
Reading and Working with the Java API Documentation
(References used: https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html and
https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html)
Purpose
The purpose of this document is to explain how a Java API works and how to use it to determine
appropriate syntax while working with Java code. By the end of the document, the information
provided in the Java API documentation should be fully understandable.

I. Examining the Header

Figure 1 - The Header contains the class name and hierarchy information, including package and inheritance references.
The first part of the documentation for an API contains critical naming and inheritance information
regarding the class library. Each of the numbered sections above helps to determine the class hierarchy
and package imports that are needed to use the code.

1. The information on the first line is the package where this class exists. For java.lang.Math, this
first line is telling us the “Math” class is in the “java.lang” package. (java.lang is imported into
every project by default, so “Math” is always accessible).

2. The second line contains the declaration of the object type (here it is a Class). Choices can be
Package, Class, Abstract Class, Interface, or Enum. The second part of the line contains the
name of the object (also called the “identifier”). In this example we know that this object is a

“Class” and its identifier (name) is “Math.” From line 1, we know this Class Math exists in the
package java.lang.

3. Lines 3 and 4 here show the object-inheritance hierarchy. In this case, we see that the line
java.lang.Object. In this instance, there is only one “superclass” to “Math”. In other APIs, the
tree may show multiple lines here denoting the hierarchy in depth. For example, take a look at
the API for the “Vector” class:

 Using what we know already, Vector is the name of the class, and it lives in the package
“java.util.” Note the object inherits directly from “java.util.AbstractList” which inherits from
“java.util.AbstractCollection” which inherits from “java.lang.Object.”
 Now we know three things:

o How to read the hierarchy tree of an object
o All Classes (Object Types) we create in Java will ultimately inherit from

“java.lang.object”, in some direct or indirect way
o Classes in one package may inherit from classes in another package

4. Line 4 is once again the identifier for this class, fully referenced with its direct package
implementation (i.e. “java.lang.Math” or “java.util.Vector”).

5. Lines 5 and 6 also go together. In the last part of the header shown in figure one, we get the
class declaration as it would appear in code. In this case, “public final class Math extends
Object”. Line 5 will be the public declaration of the object.

6. Line 6 may be multiple lines depending on the implementation. In the “Math” class there is only
one item to extend, “Object”. Remember that the “extends Object” is implicit on any class
declaration so it is never directly typed in code.

There is one last part of the header to consider. Going back to the Vector class is a great way to show
this missing part, because there is a class that extends Vector, and Vector also implements interfaces.
When classes implement interfaces or are extended by other classes, they are listed in the header. This
not only reiterates the hierarchy, but allows the user to click on each item to see those specific
implementations:

Figure 2- The Vector class implements interfaces and has a subclass that extends the Vector class

II. The Description
The next part of the documentation contains a description of the object that is created. This often gives
in-depth information that is critical to understanding the operation of the object in our code. Therefore
it is important to read through the information when we are not familiar with the obect. For example,
the Calendar Object has an intense description because of the complexity of how the calendar works:
https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html
(Oracle)

Figure 3- The Calendar class has a very lengthy description as only part of it is shown here. This is based on the complexity of the Calendar object.

III. Nested Classes
If the object we are viewing has any nested classes within the object, they will be the next item listed in
the API. For example, the Calendar object has a nested class “Builder,” which can be used to create a
Calendar object with specific settings.

Figure 4 - The nested Calendar.Builder class is listed in the API for Calendar

IV. Fields and Constants
Some classes will expose fields to the public for use. This is again very common in the Calendar object,
because we have a lot of properties we want direct access to, such as “DAY_OF_MONTH”, “FRIDAY”,
“JANUARY”, “HOUR”, etc. Because we want to be able to quickly get access to these values, they are
exposed to be easily retrieved. We can see many fields that are exposed in the “Calendar” object, and
we will use these, often when we want to do any type of loop or condition check against standard values
(i.e. current month < October, current day == Friday, etc).

Figure 5 - Some of the fields that are listed for the Calendar object are shown here.
The Math API also has fields for constants such as E and PI:

Figure 6 - Math fields include values for the constants E and PI

In the absence of “Fields,” objects like an Enum (Enumeration) would list their “Constants” instead. For
example, the Enum for “DayOfWeek” shows the following Constants:

Figure 7- The constants from the Enum "DayOfWeek" https://docs.oracle.com/javase/8/docs/api/java/time/DayOfWeek.html

V. Constructors
Constructors are the defining methods in a Class that allow creation of the object in code. All Java
objects have a default constructor, and some will also contain explicit constructors. Whenever an
explicit constructor (one that takes parameters) exists, then the default is not implicit and needs to be
specifically defined in order to be used. The Math class does not have a constructor defined, because all
of the methods are static in the class. This means the object can be used in code directly, without
instantiation. Most classes will contain one or more constructors, however. The Java class “String” has
a multitude of constructors, which allows creating Strings in quite a few different ways:

Figure 8- The list of constructors for the String class in Java is extensive
Notice that even Deprecated methods are shown. When the constructor or method (or even object) is
listed as “Deprecated,” it is wise to find another alternative to using that method, constructor, or object.

VI. Methods
Methods are how the code is able to be used to perform some functionality. Often methods will require
one or more parameters. The API helps us determine how to correctly call methods, as well as gives us
the ability to get a brief description of the method functionality. Clicking on the method will give more
specific detail. Additionally, the method will have a return type.

Figure 9- Some of the methods from "String" are listed here, with callouts to show how the section is organized
The method summary also allows filtering by clicking on the columns at the top. For example, if only the
static methods are of interest, a user can click on “Static Methods” to see just the list of those methods
that are static on the object:

Figure 10 - Only static methods are shown when the list is filtered using the buttons on the top of the Method Summary
Clicking on any method gives more information about the specific method in detail:

Figure 11 - Clicking on the "MultiplyExact" method in the Math API brings further detail about the multipleExact method.

VII. Conclusion
The Java API documentation available online is a powerful tool that should be referenced frequently
when working with the pre-defined Java API objects. By looking over the API documentation, it is
possible to understand where the object stands in the Object hierarchy, how to create the object, and
how to work with the object’s methods and properties to accomplish the task at hand in code.
Whenever in doubt, information about these objects is never more than a quick Google search away!

