série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	

1) Calculer les intégrales suivantes :
$$I_{1} = \int_{0}^{1} (x^{2} - 3)^{2} dx \quad ; \quad I_{2} = \int_{0}^{4} |x^{2} - 2x - 3| dx$$

$$I_{3} = \int_{4}^{9} \left(x - \frac{1}{x^{2}} + \frac{1}{\sqrt{x}} \right) \quad ; \quad I_{4} = \int_{-1}^{2} \frac{2x}{\sqrt{x + 2}} dx$$

$$I_{5} = \int_{-2}^{0} (x + 1) \sqrt{x^{2} + 2x + 3} \quad ; \quad I_{6} = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{\tan^{3} x}$$

$$I_{7} = \int_{0}^{\ln \sqrt{3}} e^{2x} \sqrt{1 + e^{2x}} dx \quad ; \quad I_{8} = \int_{0}^{1} \left(2^{x} + 3^{2x} \right) dx$$

2) En utilisant la formule d'intégration par parties, calculer les intégrales suivantes :

$$J_{1} = \int_{0}^{\sqrt{3}} \frac{x^{3}}{\sqrt{1+x^{2}}} dx \quad ; \quad J_{2} = \int_{\ln 2}^{\ln 3} \frac{e^{2x}}{\left(1+e^{x}\right)^{2}} dx$$

$$J_{3} = \int_{0}^{1} \ln\left(x+\sqrt{x^{2}+1}\right) dx \quad ; \quad J_{4} = \int_{1}^{e} \frac{\ln x}{\sqrt{x}} dx$$

$$J_{5} = \int_{1}^{2} \frac{x \ln x}{\left(x^{2}+1\right)^{2}} dx \quad ; \quad J_{6} = \int_{0}^{\ln 3} \frac{xe^{x}}{\left(1+e^{x}\right)^{2}} dx$$

$$J_{7} = \int_{1}^{e} \frac{\ln x}{\left(x+1\right)^{2}} dx \quad ; \quad J_{8} = \int_{0}^{\pi} x \sin \frac{x}{4} dx$$

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
les intégrales	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	

$$I_{1} = \int_{0}^{2} \frac{1}{4^{2}+4} dx ; I_{2} = \int_{0}^{3} \frac{1}{4^{2}+4x+5} dx$$

$$I_{3} = \int_{1}^{2} \frac{1}{4-x^{2}} dx ; I_{4} = \int_{0}^{4} e^{x}(4x^{3}+3x^{2}-y+1) dx$$

$$I_{5} = \int_{0}^{3} \sin^{2} x dx ; I_{6} = \int_{0}^{3} \cos^{4} x . \sin^{2} x$$

$$I_{1} = \int_{0}^{3} x^{2} \sin^{4} x dx ; I_{2} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{2} = \int_{0}^{3} x^{2} \sin^{4} x dx dx dx$$

$$I_{3} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{4} = \int_{0}^{3} x^{2} \sin^{4} x dx dx dx$$

$$I_{5} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{7} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{7} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{7} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{8} = \int_{0}^{3} \frac{1}{(\cos^{3} x)} dx dx$$

$$I_{9} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{1} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{2} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{3} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{4} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{5} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{7} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{8} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{1} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{2} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{4} = \int_{0}^{3} x^{2} \sin^{4} x dx$$

$$I_{5} = \int_{0}^{3} x^{2} \sin^{4} x dx$$

$$I_{7} = \int_{0}^{3} x^{2} \sin^{4} x dx$$

$$I_{8} = \int_{0}^{3} x^{2} \sin^{4} x dx$$

$$I_{9} = \int_{0}^{3} x^{2} \sin^{4} x dx$$

$$I_{9} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{9} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

$$I_{9} = \int_{0}^{3} x^{2} \sin^{4} x dx dx$$

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
les integrales	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	

plateforme

(Change courts de Variables)

1)
$$\int_{1}^{1} \frac{1-\sqrt{E}}{\sqrt{E}} dt$$
2) $\int_{2}^{2} \frac{e^{x}}{1+e^{x}} dx$
3) $\int_{1}^{2} \frac{(-\int_{1}u_{x})^{n}}{2u} dv$
4) $\int_{1}^{\infty} \frac{e^{x}}{1+e^{x}} dv$
5) $\int_{2}^{3} \frac{dv}{y+\sqrt{y-1}}$
(paper $t = \sqrt{y-1}$)

6) $\int_{1}^{4} \frac{3}{\sqrt{y+1}} dv$ (paper $t = \sqrt{y-1}$)

7) $\int_{1}^{4} \frac{4}{\sqrt{y^{2}+9}} dv$ (paper $t = \frac{y}{2} - \frac{1}{\sqrt{y}}$)

8) $\int_{1}^{4} \frac{4}{\sqrt{y^{2}+9}} dv$ (paper $t = \frac{2v}{3}$)

9) $\int_{1}^{4} \frac{4}{\sqrt{y^{2}+9}} dv$ (paper $t = \frac{2v}{3}$)

10) $\int_{1}^{4} \frac{4v}{\sqrt{y^{2}+9}} dv$ (paper $t = \frac{2v}{3}$)

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
las intágralas	Page facebook	
les intégrales	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

1) Calculer les intégrales suivantes :

$$I_{1} = \int_{1}^{8} \frac{x^{2} + 1}{\sqrt[3]{x}} dx \quad ; \quad I_{2} = \int_{1}^{2} \frac{x^{5} - 4x^{3} + 7}{x^{2}} dx$$

$$I_{3} = \int_{-3}^{3} (1 + |x + 2| + |x - 2|)^{3} dx \quad ; \quad I_{4} = \int_{-1}^{2} \frac{x}{\sqrt{3 - x}} dx$$

$$I_{5} = \int_{-\frac{\pi}{2}}^{0} \frac{\sin x}{\sqrt{3 + \cos x}} dx \quad ; \quad I_{6} = \int_{0}^{\ln 2} \frac{e^{3x}}{(1 + e^{3x})^{2}} dx$$

$$I_{7} = \int_{0}^{\frac{\pi}{4}} \sin(3x) \cos(5x) dx \quad ; \quad I_{8} = \int_{0}^{1} \frac{dx}{1 + e^{x}}$$

2) En utilisant la formule d'intégration par parties, calculer les intégrales suivantes :

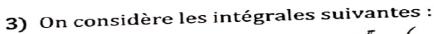
$$J_{1} = \int_{0}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^{3} x} dx \quad ; \quad J_{2} = \int_{0}^{\frac{\pi}{2}} (2x - 1) \cos^{2} x dx$$

$$J_{3} = \int_{0}^{\frac{\pi}{2}} x \sin x \cos x dx \quad ; \quad J_{4} = \int_{0}^{1} x^{2} e^{x} dx$$

$$J_{5} = \int_{0}^{\frac{\pi}{2}} x^{2} \sin(2x) dx \quad ; \quad J_{6} = \int_{0}^{\pi} e^{x} \sin x dx$$

$$J_{7} = \int_{0}^{\pi} 2x \sin x \cos^{2} \frac{x}{2} dx \quad ; \quad J_{8} = \int_{1}^{e} x (\ln x)^{2} dx$$

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	



On considere les integrales survival
$$I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan t) dt \text{ et } J = \int_0^{\frac{\pi}{4}} \ln\left(\sin\left(\frac{\pi}{4} + t\right)\right) dt$$
$$K = \int_0^{\frac{\pi}{4}} \ln(\cos t) dt$$

- a) Ecrire l'intégrale I en fonction de J et K .
- b) Montrer que : J = K
- c) Calculer l'intégrale I .

4) On pose pour tout
$$n \in \mathbb{N}^+$$
: $I_n = \frac{1}{2^n} \int_0^{\frac{1}{2}} \frac{(1-2x)^n}{(1-x)^n} dx$

- a) Calculer $I_{\scriptscriptstyle 1}$.
- b) En utilisant une intégration par parties, montrer

que:
$$(\forall n \in \mathbb{N}^*) I_{n+1} = \frac{-1}{2^{n+1}(n+2)} + \frac{n+1}{n+2} I_n$$

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
les integrales	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

Première partie:

1) Calculer $\lim_{x\to 0} \frac{e^x - 1 - x}{x}$ et en déduire que :

$$\lim_{x\to 0}\frac{e^x-1-x}{\ln\left(1+x\right)}=0$$

- 2) Pour tout réel x, on pose : $I(x) = e^x \int_0^x \frac{t^2}{2} e^{-t} dt$
 - a) Sans calculer I(x), montrer que :

•
$$(\forall x \in \mathbb{R}^+) \ 0 \le I(x) \le e^x \frac{x^3}{6}$$

•
$$(\forall x \in \mathbb{R}^-) |I(x)| \le \frac{|x|^3}{6}$$

- b) En utilisant deux fois l'intégration par partie, montrer que : $I(x) = e^x 1 x \frac{x^2}{2}$
 - c) En utilisant ce qui précède, montrer que

$$\lim_{x\to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}$$
 et en déduire que :

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x \ln(1 + x)} = \frac{1}{2}$$

3) On considère la fonction f définie sur \mathbb{R}^+ par :

$$f(x) = e^x \ln(1+x) - x$$

Étudier les variations de la fonction f et en déduire que $f(x) \ge 0$ pour tout $x \in \mathbb{R}^+$.

(On admet que :
$$(\forall x \in \mathbb{R}) e^x \ge 1 + x$$
)

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
les integrales	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	

Deuxième partie :

On considère la fonction F définie sur \mathbb{R}^+ par :

$$\begin{cases} F(0) = 0 \\ F(x) = \int_{1+x}^{e^x} \frac{dt}{\ln t}, x > 0 \end{cases}$$

1) Montrer que pour tout $x \in \mathbb{R}_+^*$:

$$\frac{e^x - 1 - x}{x} \le F(x) \le \frac{e^x - 1 - x}{\ln(1 + x)}$$

- 2) Montrer que F est continue et dérivable à droite en zéro.
- 3) Montrer que F est dérivable sur \mathbb{R}_+^{ullet} et que $_{\mathsf{pour}}$

tout
$$x \in \mathbb{R}_+^*$$
: $F'(x) = \frac{f(x)}{x \ln(1+x)}$

- 4) Calculer $\lim_{x\to +\infty} F(x)$ puis dresser le tableau de varia. tions de la fonction F .
- 5) Étudier la branche infinie de la courbe \mathscr{C}_F de F au voisinage de $+\infty$.

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
las intágralas	Page facebook	
les intégrales	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	AT L

Première Partie:

1) Soit h la fonction numérique définie sur \mathbb{R}^+ par :

$$h(x) = x - \ln x$$

Montrer que: $(\forall x \in \mathbb{R}^*_+) h(x) \ge 1$

2) On considère la fonction f définie sur \mathbb{R}^+ par :

$$f(0) = 0$$
 et $f(x) = \frac{1}{x - \ln x}$ si $x > 0$

- a) Montrer que la fonction f est continue sur \mathbb{R}^+ .
- b) La fonction f est-elle dérivable à droite en f 0 ?

<u>Deuxième Partie :</u>

Soit F la fonction numérique définie sur \mathbb{R}^+ par :

$$F(x) = \int_{x}^{2x} f(t) dt$$

- 1) a) Montrer que F est dérivable sur \mathbb{R}^+ .
 - b) Montrer que $F'_d(0) = 0$ et que :

$$(\forall x \in \mathbb{R}_+^*) F'(x) = \frac{\ln 2 - \ln x}{h(2x)h(x)}$$

- 2) a) Vérifier que : $\ln 2 = \int_{x}^{2x} \frac{dt}{t}$
 - b) Montrer que pour tout $x \in [1; +\infty[$:

$$0 \le F(x) - \ln 2 \le \frac{\ln(2x)}{x - \ln x}$$

c) En déduire la limite : $\lim_{x\to+\infty} F(x)$

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
les intégrales	Chaine Youtube	96
2BACSM	Whatsapp: 0617074062	
	plateforme	

3) a) Montrer que:
$$F\left(\frac{1}{2}\right) \le \ln 2$$

b) Montrer que:
$$\left(\exists \alpha \in \left[\frac{1}{2};1\right]\right)$$
; $F(\alpha) = \ln 2$

- 4) a) Dresser le tableau de variations de $oldsymbol{F}$.
 - b) Tracer la courbe \mathscr{C}_F de F dans un repère orthonormé (On admet que : $F(1) \approx 0.9$ et $F(2) \approx 1.1$)
- 5) On considère la fonction G définie sur $[1; +\infty[$ par :

$$G(x) = \int_1^x \frac{\ln t}{t - \ln t} dt$$

Montrer que:
$$(\forall x \ge 1) G(x) \ge \frac{1}{2} \ln^2(x)$$

Puis en déduire $\lim_{x\to +\infty} G(x)$.

<u>Troisième Partie :</u>

On considère la suite numérique $(u_n)_{n\geq 1}$ définie par :

$$u_n = \int_{\frac{1}{n}}^{n} \frac{t}{t - \ln t} dt$$

- 1) a) Montrer que: $(\forall t > 0) \frac{t}{t \ln t} \le t$
 - b) Montrer que la suite $(u_n)_{n\geq 1}$ est croissante.
 - c) En déduire que la suite $(u_n)_{n\geq 1}$ est convergente et que sa limite ℓ vérifie : $\ell\in\left[0;\frac{1}{2}\right]$

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
1	Page facebook	
les intégrales —	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	K L

2) On considère la suite numérique $(v_n)_{n\geq 1}$ définie par :

$$v_n = \int_1^n \frac{t}{t - \ln t} dt$$

a) Calculer
$$\int_{1}^{n} \left(1 + \frac{\ln t}{t}\right) dt$$
 puis montrer que :

$$(\forall n \ge 5) \quad v_n \ge n$$

b) En déduire la limite de la suite $(v_n)_{n\geq 1}$.

Exercice 6

$$F(x) = \int_{x}^{2x} \frac{1}{\ln(1+t^2)} dt$$

 \blacksquare Montrer que la fonction F est impaire.

On pose :
$$\varphi(x) = \int_1^x \frac{1}{\ln(1+t^2)} dt$$
 ; $\forall x > 0$

a Vérifier que : $\forall x > 0$; $F(x) = \varphi(2x) - \varphi(x)$.

Montrer que F est dérivable sur $]0,+\infty[$ puis calculer F'(x) ; x>0

© En déduire le sens des variations de la fonction F sur $]0,+\infty[$.

3 a Montrer que : $(\forall x > 0)$, $(\exists c \in]x; 2x[)$; $F(x) = \frac{x}{\ln(1+c^2)}$

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
les intégrales	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

Calculer les limites suivantes : $\lim_{x \to +\infty} \left(\frac{F(x)}{x} \right)$; $\lim_{x \to 0^+} F(x)$; $\lim_{x \to +\infty} F(x)$ Wérifier que : $F\left(\frac{\sqrt{e-1}}{2} \right) > \frac{\sqrt{e-1}}{2}$; $F\left(\sqrt{e-1} \right) < \sqrt{e-1}$ En déduire que F(x) = x admet une seule solution dans $]0, +\infty[$

Exercice 7

Soit F la fonction numérique définie sur $[0, +\infty[$ par : $\begin{cases} F(x) = \int_{x^2}^{4x^2} f(t) \, dt &; \quad \forall \, x > 0 \\ F(0) = 2 \ln 2 \end{cases}$ Soit (\mathcal{C}_F) la courbe représentative de la fonction F dans orthonormé $(\mathcal{O}, \vec{\imath}, \vec{\jmath})$ avec : $\|\vec{\imath}\| = \|\vec{\jmath}\| = 1 cm$.

- Ta Vérifier que : $(\forall x > 0)$; $\int_{-2}^{4x^2} \left(\frac{1}{t}\right) dt = 2 \ln 2$
- **2** Montrer que : $(\forall x > 0)$; $-3x^2 \le F(x) 2 \ln 2 \le 0$.
- \square **b** En déduire que F est dérivable à droite en zéro.
- **3** Montrer que : $(\forall t \ge 1)$; $f(t) \le e^{-t}$.
- **b** En déduire la limite suivante : $\lim_{x \to +\infty} F(x)$
- **4** a Montrer que F est dérivable sur $]0,+\infty[$ puis calculer $F^{'}(x)$
- Tracer la courbe (\mathcal{C}_F) dans le repère $(\mathcal{O}, \vec{\imath}, \vec{\jmath})$.

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	

On considère la fonction F définie $\sup [0;1]$ par :

$$F(0) = 1$$
 et $F(x) = \frac{1}{x} - \frac{\ln(1+2x)}{2x^2}$ si $x \in]0;1]$

1) Soit $x \in [0;1]$. Montrer que pour tout $t \in [0;x]$:

$$\frac{1}{1+2x} \le \frac{1}{1+2t} \le 1$$

2) Soit $x \in [0;1]$.

a) Montrer que: $F(x) = \frac{2}{x^2} \int_0^x \frac{t}{1+2t} dt$

b) Montrer que: $\frac{1}{1+2x} \le F(x) \le 1$

puis en déduire que la fonction F est continue à droite en zéro.

3) En utilisant la formule d'intégration par parties, montrer que pour tout $x \in [0;1]$:

$$\int_0^x \frac{2t}{1+2t} dt = \frac{x^2}{1+2x} + 2 \int_0^x \left(\frac{t}{1+2t} \right)^2 dt$$

4) Soit $x \in [0,1]$:

a) Montrer que: $F'(x) = -\frac{4}{x^3} \int_0^x \left(\frac{t}{1+2t}\right)^2 dt$

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

- b) En utilisant le résultat de la question 1), montrer que : $-\frac{4}{3} \le F'(x) \le -\frac{4}{3(1+2x)^2}$
- c) En appliquant le théorème des accroissements finis à la fonction F sur [0;x], montrer que :

$$-\frac{4}{3} \le \frac{F(x) - F(0)}{x} \le \frac{-4}{3(1+2x)^2}$$

d) En déduire que la fonction F est dérivable à droite en 0 en précisant la valeur de $F_d'(0)$.

Examen National 2012 (Session Normale)

Exercice 9

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	

Première Partie:

On considère la fonction f définie sur[0;1]par :

$$f(1) = 0$$
 et $f(x) = \frac{1}{1 - \ln(1 - x)}$ si $0 \le x < 1$

Et soit \mathscr{C} sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$ avec : $\|\vec{i}\| = \|\vec{j}\| = 2 \, cm$

- 1) Montrer que f est continue à gauche en 1 .
- 2) Étudier la dérivabilité de f à gauche en 1 .
- Étudier les variations de la fonction f sur I puis donner son tableau de variations.
- 4) a) Montrer que $\mathscr C$ admet un unique point d'inflexion dont l'abscisse est $\frac{e-1}{e}$.
- 5) Montrer qu'il existe un unique réel $\alpha \in I$ tel que $f(\alpha) = \alpha$.
- 6) a) Montrer que f est une bijection de I vers I .
 - b) Déterminer $f^{-1}(x)$ pour tout $x \in I$.

<u>Deuxième Partie :</u>

On pose pour tout
$$n \in \mathbb{N}$$
: $I_n = \int_0^1 t^n f(t) dt$

 Montrer que la suite (I_n) est décroissante puis qu'elle est convergente.

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

2) Montrer que pour tout $n \in \mathbb{N} : 0 \le I_n \le \frac{1}{n+1}$

puis déterminer la limite de la suite (I_n) .

<u>Troisième Partie :</u>

Pour tout réel x de l'intervalle J = [0; 1[et pour tout

 $n \in \mathbb{N}^*$ on pose:

$$F_0(x) = \int_0^x f(t) dt \quad , \quad F_n(x) = \int_0^x t^n f(t) dt$$

$$F(x) = \int_0^x \frac{f(t)}{1-t} dt \quad , \quad S_n(x) = \sum_{k=0}^{k=n} F_k(x)$$

1) Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in J$:

$$F(x) - S_n(x) = \int_0^x \frac{t^{n+1}f(t)}{1-t}dt$$

2) a) Montrer que la fonction u définie sur J par :

$$u(x) = (1-x)(1-\ln(1-x))$$

est strictement décroissante sur J .

b) En déduire que la fonction $t \mapsto \frac{f(t)}{1-t}$ est stricte ment croissante sur [0; x] pour tout $x \in J$.

série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp: 0617074062	
	plateforme	

3) a) Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in J$:

$$0 \le F(x) - S_n(x) \le \frac{1}{n+2} \left(\frac{1}{1-x}\right)$$

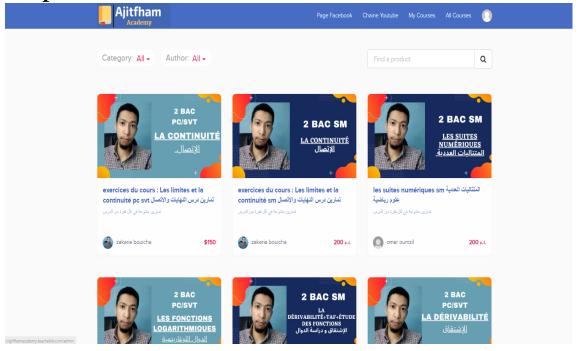
b) En déduire que pour tout $x \in J$:

$$\lim_{n\to +\infty} S_n(x) = F(x)$$

- 4) a) Déterminer F(x) pour tout $x \in J$.
 - b) Déterminer la limite : $\lim_{x\to 1^-} F(x)$

Examen National 2010 (Session De Rattrapage)

Pour s'inscrire dans la plateforme et avoir la correction sous forme de videos il suffit de contacter 0617074062 sur wtsp



série 2BSM	Pr Zakaria Bouicha	2-BAC SM
les intégrales	Page facebook	
	Chaine Youtube	
2BACSM	Whatsapp : 0617074062	
	plateforme	

