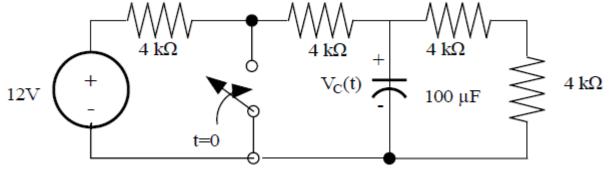
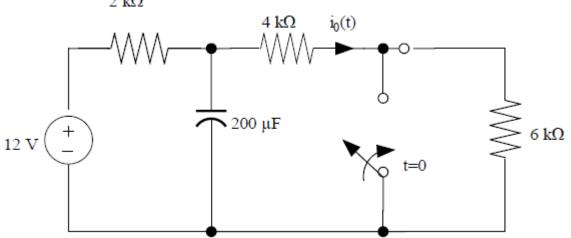
Linear Systems – FE Electrical Live Training Week # 9 – Saturday Session

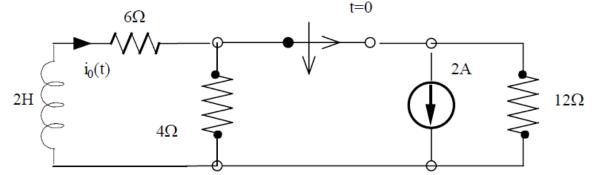


Focus of this homework assignment will be on the following topics of 'Linear Systems'.

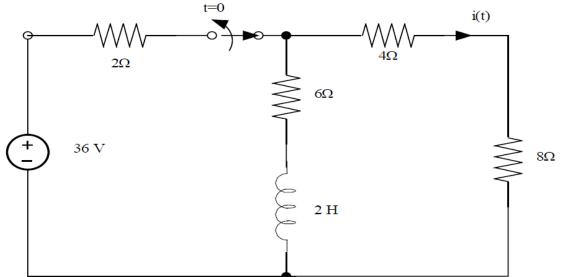
- □ Frequency/Transient Response
- Resonance
- □ Laplace Transform
- Transfer Functions



HW Problem #1 – Determine the value of $V_c(t)$ for t > 0 if the switch has been in open position for a long time before closing at t = 0.



HW Problem # 2 – Determine the value of $i_o(t)$ for t > 0 if the switch has been in open position for a long time before closing at t = 0. $2 k\Omega$



HW Problem # 3 – Determine the value of $i_o(t)$ for t > 0 if the switch has been in closed position for a long time before opening at t = 0.

HW Problem # 4 – Determine the value of $i_o(t)$ for t > 0 if the switch has been in closed position for a long time before opening at t = 0.

HW Problem # 5 – Determine the Laplace Transform of following function. $f(t) = \sin^2(2t)$

HW Problem # 6 – Determine the Laplace Transform of following function. $f(t) = \cos(\omega t + \theta)$

HW Problem #7 – Determine the limit of f(t) as $t \to \infty$ if F(s) is given below.

$$F(s) = \frac{4}{(s)(s+1)}$$

HW Problem # 8 – Determine the limit of f(t) as $t \to 0$ if F(s) is given below. $F(s) = \frac{4(s+1)}{s^2 + 4s + 7}$

HW Problem # 9 – Determine the Laplace Transform of following function.

 $f(t) = t e^{-a(t-1)} \delta(t-1)$

HW Problem # 10 – Determine the Inverse Laplace Transform of following function.

$$F(s) = \frac{s+10}{(s+4)(s+6)}$$

HW Problem # 11 – Determine the Inverse Laplace Transform of following function.

$$F(s) = \frac{24}{(s+2)(s+8)}$$

HW Problem # 12 – Determine the Inverse Laplace Transform of following function.

$$F(s) = \frac{1}{s^2(s+1)}$$

HW Problem # 13 – Determine the Inverse Laplace Transform of following function.

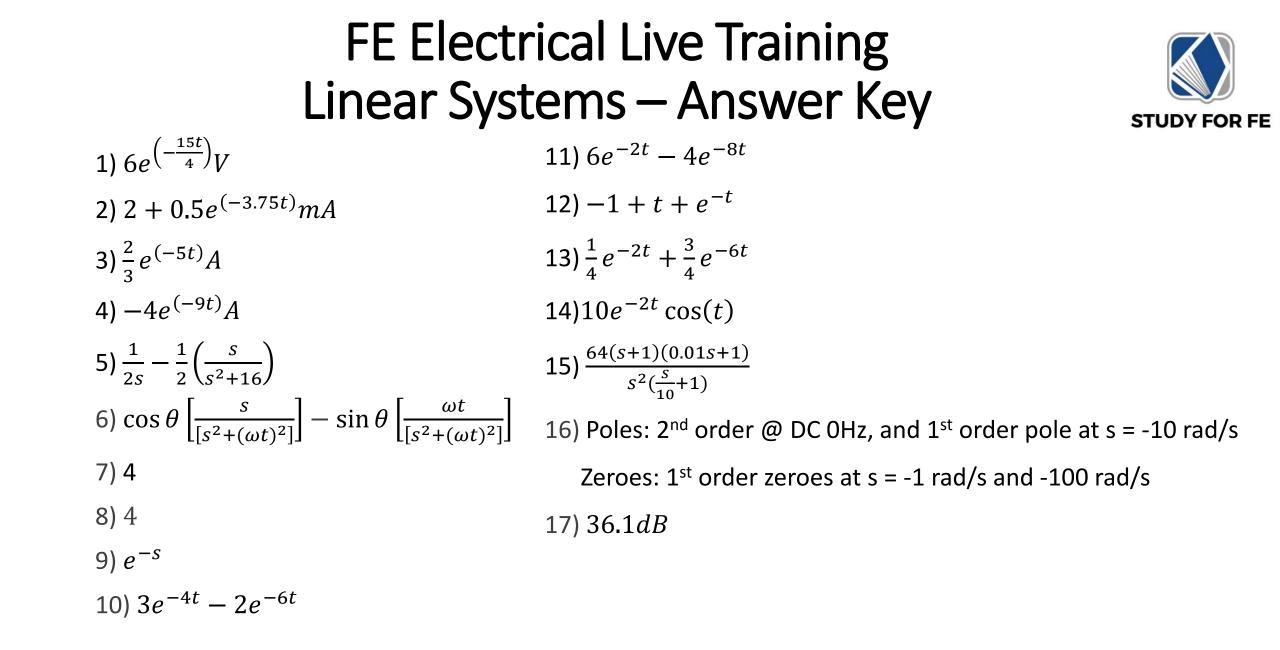
 $F(s) = \frac{s^2 + 7s + 12}{(s+2)(s+4)(s+6)}$

HW Problem # 14 – Determine the Inverse Laplace Transform of following function.

$$F(s) = \frac{10(s+2)}{(s^2+4s+5)}$$

Consider the following transfer function for the next 3 problems. $H(s) = \frac{640(s+1)(0.01s+1)}{s^2(s+10)}$

HW Problem # 15 – Express the transfer function H(s) in standard form.


$$H(s) = \frac{640(s+1)(0.01s+1)}{s^2(s+10)}$$

HW Problem # 16 – Determine the poles and zeros of given transfer function H(s).

$$H(s) = \frac{640(s+1)(0.01s+1)}{s^2(s+10)}$$

HW Problem # 17 – Express the gain of given transfer function H(s) in dB.

