Tutorial 3
- Linux Interrupt Handling -

Daniel Kats

(with lots of help from Bogdan)



Today’s tutorial

Getting started with Linux programming
nterrupt need and interrupt types
Hardware support for interrupts
nterrupt handling process

Upper and bottom halves
Concurrency considerations

Implementing an interrupt handler



Getting started

Linux Kernel Development, by Robert Love
— High-level, good starting point

Understanding the Linux Kernel, by D.Bovet and
M.Cesati

— More advanced, lots of details
Linux Device Drivers, A.Rubini and J.Corbet

Cross-reference Linux sources — with hyperlinks!
— http://Ixr.linux.no

— Really useful to understand code and data structures



Interrupts

An event external to the currently executing
process that causes a change in the normal flow
of instruction execution; usually generated by
hardware devices external to the CPU

Asynchronous w.r.t current process
External & internal devices need CPU service
CPU must detect devices that require attention!



Alternatives

e Polling: CPU checks each device periodically
— Too much overhead - CPU time wasted polling

— Efficient if events arrive fast, or if not urgent (slow
polling at large intervals)

* Interrupts: Each device gets an “interrupt line”

— Device signals CPU when it needs attention, CPU
handles request when it comes in

— No overhead / wasted cycles
— Good for events that are urgent, and/or infrequent



Interrupt types

 Hardware: An event/electronic signal from
external device that needs CPU attention
— Mouse moved, keyboard pressed
— Printer ready, modem, etc

e Software:

— exceptions (traps) in the processor: divide by zero
exception, page faults, etc.

— special software interrupt instructions (e.g., request
disk reads/writes to disk controller)



Hardware support for interrupts

e Devices are connected to a shared message bus,

which connects to the APIC
— Asynchronous Programmable Interrupt Controller

— Local APIC (LAPIC) located on processor

e Limited number of IRQ lines

e After every instruction (user-mode), CPU checks

for hardware interrupt signals and, if present,
calls an interrupt handler (kernel routine)



Interrupt handling

Program instruction

Interrupt

YES

nending

Program instruction

Switch to kernel mode

Save current PC

Load Interrupt Handler

Execute IH

Restore PC




Interrupt Descriptor Table

x86 implementation of IVT for fast interrupt
handling

Reserved chunk of RAM, used by the CPU to
quickly branch to a specific interrupt handler

Mapped to kernel space at 0x0000-0x03ff (256 4-
oyte pointers) on 8086

_ater CPUs: flexible locations and different size

~irst 32 entries (0x00-0x1F) - reserved for mapping
nandlers for CPU-specific exceptions (faults)

Next entries — interrupt routines (e.g., keyboard)




Interrupt handlers
Fast/Hard/First-Level Interrupt Handler (FLIH)

— Quickly service an interrupt, minimal exec time

— Schedule SLIHs if needed
Slow/Soft/Second-Level Interrupt Handler (SLIH)
— Long-lived interrupt processing tasks

— Lower priority - sit in a task runqueue

— Executed by a pool of kernel threads, when no FLIHs
Linux:

— FLIHs = upper halves (UH)

— SLIHs = bottom halves (BH)

Windows

— Deferred Procedure Calls (DPCs)



Bottom halves (BH)

e SoftlIRQs and Tasklets

— Deferred work runs in interrupt context
— Don’t run in process context

— Can’t sleep

— Tasklets somewhat easier to use

 Workqueues

— Run in kernel threads
— Schedulable
— Can sleep



Concurrency

Hardware interrupts (IRQs) can arrive while a
specific interrupt handler is in execution

Fast interrupts must run atomically => Disable all
interrupts and restore them when done

As a result, fast interrupts must run fast, and
defer long-lived work to bottom halves.

Otherwise => interrupt storm => livelocks



Interrupt enabling

IE (Interrupt Enable) bit in the status register
can be set or reset by the processor

cli = clear interrupts

sti = set interrupts

Must be careful with semantics if using these

directly
— cli disables interrupts on ALL processors

— If you are already handling an IRQ, cli only
disables them on current CPU



Multiprocessors

e Linux kernel tries to divide interrupts evenly
across processors to some extent

e Fastinterrupts (SA_INTERRUPT) execute with all
other interrupts disabled on the current processor

e Other processors can still handle interrupts,
though not the same IRQ at the same time




Interrupt handling internals (x86)

* Each interrupt goes through do_IRQ

A do_ IRQ acquires spinlock on the irg#,
preventing other CPUs from handling this IRQ

e Looks up handler

— If no handler, schedule bottom halves (if any) and
return

— If handler, run handle IRQ event to invoke the
handlers



Implementing an interrupt handler

e Use request _irq()to get interrupt handler
—irq (IRQ number)
— handler (func. pointer - interrupt handler)
— flags (SA_INTERRUPT, SA_SHIRQ, etc)
— dev_name (string used in /proc/interrupts)
— dev _id (used for shared interrupt lines)

e Fast handler - always with SA_INTERRUPT

 From within interrupt handler, schedule BH to run
(tasklet_schedule, queue work, etc.)



Implementing an interrupt handler(2)

e A driver might need to disable/enable interrupt
reporting for its own IRQ line only

e Kernel functions:
— disable i1rg (int 1rqQ)
— disable _i1rg _nosync (int i1rq)
—enable 1rg (int i1rq)

* Enable/disable IRQ - across ALL processors

* Nosync — doesn’t wait for currently executing
IH’s to complete => faster, but leaves driver
open to race conditions



Useful readings

Linux Device Drivers, 3™ edition

— http://lwn.net/Kernel/LDD3/

— Chapter 10 — Interrupt Handling

The Linux Kernel Module Programming guide
— http://www.tdlp.org/LDP/Ikmpg/2.6/html/

— Chapter 12 — Interrupt Handlers
Understanding the Linux Kernel

— Chapter 4 — Interrupts and Exceptions

Consult LXR — Deep understanding of Linux
source code and data structures involved






