| 25 | Sulfur trioxide, | SO ₂ i | s used for | r the industrial | manufacture o | of sulfuric acid | |----|------------------|-------------------|------------|--------------------|---------------|------------------| | 23 | Ouliui tiloxide, | OO_2 , i | 3 USCU IO | i iiic iiidasiiiai | manulaciure c | n sununc acia. | SO_3 is produced by reacting sulfur dioxide, SO_2 , and oxygen, O_2 , as shown in **equilibrium 25.1** below. **Equilibrium 25.1** $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$ $\Delta H = -197 \text{ kJ mol}^{-1}$ - (a) Le Chatelier's principle can be used to predict how different conditions affect the equilibrium position. - Using le Chatelier's principle, show that a low temperature and a high pressure should be used to obtain a maximum equilibrium yield of SO₃. Explain why the actual conditions used in industry may be different from the conditions | needed for a maximum equilibrium yield. | |---| (b) Under certain conditions, $K_{\rm c}$ for equilibrium 25.1 is 0.160 dm 3 mol $^{-1}$. The equilibrium mixture under these conditions has the following concentrations of SO_2 and O_2 . | Species | Equilibrium concentration /mol dm ⁻³ | |-----------------|---| | SO ₂ | 2.00 | | O ₂ | 1.20 | | • Using the value of K_c , explain whether the equilibrium position will be towards the right or towards the left under these conditions. | |---| | Calculate the concentration of SO₃ in the equilibrium mixture. | | | | | | | | | | | | | | | | | © OCR 2016 Turn over