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Abstract

Copulas have become a popular tool in multivariate modeling successfully applied in
many fields. A good open-source implementation of copulas is much needed for more
practitioners to enjoy the joy of copulas. This article presents the design, features, and
some implementation details of the R package copula. The package provides a carefully
designed and easily extensible platform for multivariate modeling with copulas in R. S4
classes for most frequently used elliptical copulas and Archimedean copulas are imple-
mented, with methods for density/distribution evaluation, random number generation,
and graphical display. Fitting copula-based models with maximum likelihood method is
provided as template examples. With the classes and methods in the package, the package
can be easily extended by user-defined copulas and margins to solve problems.
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1. Introduction

Copulas have become a popular multivariate modeling tool in many fields where multivariate
dependence is of interest and the usual multivariate normality is in question. In actuarial
science, copulas are used in modeling dependent mortality and losses (Frees, Carriere, and
Valdez 1996; Frees and Valdez 1998; Frees and Wang 2005). In finance, copulas are used
in asset allocation, credit scoring, default risk modeling, derivative pricing, and risk man-
agement (Bouyè, Durrleman, Bikeghbali, Riboulet, and Roncalli 2000; Embrechts, Lindskog,
and McNeil 2003; Cherubini, Luciano, and Vecchiato 2004). In biomedical studies, copulas
are used in modeling correlated event times and competing risks (Wang and Wells 2000; Es-
carela and Carrière 2003). In engineering, copulas are used in multivariate process control
and hydrological modeling (Yan 2006; Genest and Favre 2007).

A copula is a multivariate distribution whose marginals are all uniform over (0, 1). For a
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p-dimensional random vector U on the unit cube, a copula C is

C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up). (1)

Combined with the fact that any continuous random variable can be transformed to be uni-
form over (0, 1) by its probability integral transformation, copulas can be used to provide
multivariate dependence structure separately from the marginal distributions. Copulas first
appeared in the probability metrics literature. Let F be a p-dimensional distribution function
with margins F1, . . . , Fp. Sklar (1959) first showed that there exists a p-dimensional copula
C such that for all x in the domain of F ,

F (x1, . . . , xp) = C{F1(x1), . . . , Fp(xp)}. (2)

The last two decades, particularly the last 10 years, witnessed the spread of copulas in statis-
tical modeling. Joe (1997) and Nelsen (1999) are the two comprehensive treatments on this
topic. A frequently cited and widely accessible reference is Genest and MacKay (1986), titled
“The Joy of Copulas”, which gives properties of an important family of copulas, Archimedean
copulas; see Section 2.

For the joy of copulas to be enjoyable by everyone in need, software implementation is impor-
tant. Unfortunately, there are very few software packages available for copula-based modeling.
One of the exceptions is the S+FinMetrics module (Insightful Corporation 2002) of S-PLUS
(Insightful Corporation 2005). For an array of commonly used copulas, the S+FinMetrics
module provides functions to evaluate their density and distribution, generate random num-
bers from them, and fit them for given data. These functionalities, however, are limited
because only bivariate copulas are implemented. Furthermore, the software is commercial.
It is desirable to have an open source platform for the development of copula methods and
applications.

“R is a free software environment for statistical computing and graphics”(R Development Core
Team 2007a). It runs on all platforms including Unix/Linux, Windows, and MacOS. Cutting-
edge statistical developments are easily incorporated into R by the mechanism of contributed
packages with quality assurance (R Development Core Team 2007b). It provides excellent
graphics and interfaces easily with lower level compiled code such as C/C++ or Fortran. An
active developer-user interaction is available through the R-help mailing list. Hundreds of
contributed packages are available and many existing functionalities, for example, the density
and distribution functions of multivariate normal and t distributions, can be used for copulas.
Therefore, it is a natural choice to write an R package for copulas.

The package copula is designed using the object-oriented features of the S language (Chambers
1998). It is publicly available at the Comprehensive R Archive Network (CRAN, http://
CRAN.R-project.org/). The new S4-style classes are created for multi-dimensional elliptical
copulas and Archimedean copulas. The extreme value copula class is implemented for the
bivariate case. For each copula family, methods of density, distribution, and random number
generator are implemented. For visualization purpose, methods of contour and perspective
plots are provided for bivariate copulas. Maximum likelihood method for fitting copula-based
models is also available and can be easily extended.

The rest of the article is organized as follows. Section 2 briefly presents the S4-style classes
defined in the package. Section 3 describe methods for copula classes, including density,
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distribution, random number generator, and graphics. Section 4 illustrates how to fit copula-
based models to data. Section 5 discusses some numerical issues in the implementation of the
package. Section 6 concludes.
In the sequel, all R code demonstration assumes that the package has been loaded:

R> library("copula")

The required packages mvtnorm (Genz, Bretz, and Hothorn 2005), sn (Azzalini 2006), and
scatterplot3d (Ligges and Mächler 2003), if not already loaded, will too be loaded by this call.
To make all the illustrations reproducible, we set the random seed:

R> set.seed(1)

2. Classes

Two main classes are defined in the copula package: copula and mvdc. The copula class is
for defining copulas, while the mvdc class is for defining multivariate distributions via copula.

2.1. The copula class

Two most frequently used copula families are elliptical copulas and Archimedean copulas.
The copula package has implemented virtual classes ellipCopula and archmCopula, both
extending the virtual class copula. These virtual classes are designed to provide a flexible
way to associate actual classes, that share some properties but have different representations
(Chambers 1998, p. 292).
An elliptical copula is the copula corresponding to an elliptical distribution by the Sklar’s
theorem. General discussion about elliptical distributions can be found in Fang, Kotz, and
Ng (1990). Let F be the multivariate CDF of an elliptical distribution. Let Fi be CDF of the
ith margin and F−1

i be its inverse function (quantile function), i = 1, . . . , p. The elliptical
copula determined by F is

C(u1, . . . , up) = F [F−1
1 (u1), . . . , F−1

p (up)]. (3)

Elliptical copulas have become very popular in finance and risk management because of their
easy implementation. Convenience in obtaining conditional distributions is another advantage
in using them for predicting (Frees and Wang 2005).
Actual elliptical copula classes implemented in the package are normalCopula for normal
copula tCopula for t-copula, specified by multivariate normal and multivariate t distribution.
Both copulas has a dispersion matrix, inherited from the elliptical distributions, and t-copula
has one more parameter, the degrees of freedom (df). Since copulas are invariant to monotonic
transformation of the margins, the standardized dispersion matrix, or correlation matrix,
determines the dependence structure. Commonly used dispersion structures are implemented:
autoregressive of order 1 (ar1), exchangeable (ex), Toeplitz (toep), and unstructured (un).
The corresponding correlation matrices are, for example, in the case of dimension p = 3, 1 ρ1 ρ2

1

ρ1 1 ρ1

ρ2
1 ρ1 1

 ,

 1 ρ1 ρ1

ρ1 1 ρ1

ρ1 ρ1 1

 ,

 1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

 , and

 1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1

 , (4)
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Family Parameter Generator Generator Inverse Frailty
Space ϕ(t) ϕ−1(s) Distribution

Clayton (1978) α ≥ 0 t−α − 1 (1 + s)−1/α Gamma

Frank (1979) α ≥ 0 − ln
e−αt − 1
e−α − 1

−α−1 ln
(
1 + e−s(e−α − 1)

)
Log series

Gumbel (1960) α ≥ 1 (− ln t)α exp(−s1/α) Positive stable

Table 1: Summary of three One-Parameter (α) Archimedean Copulas for p > 2.

where ρj ’s are dispersion parameters. The following code creates a normalCopula object and
a tCopula object, with self-explanatory arguments:

R> myCop.norm <- ellipCopula(family = "normal", dim = 3, dispstr = "ex",

+ param = 0.4)

R> myCop.t <- ellipCopula(family = "t", dim = 3, dispstr = "toep",

+ param = c(0.8, 0.5), df = 8)

These objects can be used to apply methods defined in Section 3.

An Archimedean copula is constructed through a generator ϕ as

C(u1, . . . , up) = ϕ−1 {ϕ(u1) + · · ·+ ϕ(up)} , (5)

where ϕ−1 is the inverse of the generator ϕ. In order for (5) to be a copula, the generator needs
to be a p-monotonic function (see, for example, Nelsen 1999, Theorem 4.6.2). A generator
uniquely (up to a scalar multiple) determines an Archimedean copula. Details of generators
for various Archimedean copulas can be found in Nelsen (1999).

Implemented Archimedean copula classes in the package are commonly used one-parameter
families, such as calytonCopula for Clayton copula (Clayton 1978), frankCopula for Frank
copula (Frank 1979), and gumbelCopula for Gumbel copula (Gumbel 1960). Constructors of
these copulas are available. For example:

R> myCop.clayton <- archmCopula(family = "clayton", dim = 3, param = 2)

It is worth noting that Archimedean copulas with dimension 3 or higher only allows positive
association. Negative association is allowed for bivariate Archimedean copulas. The three
one-parameter multivariate Archimedean copulas (p > 2) implemented in the package are
summarized in Table 1. The parameter value at the boundary of parameter space gives the
independent copula after taking the limit. The generator inverse and frailty distribution are
used in random number generation.

2.2. The mvdc class

The mvdc class is designed to construct multivariate distributions with given margins using
copulas as in (2). This class is an actual class. It has three major components: copula specifies
the copula C in (2); margins specifies the names of the marginal distributions F1, . . . , Fp; and
paramMargins is a list of list, each specifying the parameter values of the corresponding
margin.
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The following code creates a mvdc object which represents a trivariate distribution with stan-
dard normal margins and Clayton copula:

R> myMvd <- mvdc(copula = myCop.clayton, margins = c("norm", "norm",

+ "norm"), paramMargins = list(list(mean = 0, sd = 2), list(mean = 0,

+ sd = 1), list(mean = 0, sd = 2)))

R provides a comprehensive set of statistical distributions R Development Core Team (2007a),
such as norm, t, gamma, lnorm, weibull, etc. They can be used to specify the margins.
User-defined distributions can be used as long as the PDF, CDF, and quantile function of the
distribution, with prefix d, p, and q, are available. For instance, if functions dfancy, pfancy,
and qfancy have been supplied, then distribution fancy can be used in the margins. Of note
is that these functions should be vectorized.

3. Methods

3.1. Distribution and density

The method functions for distribution and density for a copula object are pcopula and
dcopula

For an elliptical copula, the distribution is (3). Evaluation of (3) needs implementation of
the joint CDF of the elliptical distribution and univariate quantile functions for each margin.
Differentiating (3) gives the density of an elliptical copula

c(u1, . . . , up) =
f [F−1

1 (u1), . . . , F−1
p (up)]∏p

i=1 fi[F−1
i (ui)]

, (6)

where f is the joint PDF of the elliptical distribution, and f1, . . . , fp are marginal density
functions. For example, after some algebra, the density of a Gaussian copula with dispersion
matrix Σ is (Song 2000)

c(u1, . . . , up|Σ) = |Σ|−1/2 exp
{

1
2
q>(Ip − Σ−1)q

}
, (7)

where q = (q1, . . . , qp)> with qi = Φ−1(ui) for i = 1, . . . , p, and Φ is the CDF of N(0, 1).
Evaluation of (6) needs implementation of f and f1, . . . , fp in addition to the univariate
quantiles F−1

1 , . . . , F−1
p . Fortunately, the R package mvtnorm and sn provide F and f for

multivariate normal and multivariate t. Other functions are available in R base.

For an Archimedean copula, the distribution and density both depend on the generator func-
tion and its inverse function. These functions are defined for each Archimedean copula. The
density of (5) is to be obtained by differentiating the distribution function, which, in many
situations, can be very tedious. Symbolic differentiation is available through function D in R
base and can be used to obtain CDF and PDF expressions. As the dimension p increases,
however, the memory needed to do the symbolic differentiation to obtain PDF expression
can go quickly beyond the available memory on a typical computer. Furthermore, because
the expressions are not symbolically simplified, numerical problems may occur for particular



6 copula: Enjoy the Joy of Copulas

points in the support and for particular parameter values. In the current release, symbolic
expressions are obtained from Mathematica and processed by function deriv to generate al-
gorithmic expressions before both are imported into R; see Section 5 for more details on
numerical issues.

The method functions for distribution and density for a mvdc are pmvdc and dmvdc The
distribution function is defined in (2). The density function is, by differentiating (2),

f(x1, . . . , xp) = c[F1(x1), . . . , Fp(xp)]
p∏

i=1

fi(xi) (8)

where c is the density of C, and f1, . . . , fp are marginal densities.

Example code to evaluate distribution and density will be given in the next subsection.

3.2. Random number generator

The random number generator method is rcopula for a copula object and rmvdc for an mvdc
object.

The random number generator of an elliptical copula is straightforward given a random num-
ber generator of the corresponding elliptical distribution. The Sklar’s theorem implies that
random numbers from a copula can be generated by transforming each margin of random
numbers from a multivariate distribution with its probability integral transformation. The
copula package provides generators for normal copula and t-copula using the random number
generators for multivariate normal and multivariate t in package mvtnorm.

Generating variables form a general copula can be done by iterative conditioning (Bouyè et al.
2000). For some commonly used Archimedean copulas with p > 2, however, fast algorithm
exits when the inverse generator function ϕ−1 is known to be the Laplace transform of some
positive random variable (Marshall and Olkin 1988; Frees and Valdez 1998). This positive
random variable is often referred to as frailty. Let γ be a realization of the frailty. Let v1, . . . , vp

be independent realizations of uniform variables over (0, 1). Then ui = ϕ−1(−γ−1 log vi),
i = 1, . . . , p, is a realization from the Archimedean copula with generator ϕ. This algorithm
is very easy to implement and fast, given that a random number generator of the frailty is
available. It is known that the frailty distribution for Clayton, Frank, and Gumbel copulas are
gamma, log-series, and positive stable, respectively; see Table 1. Gamma variable generator
is available in the R base. Algorithms for generating positive stable and log series variables
can be found in Chambers, Mallows, and Stuck (1976) and Kemp (1981), respectively. In
particular, the copula package uses a Fortran implementation of Nolan (2006), which is a
revised version of Chambers et al. (1976), to generate positive stable variables. From the
compound construction, this algorithm only allows positive association.

For bivariate Archimedean copulas (p = 2), negative association is allowed. Random number
generator for bivariate Archimedean copulas are therefore separately implemented.

The following code illustrates the random number generation and evaluation of distribution
and density for the copula object myCop.t created in Section 2:

R> u <- rcopula(myCop.t, 4)

R> u
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[,1] [,2] [,3]
[1,] 0.3508325 0.6165205 0.7459244
[2,] 0.3912433 0.2189641 0.2556491
[3,] 0.3925507 0.7579099 0.9157623
[4,] 0.9822296 0.9611676 0.8896553

R> cbind(dcopula(myCop.t, u), pcopula(myCop.t, u))

[,1] [,2]
[1,] 2.265954 0.3081520
[2,] 3.493735 0.1359238
[3,] 1.878803 0.3777087
[4,] 31.481423 0.8771844

To generate random numbers from a mvdc object, one only needs to apply the quantile function
to random numbers of the specified copula on each margin. The following code illustrates
the random number generation and evaluation of distribution and density for the mvdc object
mymvd created in Section 2:

R> x <- rmvdc(myMvd, 4)

R> x

[,1] [,2] [,3]
[1,] 0.5330151 -0.06126913 2.17724731
[2,] -0.9815417 1.01855167 -0.05273936
[3,] 0.2210124 0.33882413 -0.48329446
[4,] -1.3613943 0.09657746 -1.09767362

R> cbind(dmvdc(myMvd, x), pmvdc(myMvd, x))

[,1] [,2]
[1,] 0.01188019 0.3922578
[2,] 0.00589479 0.2686264
[3,] 0.02553551 0.3164067
[4,] 0.01971609 0.1842159

3.3. Graphics

Graphics are important tools for in illustrating and presenting the results copula-based mod-
eling. The 3D scatter plot from the package scatterplot3d can be used to show scatters. For
example, the following code plots 200 random points from a trivariate normal copula and a
trivariate t-copula in Figure 1.

R> par(mfrow = c(1, 2), mar = c(2, 2, 1, 1), oma = c(1, 1, 0, 0),

+ mgp = c(2, 1, 0))

R> u <- rcopula(myCop.norm, 200)

R> scatterplot3d(u)

R> v <- rcopula(myCop.norm, 200)

R> scatterplot3d(v)
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Figure 1: Scatter plots of random numbers from a normal copula and a t-copula.

For both copula and mvdc objects, the copula package has implemented methods to draw
perspective and contour plot for density and distribution. These method functions are persp
and contour. We illustrate the usage of contour for mvdc objects. The following code
plots the density contours of bivariate distributions defined with Clayton, Frank, and Gumbel
copulas, all with both margins being standard normal:

R> myMvd1 <- mvdc(copula = archmCopula(family = "clayton", param = 2),

+ margins = c("norm", "norm"), paramMargins = list(list(mean = 0,

+ sd = 1), list(mean = 0, sd = 1)))

R> myMvd2 <- mvdc(copula = archmCopula(family = "frank", param = 5.736),

+ margins = c("norm", "norm"), paramMargins = list(list(mean = 0,

+ sd = 1), list(mean = 0, sd = 1)))

R> myMvd3 <- mvdc(copula = archmCopula(family = "gumbel", param = 2),

+ margins = c("norm", "norm"), paramMargins = list(list(mean = 0,

+ sd = 1), list(mean = 0, sd = 1)))

R> par(mfrow = c(1, 3), mar = c(2, 2, 1, 1), oma = c(1, 1, 0, 0),

+ mgp = c(2, 1, 0))

R> contour(myMvd1, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3))

R> contour(myMvd2, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3))

R> contour(myMvd3, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3))

The contour plots are shown in Figure 2. Note that the parameters of the copulas are chosen
such that the Kendall’s τ for all three distributions are 0.5.

The persp method can be called similarly. The first argument in these two calls are the
signature that determines which method to call. It should be either a copula object or a
mvdc object. The second argument specifies the function for which the plots are to drawn,
that is, PDF or CDF.
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Figure 2: Contour plots

4. Fit a copula model

With density functions for copula and mvdc objects available, one can easily fit copula-based
models with the maximum likelihood method. The package provides functions loglikCopula
and loglikMvdc to evaluate the loglikelihood of the data under the specified copula model.
These functions can be passed to an optimizer to obtain the maximum likelihood estimate.
The package provides functions fitCopula and fitMvdc to carry out the estimation and
report the results.

Suppose that we observe n indepent realizations from a multivariate distribution,
{(Xi1, . . . , Xip)> : i = 1, . . . , n}. Suppose that the multivariate distribution is specified by
p margins with CDF Fi and PDF fi, i = 1, . . . , p, and a copula with density c. Let β be
the vector of marginal parameters and α be the vector of copula parameters. The parameter
vector to be estimated is θ = (β>, α>)>. The loglikelihood function is

l(θ) =
n∑

i=1

log c {F1(Xi1;β), . . . , Fp(Xip;β);α} +
n∑

i=1

p∑
j=1

log fi(Xij ;β). (9)

The ML estimator of θ is
θ̂ML = argmax

θ∈Θ
l(θ),

where Θ is the parameter space.

To illustrate, we generate a sample from a bivariate distribution with gamma margins and a
normal copula:

R> myMvd <- mvdc(copula = ellipCopula(family = "normal", param = 0.5),

+ margins = c("gamma", "gamma"), paramMargins = list(list(shape = 2,

+ scale = 1), list(shape = 3, scale = 2)))

R> n <- 200

R> dat <- rmvdc(myMvd, n)

The parameters to be estimated consist of marginal parameters β = (2, 1, 3, 2)> and copula
parameter α = 0.5. The loglikelihood at the true parameter value is:
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R> loglikMvdc(c(2, 1, 3, 2, 0.5), dat, myMvd)

[1] -781.1641

To obtain θ̂ML, one implements the loglikelihood function l(θ) and feed it to an optimizer.
The function fitMvdc is a wrapper to the optimization routine optim in R. An initial search
point is needed for optim. Simpel method of moments estimate will serve as initial point.

R> mm <- apply(dat, 2, mean)

R> vv <- apply(dat, 2, var)

R> b1.0 <- c(mm[1]^2/vv[1], vv[1]/mm[1])

R> b2.0 <- c(mm[2]^2/vv[2], vv[2]/mm[2])

R> a.0 <- sin(cor(dat[, 1], dat[, 2], method = "kendall") * pi/2)

R> start <- c(b1.0, b2.0, a.0)

R> fit <- fitMvdc(dat, myMvd, start = start,

+ optim.control = list(trace = TRUE, maxit = 2000))

The first three arguments of function fitMvdc are the data, the mvdc object, and a start-
ing value. Control parameters to the optimizing routine can passed in through argument
optim.control. The starting values here are arbitarily chosen. In real problems, the starting
values of marginal parameters can be chosen by fitting each margin separately. The result of
the estimation is summarized as:

R> fit

The ML estimation is based on 200 observations.
Margin 1 :

Estimate Std. Error
m1.shape 1.830479 0.1689802
m1.scale 1.037388 0.1100475
Margin 2 :

Estimate Std. Error
m2.shape 3.515646 0.3362403
m2.scale 1.628037 0.1672812
Copula:

Estimate Std. Error
rho.1 0.419909 0.05820196
The maximized loglikelihood is -777.327
The convergence code is 0

As the dimension p gets large, the number of parameters increases, and the optimization
problem gets harder. Joe and Xu (1996) proposed a two-stage estimation method called
inference functions for margins (IFM). The IFM method estimates the marginal parameters
β in a first step by

β̂IFM = argmax
β

n∑
i=1

p∑
j=1

log fi(Xij ;β), (10)
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and then estimates the association parameters α given β̂IFM by

α̂IFM = argmax
α

n∑
i=1

log c
(
F1(Xi1; β̂IFM), . . . , Fp(Xip; β̂IFM);α

)
. (11)

When each marginal distribution Fi has its own parameters βi so that β = (β>1 , . . . , β>p )>,
the first step consists of an ML estimation for each margin j = 1, . . . , p:

β̂j IFM = argmax
βj

n∑
i=1

log fi(Xij ;βj). (12)

In this case, each maximization task has a very small number of parameters, greatly reducing
the computational difficulty. This approach is called the two-stage parametric ML method
by Shih and Louis (1995) in a censored data setting. In our illustration, the method can be
carried out with the function fitCopula.

R> loglik.marg <- function(b, x) sum(dgamma(x, shape = b[1], scale = b[2],

+ log = TRUE))

R> ctrl <- list(fnscale = -1)

R> b1hat <- optim(b1.0, fn = loglik.marg, x = dat[, 1], control = ctrl)$par

R> b2hat <- optim(b2.0, fn = loglik.marg, x = dat[, 2], control = ctrl)$par

R> udat <- cbind(pgamma(dat[, 1], shape = b1hat[1], scale = b1hat[2]),

+ pgamma(dat[, 2], shape = b2hat[1], scale = b2hat[2]))

R> fit.ifl <- fitCopula(udat, myMvd@copula, start = a.0)

The estimate from the two stage is summarized as

R> c(b1hat, b2hat, fit.ifl@est)

[1] 1.8301906 1.0375602 3.5167486 1.6284508 0.4199346

R> fit.ifl

The ML estimation is based on 200 observations.
Estimate Std. Error z value Pr(>|z|)

rho.1 0.4199346 0.05368175 7.822671 5.107026e-15
The maximized loglikelihood is 19.41620
The convergence code is 0

Note that the IFM estimate is close to the ML estimate. The standard error of α̂IFM is
underestimated because the variation of β̂IFM is not appropriately taken care of.
When consistent estimation of the dependence parameter α is important, it can be estimated
with the canonical ML (CML) method without specifying the marginal distributions. This
approach uses the empirical CDF of each marginal distribution to transform the observations
(Xi1, . . . , Xip)> into pseudo-observations with uniform margins (Ui1, . . . , Uip)> and then esti-
mates α as

α̂CML = argmax
α

n∑
i=1

log c(Ui1, . . . , Uip;α). (13)

The method can be carried out with fitCopula as well:
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R> eu <- cbind((rank(dat[, 1]) - 0.5)/n, (rank(dat[, 2]) - 0.5)/n)

R> fit.cml <- fitCopula(eu, myMvd@copula, start = a.0)

R> fit.cml

The ML estimation is based on 200 observations.
Estimate Std. Error z value Pr(>|z|)

rho.1 0.4304444 0.05311327 8.104272 4.440892e-16
The maximized loglikelihood is 20.29229
The convergence code is 0

The CML estimate α̂CML is noticeably different from α̂ML and α̂IFM. It has the advantage of
not relying on marginal specifications.

Maximum likelihood estimation of copula-based models can be easily extended to solve more
complicated problems. For example, when covariates are to be incorporated into the margins,
all one needs to do is to write the loglikelihood function (9), which is the summation of the
loglikelihood of the copula and the the loglikelihood of all the margins. Then, maximum
likelihood estimates can be obtained by feeding the loglikelihood function to an optimizer.
Example code for incorporating covariates into the margins is presented in the Appendix
where two margins are modeled by gamma regression and log-normal regression, respectively.
Covariates can also be incorporated into copula parameters in a similar fashion.

5. Numerical issues

The accuracy of the implemented functions is important for a user to feel comfortable using
the package. Several numerical issues are encountered in the development of package copula:
distribution/density evaluation, limits in parameter space, and constrained optimization. Al-
though these issues are not yet elegantly solved in the package, they are worth bringing up for
developers to seek for better solutions and for users to be aware of the potential limitations.

Numerical issues in CDF/PDF evaluation mostly arise near or on the boundary of the support
of copulas. Evaluation of CDFs is important in extreme value analysis because both lower
and upper tail dependence indices are defined as the limits of CDFs in extreme values (Joe
1997, p.33). For example, the lower tail dependence index of a bivariate copula is λL =
limu→0 Pr(U1 ≤ u|U2 ≤ u) = limu→0 C(u, u)/u. Evaluation of PDFs is essential in likelihood
based inferences. We focus our discussion on the numerical issues in PDF evaluation.

For an Archimedean copula, the PDF can be obtained in theory by differentiating the CDF,
which is constructed from the generator function and its inverse function. Unfortunately, eval-
uation of PDF expressions obtained in this way may lead to serious inaccuracy at boundary
points because of the numerical errors accumulated in the sequence of function evaluations.
A remedy to the problem is to algebraically simplify the expressions before numerically eval-
uating them. In the new release of copula, simplified symbolic expressions of CDF and PDF
for Archimedean copulas are obtained from Mathematica. Getting these expressions can be
very memory/time-consuming when the dimension gets higher; the maximum implemented
dimensions are 10, 6, and 10 for Clayton, Frank, and Gumbel copula, respectively, with Frank
copula being the most difficult case. Without simplification, as illustrated by a referee, eval-
uation of Frank copula density with strong dependence (α = 50) near the boundary of the
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support would give NaN while numerical values can actually be obtained if simplified expres-
sions are used. Such simplified expressions are made available from Maple in package fCopulae
of Rmetrics (Würtz 2004). Further increase in the efficiency of the evaluation can be obtained
in package copula by processing these symbolic expressions with the R function deriv to pro-
duce algorithmic expressions so that repetitious evaluations are avoided. This remedy works
quite well for copulas of relatively lower dimension (2 or 3), but can still give NaN at boundary
points for higher dimensional Archimedean copulas. An illustration is contained in the tests
directory of the copula source.

Numerical problems in density evaluation can also arise as the copula parameter approaches
some limit values. The independent copula can often be obtained as the limiting case of
Archimedean copulas when the copula parameter approaches certain values. Consequently,
separate formulas need to be used for these parameter values. Numerical problems can,
however, occur when parameters are very close but not exactly equal to these values. For
example, when the dependence parameter is near zero for a bivariate Clayton copula, the
numerical evaluation is indeterminate. In the current release, when this parameter is within
a small neighborhood of zero, it is treated as zero. This is certainly not an elegant solution.

For elliptical copulas, the accuracy of CDF and PDF depends on the accuracy of the mul-
tivariate distributions implemented in mvtnorm and univariate quantile function such as qt
in R base. In a recent personal communication, Atwood (2007) noted that the density of a
t-copula with d.f. less than 1 cannot be evaluated because function qt returns NaN for d.f.
less than 1; further, when the correlation coefficient in a normal or t-copula approaches −1
or 1, Cholesky decomposition which is used in density evaluation of multivariate normal and
t might fail.

Numerical issues of PDF evaluation at certain parameter values cause problems in maximum
likelihood estimation while the optimizer evaluates the loglikelihood function. Consequently,
lower and upper limits of the parameter space to be searched within is desired in the argu-
ment list of fitCopula. Such limits can be particularly useful when the user has some prior
knowledge about where the parameter values may be in the parameter space.

6. Discussion

This article presents the design, features, and some implementation details of the R package
copula for multivariate modeling with copulas. The package provides functions to evaluate
density/distribution, generate random numbers, plot, and fit copula-based models. It is hoped
that, through the dissemination of the software, everyone who needs them may access easily
copula-based models in daily computing and therefore enjoy, as put by Genest and MacKay
(1986), the joy of copulas.

The random number generator of high dimensional (p > 2) Archimedean copulas in the
package currently uses the compound construction algorithm (Marshall and Olkin 1988; Frees
and Valdez 1998). When the frailty distribution is known, this algorithm is very efficient and
elegant. Whelan (2004) proposed an algorithm based on integral representations, and the
algorithm can be used with composite nested Archimedean copulas. Wu, Valdez, and Sherris
(2006) recently proposed an algorithm for sampling from exchangeable Archimedean copulas
based on an extension of the variable transformation technique from the bivariate case to
multivariate case (Genest and Rivest 2001). These method can be useful when the frailly
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distribution is unknown. An alternative in that case is to obtain the frailty distribution with
numerical inversion of Laplace transformation (Melchiori 2006).

Given a dataset, choosing a copula to fit the data is an important but difficult problem (Dur-
rleman, Nikeghbali, and Roncalli 2000). The true data generation mechanism is unknown, for
a given amount of data, it is possible that several candidate copulas fit the data reasonably
well or that none of the candidate fits the data well. When maximum likelihood method is
used, the general practice is to fit the data with all the candidate copulas and choose the
ones with the highest likelihood (Frees and Wang 2005). A graphical tool to choose among
Archimedean copulas is based on the Kendall’s process (Genest and Rivest 1993). Recent
works on goodness-of-fit tests of copulas are mostly chi-squared type tests; see, for exam-
ple, Fermanian (2005) and references therein. Copula selection and goodness-of-fit are active
research areas.

There are several other packages about copulas on CRAN. Package fgac (Gonzalez-Lopez
2005) fits bivariate data to seven families of two-parameter Archimedean copulas by match-
ing the parametric CDF with the empirical CDF. Package mlCopulaSelection (Garcia and
Gonzalez-Lopez 2006) uses maximum likelihood method to select a best fit from a range of
bivariate two-parameter Archimedean copulas. Package sbgcop (Hoff 2007) provides semi-
parametric Bayesian estimation for Gaussian copula parameters with univariate marginal
distributions treated as nuisance parameters. A forthcoming package for bivariate copulas
with a wider scope is fCopulae in Rmetrics (Würtz 2004). This package will provide func-
tions for elliptical copulas, Archimedean copulas, extreme value copulas, and empirical copula.
When the planned functions and documentations are complete, fCopulae will be a package
to be expected for copula users. Of note is that all these packages except sbgcop deal with
bivariate copulas. This is in contrast to package copula.

New functions in the most recent release of package copula include bivariate extreme value cop-
ulas, bivariate association measures, and some other bivariate copulas. Implemented bivariate
extreme value copulas are Galambos copula (Galambos 1987) and Husler-Reiss copula (Hüsler
and Reiss 1989), in addition to Gumbel copula (Gumbel 1960) which is also an Archimedean
copula. Implemented bivariate association measures are Kendall’s tau, Spearman’s rho, and
tail index (lower and upper). Given an association measure (Kendall’s tau or Spearman’s
rho), calibration functions is implemented to return the copula parameter value that leads to
the specified association measure. These association measures are implemented numerically
for all copulas, but analytic formulas are used whenever available. Newly added bivariate cop-
ulas are Ali-Mikhail-Haq copula (Ali, Mikhail, and Haq 1978) and Plackett copula (Plackett
1965).

Some desirable functions are not yet implemented in package copula. Estimation methods
other than maximum likelihood are needed. These may include moment method and non-
parametric method. For Archimedean copulas, a copula can be estimated by matching the
parametric generator function and nonparametric estimates of the generator. Copula selection
and goodness-of-fit testing tools are also needed. Copula selection is usually done by choosing
one that minimizes certain deviation measure of the observed data from the assumed copula
family. Goodness-of-fit testing involves assessing the significance of the observed deviation
measure against the its null distribution under the assumed copula family. Empirical copula
is a useful tool for data analysis. Bivariate empirical copula is a bivariate empirical CDF
that generalizes the univariate function ecdf in R. A bivariate version of stepfun is needed.
The empirical association measures can be obtained from cor.test. Last but not least, more
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commonly used copulas are needed such that users have a wider range of copulas to choose
from and avoid repetitious implementation. High quality implementations of these functions
will push forward the envelope of the enjoyable joy of copulas.
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A. Example code with covariates in margins

This section illustrates how to construct the loglikelihood function using the facilities in the
copula package when covariates are to be incorporated into the margins. Suppose that we
observe n bivariate observations {(Yi1, Yi2) : i = 1, . . . , n}, and for each margin, there is
a corresponding covariate matrix. The first margin Y1i follows a gamma distribution with
shape exp(X>

1iβ1) and scale ν. The second margin, after log transformation, log(Y2i) follows
a normal distribution with mean X>

2iβ2 and standard deviation σ.

The following code defines the three components of the loglikelihood: gamma margin, log-
normal margin, and copula.

R> loglik.m1 <- function(b, y, x) {

+ l <- length(b)

+ sum(dgamma(y, shape = exp(x %*% b[-l]), scale = b[l], log = TRUE))

+ }

R> loglik.m2 <- function(b, y, x) {

+ l <- length(b)

+ sum(dlnorm(y, meanlog = x %*% b[-l], sdlog = b[l], log = TRUE))

+ }

R> loglik.cop <- function(a, u, copula) {

+ copula@parameters <- a

+ sum(log(dcopula(copula, u)))

+ }

Note that the contribution from the copula needs to be fed with probability integral trans-
formed margins. The following code provides the transformation.

R> probtrans.m1 <- function(b, y, x) {

+ l <- length(b)

+ pgamma(y, shape = exp(x %*% b[-l]), scale = b[l])

+ }

R> probtrans.m2 <- function(b, y, x) {

+ l <- length(b)

+ plnorm(y, meanlog = x %*% b[-l], sdlog = b[l])

+ }

The loglikelihood function can be easily composed as:

R> myloglik <- function(theta, y, xmat, copula) {

+ l1 <- ncol(xmat[[1]]) + 1

+ l2 <- ncol(xmat[[2]]) + 1

+ b1 <- theta[1:l1]

+ b2 <- theta[(l1 + 1):(l1 + l2)]

+ a <- theta[-(1:(l1 + l2))]

+ u <- cbind(probtrans.m1(b1, y[, 1], xmat[[1]]), probtrans.m2(b2,

+ y[, 2], xmat[[2]]))

+ copula@parameters <- a

+ loglik <- loglik.m1(b1, y[, 1], xmat[[1]]) + loglik.m2(b2,
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+ y[, 2], xmat[[2]]) + loglik.cop(a, u, copula)

+ loglik

+ }

This function can then be fed to an optimization routine.
To illustrate, we define a function to generate response variables from given parameter vector,
design matrices, and copula structure:

R> genY <- function(theta, xmat, copula) {

+ l1 <- ncol(xmat[[1]]) + 1

+ l2 <- ncol(xmat[[2]]) + 1

+ b1 <- theta[1:l1]

+ b2 <- theta[(l1 + 1):(l1 + l2)]

+ a <- theta[-(1:(l1 + l2))]

+ n <- nrow(xmat[[1]])

+ u <- rcopula(copula, n)

+ y1 <- qgamma(u[, 1], shape = exp(xmat[[1]] %*% b1[-l1]),

+ scale = b1[l1])

+ y2 <- qlnorm(u[, 2], meanlog = xmat[[2]] %*% b2[-l1], sdlog = b2[l2])

+ cbind(y1, y2)

+ }

Now, we generate a sample of size n = 200. The design matrices are generated from a
continuous normal variable and a binary variable, respectively.

R> n <- 200

R> xmat <- list(model.matrix(~rnorm(n)), model.matrix(~rbinom(n,

+ prob = 0.5, size = 1)))

R> b1 <- c(1, 0.5, 2)

R> b2 <- c(2, -1, 3)

R> a <- 0.5

R> theta <- c(b1, b2, a)

R> myCop <- normalCopula(a, dim = 2, dispstr = "ex")

R> y <- genY(theta, xmat, myCop)

R> myloglik(theta, y, xmat, myCop)

[1] -1281.640

The optimization routine needs an initial search point. The initial point may be chosen based
on regressions on each margin and MoM on the copula. For illustration purpose, we use the
true value as starting value and see how fast it converges:

R> fit <- optim(theta, myloglik, control = list(fnscale = -1, trace = 1),

+ y = y, xmat = xmat, copula = myCop, method = "BFGS")

initial value 1281.639657
iter 10 value 1279.312818
final value 1279.311152
converged
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R> fit

$par
[1] 1.0711075 0.5129254 1.7993063 2.2886217 -1.1995043 2.8907541 0.4166082

$value
[1] -1279.311

$counts
function gradient

47 11

$convergence
[1] 0

$message
NULL

The variance matrix of the estimator can be estimated by inverting the Fisher information
matrix, which is approximated by the negative Hessian matrix.
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