Question	Answers	Mark	Additional Comments/Guidance
01.1	Enthalpy change or heat energy change when <u>1 mol</u> of <u>solid</u> ionic compound/substance or <u>1 mol</u> of <u>ionic lattice</u>	1	Allow: <u>enthalpy change</u> for: $M^+(g) + X^-(g) \rightarrow MX(s)$ or $Ag^+(g) + I^-(g) \rightarrow AgI(s)$ $CE=0/2$ if describing wrong process (eg ΔH of lattice
	is formed from its gaseous ions.	1	dissociation or ΔH of formation/ or heat energy required) Ignore heat energy released
01.2	lattice dissociation energy= $(112 + 464 + 293) = + 869$ (kJmol ⁻¹)	1	
	lattice formation energy = -869 (kJ mol $^{-1}$)	1	(+)869 = 1 mark
01.3		1	CE=0/2 if atoms/molecules
	Agl contains covalent character		For M1, allow the following: not completely ionic / ions not spherical / ions distorted/ some covalent bonding
	Forces/bonds (holding the lattice together) are stronger	1	Ignore covalent bonds stronger (than ionic bonds) Ignore electronegativity Ignore references to energy
01.4	AgNO ₃	1	Ignore ammonia/acidified/nitric acid/sulphuric acid
	<u>yellow</u> ppt		
	or	1	M2 dependent on correct M1 but mark on from Ag^+ or Tollens
	Cl ₂ or Br ₂ brown solution/black ppt		

Total	8
-------	---