the CharSequence elements joined together with a copy of the specified delimiter

static String valueOf (boolean b)
Rerime the atrinea renrecentation of the hanlean arrmment

Figure 10 - Only static methods are shown when the list is filtered using the buttons on the top of the Method Summary

Clicking on any method gives more information about the specific method in detail:

multiplyExact

public static int multiplyExact(int x,
int y)

Returns the product of the arguments, throwing an exception if the result overflows an int.

Parameters:
x - the first value

y - the second value

Returns:
the result

Throws:
ArithmeticException - if the result overflows an int

Since:
1.8

Figure 11 - Clicking on the "MultiplyExact" method in the Math API brings further detail about the multipleExact method.

VII. Conclusion

The Java APl documentation available online is a powerful tool that should be referenced frequently
when working with the pre-defined Java APl objects. By looking over the APl documentation, it is
possible to understand where the object stands in the Object hierarchy, how to create the object, and
how to work with the object’s methods and properties to accomplish the task at hand in code.
Whenever in doubt, information about these objects is never more than a quick Google search away!



