

## **Data Science in Action using ikigailabs**

An AAII Artificial Intelligence – Technical Track Course







Introduction to Course





- 1. Introduction to Course
- 2. Set up sandbox
  - 1. Open the lkigai platform <a href="https://app.ikigailabs.io/">https://app.ikigailabs.io/</a>







- 1. Introduction to Course
- 2. Set up sandbox
- 3. Step 1 Define Project



## **Define Project – Health Equity Use Case Example**

User Persona



**C**itizens



Healthcare Administration Staff Needs / Benefits



#### Objective:

Need to understand current health infrastructure to expand services in new communities

### Queries:

- What are social and health profile of a specific communities in the state of California?
- How do various counties compare to each other based upon their social, demographic and health resources

Goals / Success Criteria



Can we make health equity score for communities based upon its

- Demographic, social and health resources
- 90% Accuracy
- Time boxed

Project Plan



Tasks

| Start            | W 1 | W 2 | W 3 | W 4 |
|------------------|-----|-----|-----|-----|
| Project Planning |     |     |     |     |
| Data Collection  |     |     |     |     |
| Data Preparation |     |     |     |     |
| Modeling         |     |     |     |     |
| Visualization    |     |     |     |     |
| Testing          |     |     |     |     |
| Deployment       |     |     |     |     |

Deliverables







Plan Model Dashboard

Resources

- · 2 resources
- Cloud Sandbox





- 1. Introduction to Course
- 2. Set up sandbox
- 3. Step 1 Define Project
- 4. Step 2 Describe Data







- 1. Introduction to Course
- 2. Set up sandbox
- 3. Step 1 Define Project
- 4. Step 2 Describe Data
- 5. Step 3 Prepare Data







- 1. Introduction to Course
- 2. Set up sandbox
- 3. Step 1 Define Project
- 4. Step 2 Describe Data
- 5. Step 3 Prepare Data

## 6. Step 4 – Develop Model

### **Top 5 Counties**

| CountyFullName ‡ | Cancer_Rate_per_100K |
|------------------|----------------------|
| Lake County      | 78.2                 |
| Glenn County     | 77.4                 |
| Amador County    | 73.5                 |
| Colusa County    | 68.3                 |
| Tehama County    | 67.7                 |











Cancer Total - Pie chart



- 1. Introduction to Course
- 2. Set up sandbox
- 3. Step 1 Define Projec
- 4. Step 2 Describe Data
- 5. Step 3 Prepare Data
- 6. Step 4 Develop Model
- 7. Step 5 Evaluate Model

| County =     | Total Enrollments = | Cluster_ID = | Cluster Score = |
|--------------|---------------------|--------------|-----------------|
| Alameda      | 1011                | 1            | 0.01            |
| Alpine       | 3                   | 4            | 0.65            |
| Amador       | 49                  | 4            | 0.33            |
| Butte        | 59                  | 4            | 0.17            |
| Calaveras    | 12                  | 2            | 0.76            |
| Colusa       | 17                  | 4            | 0.70            |
| Contra Costa | 506                 | 1            | 0.21            |
| Del Norte    | 6                   | 4            | 0.45            |
| El Dorado    | 54                  | 1            | 0.91            |

- Counties with high cluster scores such as El Dorado, Calaveras are well inside their corresponding cluster zone and close to the centroid.
- Counties with low score such as Alameda, Butte fall at the overlapping region of neighboring clusters and are away from the centroid of the cluster.







- Introduction to Course
- 2. Set up sandbox
- 3. Step 1 Define Project
- 4. Step 2 Describe Data
- 5. Step 3 Prepare Data
- 6. Step 4 Develop Model
- 7. Step 5 Evaluate Model
- 8. Step 6 Deploy Model

4. GET the prediction output results

← → C \*\* app.ikigailabs.io/data\* ot/ZTCPXiryS6AHz5zVFOTIBkGreXL\*

dataset\_id = "2TCPXIryS6AHz5zVFOTIBkGreXL\*

url = f"https://api.ikigailabs.io/pypr/get-dataset-download-url?dataset\_id\*(dataset\_id)\*

# We send an empty payload and the same security configuration in the headers payload = {}
headers = {
 ''sser': user\_email,
 ''api-key': api\_key,
 ''content-Type': 'application/json',

Get the prediction results output:

- Open the csv file in Ikigai to get the dataset id from the url.
- Use the GET api call to retrieve data from the api-end point <a href="https://api.ikigailabs.io/pypr/get-dataset-download-url?dataset\_id={dataset\_id}">https://api.ikigailabs.io/pypr/get-dataset\_id={dataset\_id}</a>
- The API response would be the prediction results in raw json format.





- 1. Introduction to Course
- 2. Set up sandbox
- 3. Step 1 Define Project
- 4. Step 2 Describe Data
- 5. Step 3 Prepare Data
- 6. Step 4 Develop Model
- 7. Step 5 Evaluate Model
- 8. Step 6 Deploy Model
- 9. Step 7 Optimize Model







- 1. Introduction to Course
- 2. Set up sandbox
- 3. Step 1 Define Project
- 4. Step 2 Describe Data
- 5. Step 3 Prepare Data
- 6. Step 4 Develop Model
- 7. Step 5 Evaluate Model
- 8. Step 6 Deploy Model
- 9. Step 7 Optimize Model

10. Summary and Next Steps



