

Key Terms Blurt:		
Q1.	Describe the structure of proteins.	
		(5)

Q3. In humans, the enzyme maltase breaks down maltose to glucose. This takes place at normal body temperature. (a) Explain why maltase:
 only breaks down maltose
 allows this reaction to take place at normal body temperature. (Extra space) _____

,	NMO is a disease that leads to damage to nerve cells in the spinal cord. A person with NMO produces anti-AQP4 antibody that attacks only these nerve cells.	
	Explain why the anti-AQP4 antibody only damages these cells.	
•		
E	ach type of antibody binds specifically to one of the antigen proteins.	
1	Explain why.	
H	IIV attaches to a specific protein receptor on helper T cells. A low percentage of people nave a mutation of the CCR5 gene which codes for this protein receptor. This mutation esults in a non-functional protein receptor.	
	Explain how this mutation can result in the production of a non-functional protein receptor.	
•		

Q5.

A technician investigated the effect of temperature on the rate of an enzyme-controlled reaction. At each temperature, he started the reaction using the same concentration of substrate.

		10	20	30	40
	Time	after s	tart of reaction	on / minutes	3
1)	Give two other factors the technician would have controlled.				
	1				
	2				
)	Draw a tangent on each curve to find the initial rates of reactio	n.			
	Use these values to calculate the ratio of the initial rates of re		at 60 °C : 37	°C.	
			Ratio =		
)	Explain the difference in the initial rate of reaction at 60 $^{\circ}$ C and	1 37 °C			
)) Explain the difference in the rates of reaction at 60 $^{\circ}$ C and 37 $^{\circ}$	°C betv	veen 20 and	40 minutes.	

(4) (Total 9 marks)

max [11]

Q1.

(b)	1. 2. 3. 4. 5.	Polymer of amino acids; Joined by peptide bonds; Formed by condensation; Primary structure is order of amino acids; Secondary structure is folding of polypeptide chain due to hydrogen bonding; Accept alpha helix / pleated sheet	
	6. 7.	Tertiary structure is 3-D folding due to hydrogen bonding <u>and</u> ionic <i>l</i> disulfide bonds; Quaternary structure is two or more polypeptide chains.	5
23.			
(a)	1.	Tertiary structure / 3D shape of enzyme (means);	
		Accept references to active site	
	2.	Active site complementary to maltose / substrate / maltose fits into active site / active site and substrate fit like a lock and key;	
		ldea of shapes fitting together	
	3.	Description of induced fit;	
	4.	Enzyme is a catalyst / lowers activation energy / energy required for reaction;	
		Accept "provides alternative pathway for the reaction at a lower energy level"	
	5.	By forming enzyme-substrate complex;	
		Accept idea that binding stresses the bonds so more easily broken	
		Do not award point 5 simply for any reference to E-S complex	
			5
(b)	1.	(Anti-AQP4) antibody has a (specific) tertiary structure;	
	2.	Has binding site / variable region that only binds to / complementary to one antigen;	
	3.	Antigen to this antibody (only) found on these nerve cells;	
	4.	So, antibody (only) binds to / forms antigen-antibody complex with these nerve cells (causing damage);	
		Reject "active site" (only penalise once if it occurs throughout)	
		3. / 4. Accept 'receptor' for antigen	
			4
(c)	1.	Each antigen protein has a different tertiary structure;	
	2.	(Each) antibody has a specific antigen / binding / variable region / site;	
	3.	So, (each antibody) forms different antigen-antibody complex	
		OR	
		(each antibody) only binds to complementary (protein);	3
(d)	1.	Change in DNA base/nucleotide (sequence);	
,,		Accept: mutation in DNA base (sequence).	
		Accept: deletion/substitution/addition of a DNA base/nucleotide.	
	2.	Change in amino acid (sequence)/primary structure;	
	_,	Reject: different amino acid formed.	
		Ignore: change in code for amino acid.	
	3.	Alters (position of) hydrogen/ionic/disulfide bonds;	

Change in tertiary structure (of receptor);

Ignore: 3°.

Reject: any reference to active site.

[16]

Q5.			
	(a)	Any two of the following:	
		Concentration of enzyme	
		Volume of substrate solution pH.	
		Allow same concentration of substrate	1
	(b)	Ratio between 5.18:1 and 5.2:1	
		Initial rates incorrect but correctly used = 1 mark.	
		Allow 1 mark if rate at:	
		60° C = 0.83g dm ⁻³ s ⁻¹ /49.8g dm ⁻³ minute ⁻¹	
		OR	
		$37^{\circ}C = 0.16g \text{ dm}^{-3} \text{ s}^{-1} / 9.6g \text{ dm}^{-3} \text{ minute}^{-1}$	
			2
	(c)	At 60 °C:	
		More kinetic energy;	
		2. More E-S complexes formed.	
		Allow converse for 37 °C	
			2
	(d)	Different times:	
		1. Higher temperature / 60 °C causes denaturation of all of enzyme;	
		Accept converse for 37 °C	
		2. Reaction stops (sooner) because shape of active site changed;	
		Reject if active site on substrate	
		Different concentrations of product (at 60 °C)	
		3. Substrate still available (when enzyme denatured);	
		4. But not converted to product.	
			4
			[9]