CLASS SESSION 7 (plus Al Lab session)

WHAT IS SIZE OF AI BUSINESS?

\$100+ Trillion? Or \$14 Trillion by 2025?

(Type your answer in the chat)

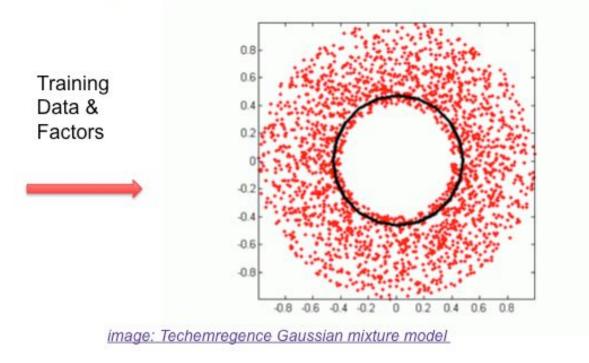
Algorithms: Model

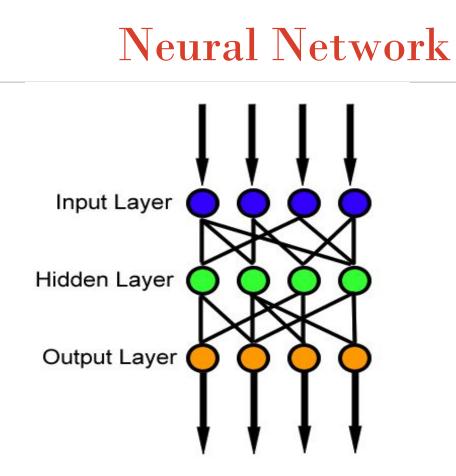
Model Fitting in the Datascience sprint cycle

4 WAYS BY WHICH ALGORITHMS HELP CUSTOMERS

CLASSIFY AND FIND PATTERNS

RECOGNIZE OBJECTS


MAKE PREDICTIONS AND RECOMMENDATIONS


ANOMALY DETECTION

MACHINE LEARNING

Machine Learning takes in large volume of data and makes a decision by building Data Models (a geometric shape of data*)

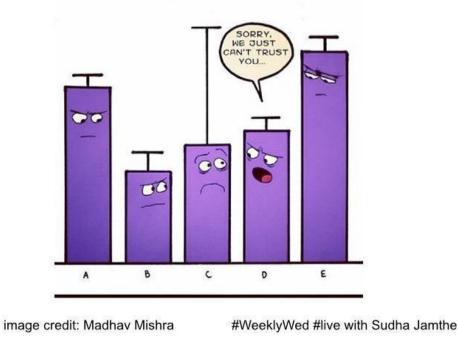
Predict Outcomes to make decisions

Deep Learning (Neural Networks)

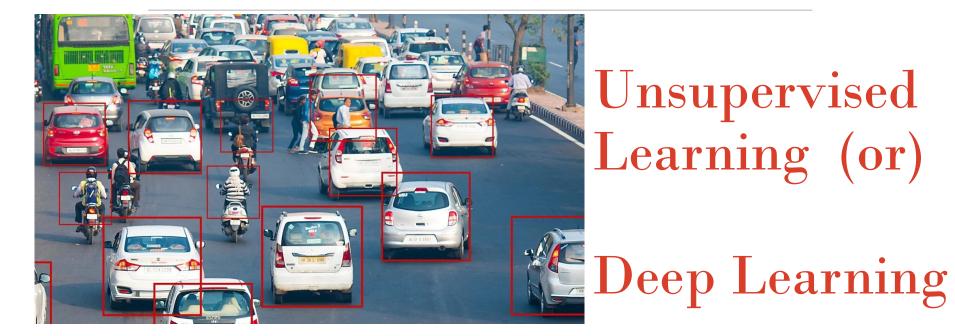
Format - 🖽 B I U S I_x 🖻 ± ± ± = ∞ 👳 🐟 →

Top Tech Companies that Rule the World

	Symbol	Company	Entry Price	Last Price	% Change ↓	Market Cap (B)
1	NVDA	NVIDIA Corporation	\$154.26	\$191.17	19.31%	\$116.3
2	AMD	Advanced Micro Devices, Inc.	\$23.53	\$28.46	17.32%	\$30.7
3	AAPL	Apple Inc.	\$173.15	\$207.16	16.42%	\$976.8
4	AMZN	Amazon.com, Inc.	\$1,639.83	\$1,901.75	13.77%	\$935.7
5	F	Facebook, Inc.	\$161.45	\$182.58	11.57%	\$521.3
6	GOOG	Alphabet Inc.	\$1,119.92	\$1,256.00	10.83%	\$874.7
7	MSFT	Microsoft Corporation	\$112.03	\$125.01	10.38%	\$959.1
8	MTCH	Match Group, Inc.	\$55.38	\$61.65	10.17%	\$17.1
9	ATVI	Activision Blizzard, Inc.	\$42.14	\$46.75	9.86%	\$35.7
10	INTC	Intel Corporation	\$52.96	\$58.00	8.69%	\$264.1
11	PYPL	PayPal Holdings, Inc.	\$98.07	\$107.22	8.53%	\$125.6
12	BABA	Alibaba Group Holding Limited	\$183.03	\$185.67	1.42%	\$481.2
13	EA	Electronic Arts Inc.	\$95.78	\$94.00	-1.89%	\$28.2
14	CR	salesforce.com, inc.	\$163.65	\$159.56	-2.56%	\$123.6
15	TSLA	Tesla, Inc.	\$319.88	\$258.00	-23.98%	\$44.9
sed on	"Tech Stocks	That Move The Market" by <u>Yahoo Finance</u> .				
Sprea	adsheet					


Google AI video explains CNN well: https://www.youtube.com/watch?v=OcycT1Jwsns

Computer Vision of Fruits used in Smart Agriculture


FINANCE: FRAUD DETECTION

Anomaly Detection - Outlier in a data

Algorithms: Is your training data structured or unstructured?

Unstructured data

Structured data

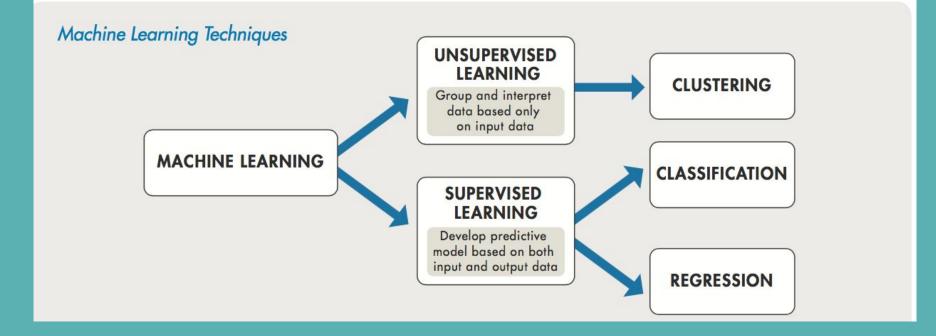
(0)	CATEGORY >	CATEGORY >	CATEGORY)	CATEGORY >	N	1
CUSTOMERID	GENDER	SENIORCITIZEN	PARTNER	DEPENDENTS	TE	
					_	Learning
1452-KIOVK	Male	0	No	Yes	22	
6713-OKOMC	Female	0	No	No	10	
7892-POOKP	Female	0	Yes	No	28	
6388-TABGU	Male	0	No	Yes	62	
9763-GRSKD	Male	0	Yes	Yes	13	Machine
7469-LKBCI	Male	0	No	No	16	

Supervised Learning (or)

Learning

Regression

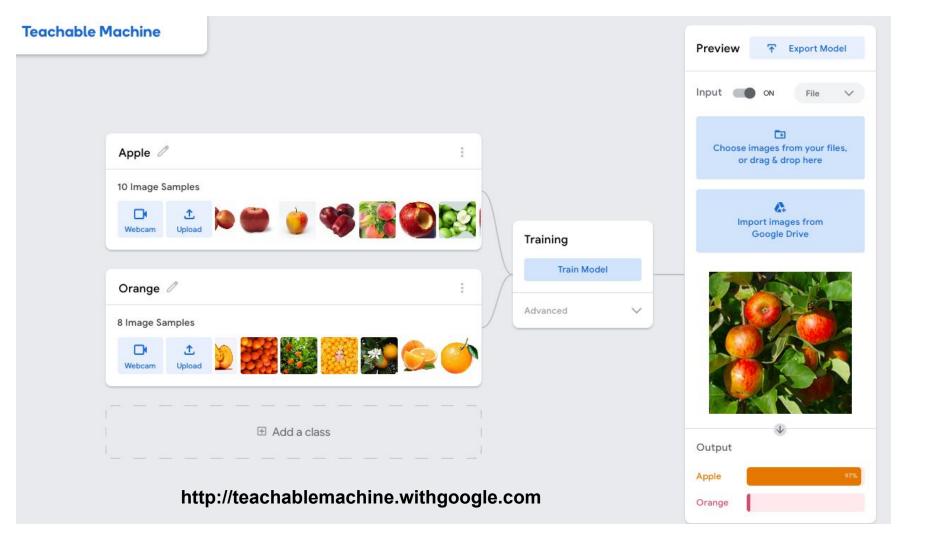
- Supervised Learning
- Output is a continuous quantity
- Main aim is to forecast or predict
- · Eg: Predict stock market price
- Algorithm: Linear Regression


Classification

- Supervised Learning
- Output is a categorical quantity
- Main aim is to compute the category of the data
- Eg: Classify emails as spam or non-spam
- · Algorithm: Logistic Regression

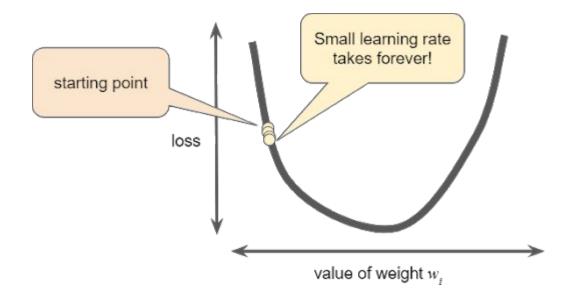
Clustering

- Unsupervised Learning
- Assigns data points into clusters
- Main aim is to group similar items clusters
- Eg: Find all transactions which are fraudulent in nature
- Algorithm: K-means

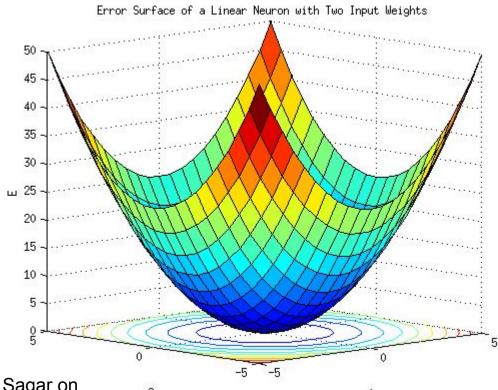

Type Of Problems Solved Using AI – Artificial Intelligence Algorithms – Edureka

Credit: MatLab

Classification Algorithms


Binary Classification: Predict a Yes/No situation. Give me an example

Classification Algorithms


Gradient Descent: When you have large volume of data

Learning rate and loss function

Source: analyticsindiamag.com

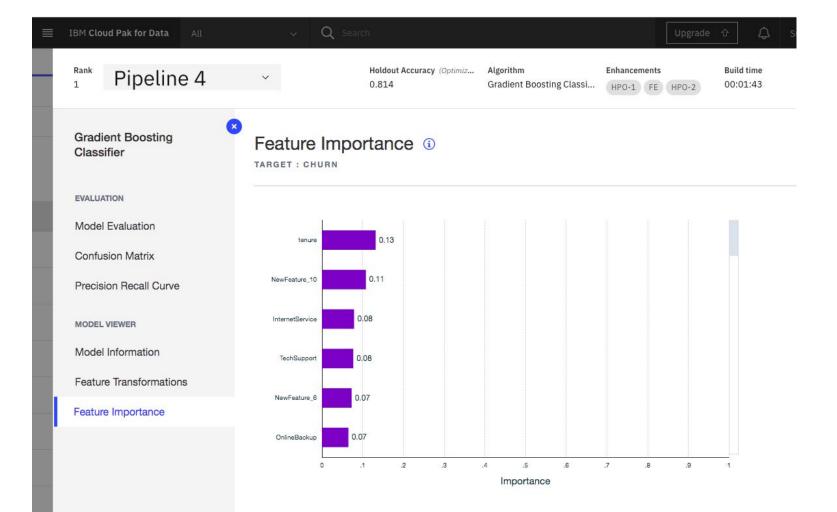
Gradient Descent

Credit: Ram Sagar on https://analyticsindiamag.com/a-lowdown-on-alternatives-to-gradient-descent-optimization-algorithms/

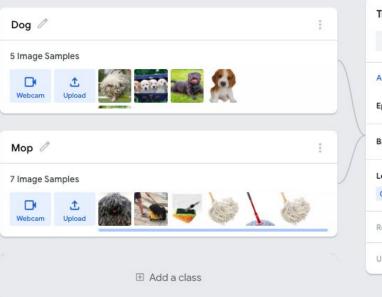
Live Lab: IBM AutoAl and Akkio

Lets try a binary classification and compare the NOCODE AI AutoML model fitting experient

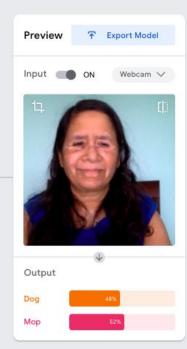
InternetService


< 🚸 Akkio Flow Editor Not Deployed **Customer Churn** ← Cancel Save & Continue → Deploy ... STEP Predictive Model Created \neq □ See Model Report → III Table PRIMARY INPUT Predict Top Fields customerIE gender SeniorCitiz Partner Dependent Predict one or more fields based on a The most important fields for making your prediction. 7590-VHVE Female 0 Yes No dataset. 5575-GNVI Male 0 No No **TENURE 20.6%** TOTALCHARGES 9.7% MONTHLYCHARGES 7.9% DEVICEPROTECTION 7.7% 3668-QPYI Male 0 No No 0 TRAINING DATASET 7795-CFOC Male No No 9237-HQIT Female 0 No No Select a dataset to generate predictions. Prediction Quality Telco-Customer-Chu... How good your model is at predicting each outcome. Telco-Customer-Churn.csv Churn ACCURACY 80.79% Predict 2 PREDICT FIELDS No EXCELLENT Yes 000D Telco-Customer-C... Select which numerical or categorical fields to Dataset predict and optionally ignore. 698/799 predicted correctly 156/258 predicted correctly 102 false positives 101 false positives Predicting Churn Predict 1 rows predicted No are 15% more likely to rows predicted Yes are 149% more likely be No than average to be Yes than average 0.873 0.607 PRECISION PRECISION Select All 🕴 Web App RECALL 0.874 RECALL 0.605 0.873 E1. E1. 0.606 gender Title Customer Churn SeniorCitizen Sample Predictions Description The predictions of the neural network you just created, tested on a part of your data Partner kept hidden until training completed. Dependents CUSTOMERID GENDER SENIORCITIZEN PA CHURN tenure 9554-DFKIC Male 0 Ye No CORRECT PhoneService Add Step 0620-XEFWH Male 0 Ye No MultipleLines 7321-VGNKU Female 0 Ye Yes

· · · ·


* 5 =

Pipeline 3	V Holdout Act	curacy (Optimiz Algorithm Gradient Boosting Cla		uild time D:01:48	ave as
Gradient Boosting Classifier	Model Evaluation	Ð			
EVALUATION					
Model Evaluation	Model Accuracy	0.813			
Confusion Matrix					
Precision Recall Curve	ROC Curve (i)		Model Evaluation M	easures	8
MODEL VIEWER	1	C to to L		Holdout Score	Cross Validation Score
Model Information	.9 .8		Accuracy	0.813	0.805
Feature Transformations	7		Area Under ROC Curve	0.858	0.844
Feature Importance	itike utre (sec	/	Precision	0.673	0.663
	so .4 - 0 High .3 - 0 .3 - 0		Recall	0.572	0.543


~	Holdout 0.809	Accuracy (Optin	niz Algorithm Gradient Boosting Cl
	Matrix	(i)	
Observed	Predicted		
	Yes	No	Percent Correct
Yes	101	86	54.0%
No	49	469	90.5%
Percent Correct	67.3%	84.5%	80.9%
	Confusion N TARGET : CHURN Observed Yes No	 Confusion Matrix TARGET : CHURN Predicted Yes Yes No 49 	Confusion Matrix () TARGET : CHURN Ves Predicted Yes No Yes 101 86 No 49 469

≡ Teachable Machine

Training	
Model Traine	d
Advanced	^
Epochs: 50	0
Batch Size: 16	0
Learning Rate: 0.001	0
Reset Defaults	3
Jnder the hood	11.

