25	Sulfur trioxide,	SO ₂ i	s used for	r the industrial	manufacture o	of sulfuric acid
23	Ouliui tiloxide,	OO_2 , i	3 USCU IO	i iiic iiidasiiiai	manulaciure c	n sununc acia.

 SO_3 is produced by reacting sulfur dioxide, SO_2 , and oxygen, O_2 , as shown in **equilibrium 25.1** below.

Equilibrium 25.1
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

- (a) Le Chatelier's principle can be used to predict how different conditions affect the equilibrium position.
 - Using le Chatelier's principle, show that a low temperature and a high pressure should be used to obtain a maximum equilibrium yield of SO₃.
 Explain why the actual conditions used in industry may be different from the conditions

needed for a maximum equilibrium yield.

(b) Under certain conditions, $K_{\rm c}$ for equilibrium 25.1 is 0.160 dm 3 mol $^{-1}$.

The equilibrium mixture under these conditions has the following concentrations of SO_2 and O_2 .

Species	Equilibrium concentration /mol dm ⁻³
SO ₂	2.00
O ₂	1.20

• Using the value of K_c , explain whether the equilibrium position will be towards the right or towards the left under these conditions.
 Calculate the concentration of SO₃ in the equilibrium mixture.

© OCR 2016 Turn over