SECTION B

Question			Answer	Marks	AO element	Guidance
16	(a)		(The mean/average mass) taking into account the relative abundancies of the isotopes \checkmark	1	1.1	```ALLOW sum of (isotopic mass \(\times \%\) abundance) sum of (isotopic mass \(\times\) abundance) / total abundance \\ DO NOT ALLOW average mass of the isotopes```
		(i)	Mg with no (or 8) outer electrons AND $2 \times \mathrm{Br}$ with 'dot-and-cross' outer octet \checkmark Correct charges \checkmark	2	$\begin{aligned} & 1.2 \\ & 2.5 \end{aligned}$	ALLOW 8 electrons in Mg^{2+} BUT 'extra' electron in Br^{-}must match symbol for electrons in Mg^{2+} IGNORE inner shells and circles ALLOW 1 mark if both electron arrangements and charges are correct but only one Br is drawn. ALLOW 2[Br-], 2[Br]-(brackets not required)
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=1.71 \times 10^{22}$ award 3 marks $n\left(\mathrm{MgBr}_{2}\right)=\frac{1.74}{184.1}=0.00945 \ldots . . \mathrm{mol} \checkmark$ Moles of ions $=0.00945 \ldots \times 3=0.0283 \ldots . \mathrm{mol} \checkmark$ Number of ions $=0.0283 \ldots \times 6.02 \times 10^{23}=1.71 \times 10^{22} \checkmark$ 3SF required	3	2.2×3	ALLOW ECF $\text { Calculator answer }=9.451385117 \times 10^{-3}$ ALLOW ECF from incorrect moles of ions. $\text { e.g. } 0.00945$ Common error $5.69 \times 10^{21} \quad \text { no } \times 3 \quad 2 \text { marks }$

Questi	Answer	Marks	AO element	Guidance
(c)*	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Explains all three melting point values and conductivities in terms of structure, bonding, particles and relative strengths of the forces. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Attempts to explain all three melting point values and conductivities in terms of the structure, bonding, particles of all three substances, but explanations may be incomplete or may contain only some correct statements or comparisons. OR Correctly explains two of the melting point values and conductivities in terms of the structure, bonding, particles. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Identifies only some of the structures, forces and particles AND Attempts to explain the melting point values OR conductivities in terms of the structure, bonding, particles There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{aligned} & 1.1 \times 3 \\ & 2.1 \times 3 \end{aligned}$	Indicative scientific points may include: Structure and bonding Magnesium - Structure: giant lattice - Metallic bonding - Delocalised electrons Bromine - Structure: simple molecular - induced dipole dipole forces (London forces) - (Between) molecules DO NOT ALLOW (between) atoms Magnesium bromide - Structure: giant lattice - lonic bonding - (Between) oppositely charged ions Comparison of bond strengths - Metallic and ionic bonds are stronger than London forces OR Metallic and lonic bonds need more energy to break than London forces Conductivity - Magnesium: conducts due to delocalised electrons can move/mobile. IGNORE 'Carry' charge for movement - Magnesium bromide: In solid IONS cannot move; in solution IONS can move. DO NOT ALLOW electrons. - Bromine: Does not conduct as no mobile charge carriers.

Question		Answer	Marks	AO element	Guidance
(d)	(i)	$\begin{aligned} & \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Br}(\mathrm{~g})+2 \mathrm{e}^{-} \checkmark \\ & \mathrm{Mg}(\mathrm{~s})+\mathrm{Br}_{2}(\mathrm{I}) \checkmark \end{aligned}$	2	1.2×2	State symbols required. CARE: Liquid state symbol for Br_{2}
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{- 3 4 6 . 5}$ award 2 marks $\begin{aligned} & 2 \Delta H \text { hyd }= \\ & -525-186-(2 \times 112)-148-736-1450+(2 \times-325) \\ & +1926 \end{aligned}$ OR $-525-186-224-148-736-1450+650+1926$ OR $=-693 \checkmark$ ΔH hyd $=-346.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$	2	2.2×2	ALLOW -347 (kJ mol-1) for 2 marks. ALLOW for 1 mark ONE error with sign OR use of 2: -693 (not divided by 2 at the end) 346.5 (wrong sign on answer) Common errors for 1 mark $\begin{aligned} & -2272.5(-1926 \text { instead of 1926) } \\ & -1386(2 \times-693 \text { instead of } 693) \\ & -996.5(-650 \text { instead of } 650) \\ & -509(2 \times 325 \text { not used }) \\ & -290.5(2 \times 112 \text { not used }) \\ & -198.5(148 \text { instead of }-148) \\ & -160.5(186 \text { instead of }-186) \\ & -122.5(224 \text { instead of }-224) \\ & 178.5(525 \text { instead of }-525) \\ & 389.5(736 \text { instead of }-736) \\ & 1103.5(1450 \text { instead of }-1450) \end{aligned}$ For other answers, check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors e.g. -453 ($\mathbf{2} \times 325$ not used AND 2×112 not used)

Question	Answer	Marks	AO element	Guidance
(iii)	Equation: $\quad \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Br}^{-}(\mathrm{g}) \rightarrow \mathrm{MgBr}_{2}(\mathrm{~s})^{\checkmark}$ CHECK THE ANSWER ON ANSWER LINE If answer =-2433 award 2 marks Lattice enthalpy $=$ $\begin{aligned} & \Delta \text { hy } H\left(\mathrm{Mg}^{2+}\right)+2 \times \Delta \text { hy } H(\mathrm{Br})-\Delta \mathrm{sol} H\left(\mathrm{MgBr}_{2}\right) \mathrm{OR} \\ & -1926+(2 \times-346.5)-(-186) \end{aligned}$ OR $\begin{aligned} & \Delta f H\left(\mathrm{Mg} \mathrm{Br}_{2}\right)-2 \Delta_{\mathrm{at}} H(\mathrm{Br})-\Delta \mathrm{at} H(\mathrm{Mg}) \\ & \quad-1 \mathrm{st} \mathrm{IE}(\mathrm{Mg})-2 \mathrm{nd} \mathrm{IE}(\mathrm{Mg})-2 \Delta \mathrm{ea} H(\mathrm{Br}) \text { OR } \\ & -525-(2 \times 112)-148-736-1450-(2 \times-325) \checkmark \end{aligned}$ Lattice enthalpy $=-2433 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$	3	$\begin{gathered} \hline 1.2 \\ 2.2 \times 2 \end{gathered}$	State symbols required For other answers, check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors ALLOW ECF from incorrect answer to d(ii)
	Total	18		

