6

0 3

03.

The equation for the reaction between ammonia and oxygen is shown.

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$
 $\Delta H = -905 \text{ kJ mol}^{-1}$

Some standard entropies are given in Table 3.

Table 3

Gas	S ^e / J K ⁻¹ mol ⁻¹
NH₃(g)	193
O ₂ (g)	205
NO(g)	211
H ₂ O(g)	189

1 Calculate the entropy change for the reaction between ammonia and oxygen.

[2 marks]

Entropy change_____J K⁻¹ mol⁻¹

03.2	Calculate a value for the Gibbs free-energy change (ΔG), in kJ mol ⁻¹ , for the between ammonia and oxygen at 600 °C	
	(If you were unable to obtain an answer to Question 03.1 , you should assume entropy change is 211 J K^{-1} mol ⁻¹ . This is not the correct answer.)	
	[2	2 marks]
	Δ <i>G</i> k.	J mol ⁻¹
03.3	The reaction between ammonia and oxygen was carried out at a higher tempe	erature.
	Explain how this change affects the value of ΔG for the reaction. [2	? marks]
	Question 3 continues on the next page	

Turn over ►

03.4	Platinum acts as a heterogeneous catalyst in the reaction between ammonia and oxygen. It provides an alternative reaction route with a lower activation energy.
	Describe the stages of this alternative route. [3 marks]
03.5	Deduce the change in oxidation state of nitrogen, when NH_3 is oxidised to NO [1 mark]
03.6	When ammonia reacts with oxygen, nitrous oxide (N_2O) can be produced instead of NO
	Give an equation for this reaction. [1 mark]

11