<u>Skill:</u> Inductive/iterative/recursive sequences

Questions

Attempt these questions independently showing full and clear solutions. Check each answer as you go.

1. For each of the following sequences write down u_2, u_3, u_4 and u_5 . Hence find a formula for u_n .

a. $u_{n+1} = u_n + 5$ $(u_1 = 3)$ b. $u_{n+1} = \frac{1}{2}u_n$ $(u_1 = 6)$ c. $u_{n+1} = u_n - 4$ $(u_1 = 5)$ d. $u_{n+1} = 3u_n$ $(u_1 = 4)$

- 2. Write down the first five terms in the following inductively defined sequences:
 - a. $u_1 = 0$, $u_2 = 1$, $u_n = 3u_{n-1} u_{n-2}$ where $n \ge 3$. b. $u_1 = 5$, $u_n = 5 + \frac{1}{10}u_{n-1}$ where $n \ge 2$. c. $u_1 = 1$, $u_{n+1} = (n+1)u_n$ where $n \ge 2$. d. $u_1 = 1$, $u_2 = 1$, $u_{n+2} = u_{n+1} + u_n$ where $n \ge 1$. e. $u_1 = 3$, $u_2 = -1$, $u_{n+2} = u_{n+1} - u_n$ where $n \ge 1$. f. $u_1 = 1$, $u_2 = 1$, $u_{n+2} = 2u_{n+1} + 3u_n$ where $n \ge 1$.
- 3. The sequence $u_1, u_2, u_3, ...$ where u_1 is a given real number, is given by

$$u_{n+1} = u_n^2 - 8$$

- i. Given that $u_2 = u_1$, find the possible values of u_1 in exact form.
- ii. Given instead that $u_3 = u_1$, show that $u_1^4 16u_1^2 u_1 + 56 = 0$.
- 4. The sequence $u_1, u_2, u_3, ...$ where u_1 is a given real number is defined by $u_{n+1} = (u_n + 1)^2 - 6.$
 - i. Given that $u_1 = u_2$, find exactly the two possible values of u_1 .
 - ii. Given instead that $u_3 = u_1$, show that $u_1^4 + 4u_1^3 4u_1^2 17u_1 + 10 = 0$.

ALevelMathsRevision.com

© 2021 Steve Tipple – This material may not be reproduced without the written permission of Steve Tipple and ALevelMathsRevsion.com