1	Stats: LDS \& SAMPLING LDS - Comparing Data Sets Survey vs Census - Sampling Techniques	ALGEBRAIC TECHNIQUES Indices, Surds, Fractions - Simultaneous Equations Factorising - Factor Theorem \& Division Completing the Square - The Quadratic Formula The Discriminant - Hidden Quadratics Binomial Expansion - Using the Binomial Expansion Linear Modelling - Quadratic Modelling Solving Inequalities - Sketching Inequalities
2	Stats: REPRESENTING DATA Histograms - Quantiles \& Interpolation Standard Deviation - Variance Formulae	SKETCHING GRAPHS Graph Transformations - Transformations of Functions Translated Cubics/Quartics - Factorised Cubics/Quartics Reciprocal Functions - Rational Functions
3	Stats: CORRELATION \& REGRESSION Regression Lines - The PMCC	FUNCTIONS Domain \& Range Composite Functions - Inverse Functions Modulus Graphs - Modulus Equations/Inequalities Parametric Functions - Converting to Cartesian
4	Stats: PROBABILITY Venn diagrams - Conditional Probability	LINES, CIRCLES, TRIANGLES, SECTORS Line Geometry - Line Equation Circle Geometry - Triangles \& Sectors
5	Stats: BINOMIAL DISTRIBUTION Probability Problems Inverse Problems - Current Bun Problems	VECTORS Introduction to Vectors - 3 Dimensional Vectors Shape Problems - Shape Proofs
6	Stats: NORMAL DISTRIBUTION Mean \& Variance Known - MeanNar Unknown Key Features - Approximating the Binomial	EXPONENTIALS \& LOGS Exponential Functions - Logarithms Laws of Logs - Exponential \& Log Equations Linearising Bivariate Data
7	Stats: HYPOTHESIS TESTING Significance Test - Binomial Critical Region Testing for the Mean - Testing for Correlation	TRIGONOMETRY Solving Mini Trig Equations Trig Functions - Reciprocal Trig Functions Pythagorean Identities - Double/Half Angle Formulae Addition Formulae - $\operatorname{Rcos}(x+a)$ Inverse Trig Functions - Small Angle Approximations
8	Mech: FORCE-ACCELERATION Forces \& Newtons Laws Resolving Forces - Smooth Bead Problems Force Diagrams - Friction Pulleys 1 - Pulleys 2 Lift Problems - Change in Motion	DIFFERENTIATION Tangents \& Normals - The Derivatives Stationary Points - Convex \& Concave Functions The Chain Rule - The Product \& Quotient Rules Implicit Diff. - Connected Rates \& Parametric Diff. Differentiating Inverse Functions - Optimisation Problems 1st Principles Quadratics \& Cubics - 1st Principles Trig Proofs of Derivatives
9	Mech: CONSTANT ACCELERATION suvat Formulae - st, vt, at Graphs Horizontal Motion - Vertical Motion Projectiles	INTEGRATION Introduction to Integration - Areas Under Curves How to Integrate with GDA - Integrating Fractions \& Trig Integration by Parts - Integration by Substitution Forming \& Solving Differential Equations
10	Mech: VARIABLE ACCELERATION 1 Dimension - 2 Dimensions	SEQUENCES \& SERIES Sequences \& Series Notation \& Language Arithmetic \& Geometric Series - Proof of Sum Formulae
11	Mech: VECTOR PROBLEMS Position \& Velocity Problems - Force Problems	NUMERICAL METHODS The Trapezium Rule - The Change of Sign Argument Iterative Formulae - Newton-Raphson Proof of Trapezium Rule \& Newton-Raphson
12	Mech: MOMENTS Finding Moments Parallel Forces - Non-Parallel Forces Hinge Problems - Ladder Problems (not AQA)	PROOF Counter Example - Exhaustion Rational/lrrational Numbers - Even/Odd \& Consecutive Numbers $\sqrt{ } 2$ is Irrational $-\sqrt{ } 3$ is Irrational There are infinitely Many Primes

Issue	Detail	Tally
Didn't read the question	Didn't give units	
	Didn't give the right form	
	Radians/degrees mix up	
	Tangent/normal mix up	
	dp or sf or exact	
Graph	Missing info on graph	
	Forgot it should be upside down	
	No equation of asymptote	
Minus sign	When expanding brackets	
	When adding fractions	
	When rearranging	
Forgot	+c	
	Plus Minus	
Brackets	Used invisible brackets	
	Didn't use brackets at all	
Mis-Copy	Mistake Copying the Q	
	Mistake reading my own writing	
	Miscopy on a page turn	
Squashing	Mistake at the bottom of a page	
Algebra	Individually squared/rooted/logged	
Rules	Made up rules of indices	
	Made up rules of logs	
Trig	Wrong Trig Identity	
Derivatives	Wrong Derivative	
	Forgot the Chain Rule	
Integral	Didn't GDA, got it wrong	
In a test: could have checked but didn't :(

Issue Detail Tally

CHECKING TECHNIQUES

KNOW YOURSELF Always have your TID sheets to hand when you do maths

Do an extra check for your most common mistakes

Check a graph sketch

Sketch it on a graphical calc. y intercept labelled?
Asymptote equations stated?
Does the Q ask you to find x intercepts or turning points?

Check a solution to an equation

Sub your answer back in to see if it works
Or, solve the equation on your calculator and compare answers
Check simultaneous equations eg where does $y=3 x \operatorname{cross} x^{2}+y^{2}=8$
Sub the matched x and y coordinates into both equations to see if they work Or, plot the graphs on a calculator and find the intersection

Check writing a number in a different form eg write $\frac{3}{2-\sqrt{5}}$ in the form $a+b \sqrt{5}$
Type the number into your calc then type the rearranged number in. Compare.
Check writing an expression in a different way eg write $\frac{2 \sqrt{x}+1}{x}$ in the form $a x^{n}++b x^{m}$
Type the original expression into your calc with any x you like subbed in. Sub the same x into your answer. Compare.

Check the equation of a line

Sub the original (known) point on the line into your equation to see if it works Sketch your line on a graphical calc - see what its gradient is \& whether it goes through the right point

Check the equation of the tangent/normal

Sketch the curve and your tangent/normal equation on your graphical calc and see if it is the tangent/normal at the right point.

Check a derivative or definite integral
Use the $\frac{\mathrm{d}}{\mathrm{d} x}$ button at any x value and sub the same value into your derivative. Compare.
Use the \int_{a}^{b} button on the calculator

Rules of Indices

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

Useful Facts

$$
a^{0}=1
$$

Negative \& Rational Indices

$$
a^{m} \times a^{n}=a^{m+n}
$$

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

$$
a^{1}=a
$$

$$
(a b)^{n}=a^{n} b^{n}
$$

$$
a^{\frac{1}{m}}=\sqrt[m]{a}
$$

$$
a^{-m}=\frac{1}{a^{m}}
$$

$$
a^{\frac{n}{m}}=\sqrt[m]{a^{n}}
$$

Manipulating Surds

Rationalising the Denominator

$$
\sqrt{a b}=\sqrt{a} \sqrt{b} \quad \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

$$
\frac{a}{b \sqrt{c}} \times \frac{\sqrt{c}}{\sqrt{c}} \quad \frac{a}{b \pm c \sqrt{d}} \times \frac{b \mp c \sqrt{d}}{b \mp c \sqrt{d}}
$$

Difference of Two Squares (DOTS)

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

$$
x^{2}+b x+c=\left(x+\frac{b}{2}\right)-\left(\frac{b}{2}\right)^{2}+c
$$

$$
\text { Turning point of } y=A(x+B)^{2}+C \text { is }(-B, C)
$$

Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The DISCRIMINANT of a Quadratic $(\ldots) x^{2}+(\ldots) x+c$ is $b^{2}-4 a c$
If $b^{2}-4 a c$ is positive, the quadratic has 2 real distinct roots
If $b^{2}-4 a c$ is Negative, the quadratic has No real roots
If $b^{2}-4 a c$ is zerO, the quadratic has One real repeated root
Simultaneous Equations find Intersection of Graphs ie where $y=f(x)$ crosses $y=g(x)$
Make the simpler equation $y=\ldots$ or $x=\ldots$
Sub into the more complicated equation
Solve to find one coordinate \& use the simpler equation to get the other coordinate
Quadratic Inequalities $\quad a x^{2}+b x+c<0$ solution $=\{x:$ root $1<x<$ root 2$\}$
$a>0$

$$
a x^{2}+b x+c>0 \text { solution }=\{x: x<\operatorname{root} 1\} \cup\{x: x>\text { root } 2\}
$$

Graphical Inequalities
$f(x)<g(x)$ is the set of values of x for which the graph of $f(x)$ is below the graph of $g(x)$
$f(x)<0$ is the set of values of x for which the graph of $f(x)$ is below the x axis
$f(x)>0$ is the set of values of x for which the graph of $f(x)$ is above the x axis

Sketching Inequalities

For the inequality $y<f(x)$ or $y>f(x)$ the line $y=f(x)$ is drawn as a dotted line For the inequality $y \leq f(x)$ or $y \geq f(x)$ the line $y=f(x)$ is drawn as a solid line

lb: ALGEBRAIC TECHNIQUES

An IMPROPER FRACTION has a numerator with a degree equal to or larger than the denominator. These can be converted to mixed fractions using ALGEBRAIC or SYNTHETIC DIVISION (spec requires dividing by $a x+b$ only) or by using EQUATING COEFFICIENTS.

$$
\begin{aligned}
& \frac{F(x)}{Q(x)}=\text { divisor }+\frac{\text { remainder }}{Q(x)} \\
& F(x)=(\text { divisor })(Q(x))+\text { remainder }
\end{aligned}
$$

FACTOR THEOREM if $(a x+b)$ is a factor of $f(x)$ then $f\left(\frac{-b}{a}\right)=0$

$$
\text { if } f\left(\frac{-b}{a}\right)=0 \text { then }(a x+b) \text { is a factor of } f(x)
$$

A fraction with two distinct linear factors in the denominator and a linear or constant numerator can be split into PARTIAL FRACTIONS e.g. $\frac{5}{(x+1)(x-4)}=\frac{A}{x+1}+\frac{B}{x-4}$

$$
\text { e.g. } \frac{2 x+9}{(x-5)(x+3)^{2}}=\frac{A}{x-5}+\frac{B}{x+3}+\frac{C}{(x+3)^{2}}
$$

A, B and C are found using EQUATING COEFFICIENTS

The same BINOMIAL EXPANSION works for $n \in \mathbb{N} \& n \notin \mathbb{N}$
$(a+b)^{n}=\ldots{ }^{n} C_{r}(a)^{n-r}(b)^{r} \ldots$

Binomial Coefficient	${ }^{n} C_{0}$	${ }^{n} C_{1}$	${ }^{n} C_{2}$	${ }^{n} C_{3}$
a powers \downarrow	$(a)^{n}$	$(a)^{n-1}$	$(a)^{n-2}$	$(a)^{n-3}$
b powers \uparrow	1	b	$(b)^{2}$	$(b)^{3}$

Complete the table then multiply down each column to get the terms of the expansion
If n is negative or fractional, the expansion only converges to $(a+b)^{n}$ as $n \rightarrow \infty$ if $\left|\frac{b}{a}\right|<1$

Functions have roots. ROOTS of $f(x)$ are values of x for which $f(x)=0$

Equations have solutions. SOLUTIONS of $f(x)=0$ are values of x for which $f(x)=0$

GRAPH TRANSFORMATIONS

$f(x+a)$ is a translation of $f(x)$ by the vector $\binom{-a}{0}$
$f(x)+a$ is a translation of $f(x)$ by the vector $\binom{0}{a}$
$f(a x)$ is a stretch of $f(x)$, scale factor $\frac{1}{a}$, parallel to the x axis (about the y axis) $a f(x)$ is a stretch of $f(x)$, scale factor a, parallel to the y axis (about the x axis)
$f(-x)$ is a reflection of $f(x)$ over the y axis $-f(x)$ is a reflection of $f(x)$ over the x axis

ASYMPTOTES

Graphs go towards their asymptote(s) like a plane landing that never actually touches down. Vertical asymptotes occur when x cannot be a certain value (ie it would mean dividing by 0) Horizontal asymptotes show long term behaviour (either for very big positive x or very big negative x or both)

$$
\begin{array}{ll}
y=\frac{1}{x} \& y=\frac{1}{x^{2}} & 2 \text { asymptotes, } y=0 \text { and } x=0 \\
y=a^{x} \& y=e^{x} & 1 \text { horizontal asymptote at } y=0 \\
y=\log _{a}(x) \& y=\ln (x) & 1 \text { vertical asymptote at } x=0 \\
y=\frac{a x+b}{c x+d} & 2 \text { asymptotes, one vertical at } x=-\frac{d}{c} \text { and one } \\
& \text { horizontal at } y=\frac{a}{c}
\end{array}
$$

3: FUNCTIONS

The DOMAIN of a function:
vertcal line test:
HORIZONTAL LINE TEST:
a mapping is a 'function' if all vertical lines cross the graph once
if all horizontal lines cross once, a function is ONE-TO-ONE if some horizontal lines cross more than once, it is MANY-TO-ONE

INVERSE FUNCTIONS: Only one-to-one functions have inverses
$f^{-1}(x)$ is the inverse of $f(x)$
$f f^{-1}(x)=x$ and $f^{-1} f(x)=x$
$y=f^{-1}(x)$ is a reflection of $y=f(x)$ in the line $y=x$
The domain of $f^{-1}(x)$ is the range of $f(x)$ and vice versa
Finding the inverse function: l. Change $f(x)$ to y
2. Change all the x to y and vice versa
3. Rearrange to get $y=\ldots$ (for quadratics, complete the square)
4. Change y to $f^{-1}(x)$
5. Remember the domain of $f^{-1}(x)$ is the range of $f(x)$

COMPOSITE FUNCTIONS $f g(x)$ means apply g to x first, then apply f to the result $f g(x)=f(g(x))$

The MODULUS FUNCTION $y=|f(x)|$ makes any value positive
When $f(x) \geq 0,|f(x)|=f(x)$.
When $f(x)<0,|f(x)|=-f(x)$.
To sketch $y=|f(x)|$, sketch $y=f(x)$ then reflect the section below the x-axis to above it. To sketch the graph of $y=f(|x|)$, sketch $y=f(x)$ for $x \geq 0$ then reflect in the y-axis.

PARAMETRIC EQUATIONS e.g. $x=p(t)$ and $y=q(t)$
Each value of t defines a point with coordinates $(p(t), q(t)$).
The domain of the cartesian equation is the range of $p(t)$
The range of the cartesian equation is the range of $q(t)$

4: LINES CIRCLES TRIANGLES SECTORS

Useful formulae:

$$
\begin{aligned}
& \text { gradient }=m=\frac{d y}{d x}=\frac{\text { change in } y}{\text { change in } x} \\
& \text { distance } d=\sqrt{(\text { change in } x)^{2}+(\text { change in } y)^{2}} \\
& \text { midpoint }=(\text { average } x \text { coordinate, average } y \text { coordinate })
\end{aligned}
$$

Line with gradient m through $(a, b): \quad m(x-a)=y-b$ used to construct the line

$$
\begin{array}{ll}
a x+b y+c=0, & a, b, c \in \mathbb{Z} \text { used for final ans. } \\
y=m x+c & \text { used to identify the gradient }
\end{array}
$$

PARALLEL lines have the same gradient.
$\operatorname{grad} 2=\operatorname{grad} 1$
PERPENDICULAR lines have negative reciprocal gradients: $\quad \operatorname{grad} 2=\frac{-1}{\operatorname{grad} 1}$
If $x \& y$ are DIRECTLY PROPORTIONAL $(y \propto x)$ then $y=k x$ (a straight line through the origin)

Equation of circle centre (a, b), radius $r \quad(x-a)^{2}+(y-b)^{2}=r^{2}$

$$
x^{2}+y^{2}-f x-g y+h=0 \rightarrow \text { complete the sq. }
$$

Circle facts: The tangent to a circle is perpendicular to the radius
If A, B, C lie on a circle and $\angle A B C=90^{\circ}$, then $A C$ is a diameter of the circle
The perpendicular bisectors of two chords intersect at the centre of the circle

Cosine Rule langle A is opposite side a)

Sine Rule (angle A is opposite side a etc)
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Area of a triangle (angle C is between sides \mathbf{a} and $\mathbf{b})$ Area $=\frac{1}{2}|\mathbf{a}||\mathbf{b}| \sin C$

The ARC LENGTH subtended by the angle θ radians in a circle radius r is $r \theta$ The SECTOR AREA of a sector subtended by the angle θ radians in a circle radius r is $\frac{1}{2} r^{2} \theta$

5: VECTORS

Vectors have magnitude (length) and direction $\binom{a}{b}=a \mathbf{i}+b \mathbf{j}, \quad \mathbf{i}=\binom{1}{0}$ and $\mathbf{j}=\binom{0}{1}$
The ANGLE between two vectors is found using the cosine rule
The MAGNITUDE (length) of $\mathbf{a}=x \mathbf{i}+y \mathbf{j}$ is found using Pythagoras: $|\mathbf{a}|=\sqrt{x^{2}+y^{2}}$
The UNIT VECTOR (length $=1$) parallel to \mathbf{a} is found by dividing \mathbf{a} by $|\mathbf{a}|$
The DISTANCE from point A to B is the magnitude of the vector $\overrightarrow{A B}$

If \mathbf{a} and \mathbf{b} are PARALLEL, then $\mathbf{a}=\lambda \mathbf{b}$, where λ is a constant.
\mathbf{a} and $\mathbf{- a}$ are parallel and have the same length, but are in opposite directions.
The POSITION VECTOR of a point A is the vector from the origin O to A.
If the position vector of A is \mathbf{a} and the position vector of B is \mathbf{b}, then $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$.

3 dimensional vector geometry is the same as 2 dimensional vector geometry.

$$
\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right)=p \mathbf{i}+q \mathbf{j}+r \mathbf{k} \quad \mathbf{i}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{j}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \mathbf{k}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The ANGLE between two vectors is found using the cosine rule
The MAGNITUDE of $\mathbf{a}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is found using Pythagoras: $|\mathbf{a}|=\sqrt{x^{2}+y^{2}+z^{2}}$
The angle θ_{x} between \mathbf{a} and the x axis is the angle between \mathbf{a} and \mathbf{i} which is $\frac{a_{1}}{|\mathbf{a}|}$
The angle θ_{y} between \mathbf{a} and the y axis is the angle between \mathbf{a} and \mathbf{j} which is $\frac{a_{2}}{|\mathbf{a}|}$
The angle θ_{z} between \mathbf{a} and the z axis is the angle between \mathbf{a} and \mathbf{k} which is $\frac{a_{3}}{|\mathbf{a}|}$

If Q divides $\overrightarrow{A B}$ in the ratio $\lambda: \mu, \quad \overrightarrow{O Q}=\overrightarrow{O A}+\frac{\lambda}{\lambda+\mu} \overrightarrow{A B}$

$$
\text { for midpoint, use } \lambda=\mu=1
$$

If a and b are both positive:

$$
a^{x}=b
$$

$$
\begin{gathered}
e^{x}=b \\
\downarrow \\
x=\ln (b)
\end{gathered}
$$

If $y=a^{x}, a>1$, then as x increases, y increases. This is EXPONENTIAL GROWTH.
If $0<a<1$, then as x increases, y decreases. This is EXPONENTIAL DECAY.

An EXPONENTIAL MODEL has the form $y=A e^{k t}+B$ or $y=A r^{k t}+B$
If $k>0$ it models exponential growth, if $k<0$ it models exponential decay.
As k (either positive or negative) gets closer to 0 the rate of change of y gets slower.
The further from zero k is (either positive or negative), the faster the rate of change of y.

Useful facts:

$$
\log _{x}(x)=1
$$

$$
\log _{x}(1)=0
$$

Graphs: \quad The graph of $y=\ln x$ is a reflection of $y=e^{x}$ in the line $y=x$.
The graph of $y=\ln x$ has a vertical asymptote at $x=0$
The graph of $y=e^{x}$ has a horizontal asymptote at $y=0$

Laws of Logs: $\log _{x}(a)+\log _{x}(b)=\log _{x}(a b) \quad \log _{x}(a)-\log _{x}(b)=\log _{x}\left(\frac{a}{b}\right)$

$$
\log _{x}(a)^{k}=k \log _{x}(a)
$$

$$
\log _{x}\left(\frac{1}{a}\right)=\log _{x}(a)^{-1}=-\log _{x} a
$$

Differentiating $e^{k x}$

$$
\begin{aligned}
& f(x)=e^{k x} \Longrightarrow f^{\prime}(x)=k e^{k x} \\
& f^{\prime}(x)=k f(x) y=e^{k x} \Longrightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=k e^{k x} \\
& f^{\prime}(x) \propto f(x) \frac{\mathrm{d} y}{\mathrm{~d} x}=k y \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x} \propto y
\end{aligned}
$$

$y=a x^{m}$ can be rearranged to give $\log y=m \log x+\log a$.

If $y=a x^{n}$, the graph of $\log y$ against $\log x$ is a straight line:
gradient $=m$ vertical intercept $=\log a$.
$y=a b^{x}$ can be rearranged to give $\log y=x \log b+\log a$.
If $y=a b^{x}$, the graph of $\log y$ against x is a straight line:
gradient $=\log b$ vertical intercept $=\log a$.

For a point (x, y) on the unit circle with angle θ from the positive x axis:

$$
\cos \theta=x \text { coordinate }
$$

$\sin \theta=y$ coordinate
$\tan \theta=\frac{y}{x}==\frac{\sin \theta}{\cos \theta}=$ gradient

Solutions to $\sin \theta=a$ and $\cos \theta=x$ only exist for $-1 \leq a \leq 1$.
Solutions to $\tan \theta=a$ exist for all $a \in \mathbb{R}$.

To solve the mini-trig equation $\sin \theta=a$
(1) Use the calculator to find the first solution $\theta_{1}=\sin ^{-1}(a)$
(2) The second solution is $\theta_{2}=180-\theta_{1}$
(3) Now ± 360 as many times as you like to θ_{1} and θ_{2} to get more solutions.

To solve $\sin \theta=a$: solution 1 is $\theta_{1}=\sin ^{-1}(a)$, solution 2 is $\theta_{2}=180-\theta_{1}$ then ± 360
To solve $\cos \theta=a$: solution 1 is $\theta_{1}=\cos ^{-1}(a)$, solution 2 is $\theta_{2}=-\theta_{1}$ then ± 360
To solve $\tan \theta=a$: solution 1 is $\theta_{1}=\tan ^{-1}(a)$, solution 2 is $\theta_{2}=180+\theta_{1}$ then ± 360
To solve the mini-trig equation $\sin (\ldots)=a$ (or cos or tan)
(1) Put $y=\ldots$
(2) Solve $\sin y=a$ as above and ± 360 to get many y solutions
(3) Rearrange $y=\ldots$ to get the θ solutions in the required range

7b: TRIGONOMETRY

2π radians $=360^{\circ} \approx 6$ rads $)$
$30^{\circ}=\frac{\pi}{6}$ radians
When θ is small and measured in radians: $\sin \theta \approx \theta \quad \tan \theta \approx \theta \quad \cos \theta \approx 1-\frac{\theta^{2}}{2}$
$\operatorname{cosec} x=\frac{1}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x}$

π radians $=180^{\circ}(\approx 3$ rads $)$
$45^{\circ}=\frac{\pi}{4}$ radians

1 radian $\approx 57^{\circ}$
$60^{\circ}=\frac{\pi}{3}$ radians
$\sin ^{2} x+\cos ^{2} x \equiv 1$

$$
\begin{array}{ll}
1+\cot ^{2} x \equiv \operatorname{cosec}^{2} x & \text { + proof } \\
\tan ^{2} x+1 \equiv \sec ^{2} x & \\
\text { + proof }
\end{array}
$$

3 ADDITION FORMULAE

$$
\begin{aligned}
& \sin (A+B) \equiv \sin A \cos B+\cos A \sin B \\
& \cos (A+B) \equiv \cos A \cos B-\sin A \sin B \\
& \tan (A+B) \equiv \frac{\tan A+\tan B}{1-\tan A \tan B} \quad+\text { proof }
\end{aligned}
$$

3 DOUBLE/HALF ANGLE

4 BONUS DOUBLE/HALF ANGLE FORMULAE

$\cos 2 A \equiv 2 \cos ^{2} A-1$	+ proof	$\cos 2 A \equiv 1-2 \sin ^{2} A$	+ proof
$\cos ^{2} x \equiv \frac{1}{2}(1+\cos 2 x)$	+ proof	$\sin ^{2} x \equiv \frac{1}{2}(1-\cos 2 x)$	+ proof

$a \sin x+b \cos x$ can be written in the HARMONIC FORM $R \cos (x+a)$

- this helps to solve equations of the form $a \sin x+b \cos x=k$
- this also helps find the max and min of functions $y=a \sin x+b \cos x$

NOTATION

$$
\begin{aligned}
& y=a x^{n} \\
& \downarrow \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=a n x^{n-1} \\
& \quad \downarrow
\end{aligned}
$$

$$
f(x)=a x^{n}
$$

$$
\uparrow
$$

$$
f^{\prime}(x)=\operatorname{an} x^{n-1}
$$

$$
\uparrow
$$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\operatorname{an}(n-1) x^{n-2} \quad f^{\prime \prime}(x)=\operatorname{an}(n-1) x^{n-2}
$$

Differentiation from FIRST PRINCIPLES:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The TANGENT to the curve $y=f(x)$ at the point $(\alpha, f(\alpha)): \quad f^{\prime}(\alpha)(x-\alpha)=y-f(\alpha)$
The NORMAL to the curve $y=f(x)$ at the point $(\alpha, f(\alpha))$: $\quad-\frac{1}{f^{\prime}(\alpha)}(x-\alpha)=y-f(\alpha)$
$f^{\prime}(a)>0 \quad f(x)$ is INCREASING at $x=a$ (going up/positive gradient)
$f^{\prime}(a)<0 \quad f(x)$ is DECREASING at $x=a$ (going down/negative gradient)
$f^{\prime}(a)=0 \quad x=a$ is a STATIONARY POINT. The gradient of the tangent to the function at
$x=a$ is zero. It could be a maximum, a minimum or point of inflection.
$f(x)$ is CONCAVE for a given interval if $f^{\prime \prime}(x) \leq 0$ for every value of x in the interval.
$f(x)$ is CONVEX for a given interval if $f^{\prime \prime}(x) \geq 0$ for every value of x in the interval.

At a MINIMUM point y is going down, then stops, then goes up
$\frac{\mathrm{d} y}{\mathrm{~d} x}$ is negative, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is positive
$\frac{\mathrm{d} y}{\mathrm{~d} x}$ is going up, so $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is positive
At a MAXIMUM point y is going up, then stops, then goes down

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x} \text { is positive, then } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text {, then } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { is negative } \\
& \frac{\mathrm{d} y}{\mathrm{~d} x} \text { is going down, so } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \text { is negative }
\end{aligned}
$$

At a POINT OF INFLECTION, the graph changes from CONVEX to CONCAVE (or vice versa)
ie) $\frac{d^{2} y}{d x^{2}}$ just before the point is positive, $\frac{d^{2} y}{d x^{2}}$ just after the point is negative (or vice versa)
A point of inflection may or may not be a stationary point.
$\begin{array}{rrr}\frac{\mathrm{d}}{\mathrm{d} x} \sin x=\cos x & \frac{\mathrm{~d}}{\mathrm{~d} x} \tan x=\sec ^{2} x & \frac{\mathrm{~d}}{\mathrm{~d} x} \sec x=-\sec x \tan x \\ \text { lst Principles } & \text { Quotient Rule } & \text { Chain or Quotient Rule }\end{array}$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} e^{k x}=k e^{k x} \\
& \quad \text { No proof needed } \\
& \frac{\mathrm{d}}{\mathrm{~d} x} a^{x}=a^{x} \ln a \quad \text { for } a>0
\end{aligned}
$$

Implicit Differentiation

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} \ln x=\frac{1}{x} \\
& \quad \text { No proof needed } \\
& \frac{\mathrm{d}}{\mathrm{~d} x} x^{n}=n x^{n-1}
\end{aligned}
$$

lst Principles

CHAIN RULE $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \quad$ where y is a function of $u \& u$ is a function of x
$\frac{\mathrm{d}}{\mathrm{d} x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
eg PARAMETRIC DIFFERENTIATION $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \times \frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
eg IMPLICIT DIFFERENTIATION $\quad \frac{\mathrm{d}}{\mathrm{d} x}(f(y))=f^{\prime}(y) \frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{n}\right)=n y^{n-1} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
PRODUCT RULE
$\frac{\mathrm{d}}{\mathrm{d} x}(u v)=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \quad$ where u and v are functions of x.
$f(x)=g(x) h(x) \Longrightarrow f^{\prime}(x)=g(x) h^{\prime}(x)+h(x) g^{\prime}(x)$
eg IMPLICIT DIFFERENTIATION $\quad \frac{\mathrm{d}}{\mathrm{d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$
QUOTIENT RULE $\quad \frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{u}{v}\right)=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \quad$ where u and v are functions of x.
$f(x)=\frac{g(x)}{h(x)} \Longrightarrow f^{\prime}(x)=\frac{h(x) g^{\prime}(x)-g(x) h^{\prime}(x)}{(h(x))^{2}}$

NOTATION

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{n} \quad(n \neq-1) \\
& y=\frac{1}{n+1} x^{n+1}+c
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=x^{n} \quad(n \neq-1) \\
& f(x)=\frac{1}{n+1} x^{n+1}+c
\end{aligned}
$$

Find $c: \quad$ Substitute both x and y values (coordinates of a point on the curve or the value of the function at a given point) into the integrated function. Solve the equation.

The AREA between the positive section of the curve $y=f(x)$, the x-axis and the lines $x=a$ and $x=b$ is given by $\int_{a}^{b} f^{\prime}(x) \mathrm{d} x=[f(x)]_{a}^{b}=f(b)-f(a)$.
If the curve $y=f(x)$ is below the x-axis between $x=a$ and $x=b$, the integral $\int_{a}^{b} y \mathrm{~d} x$ will be negative. Remember though, the area is positive.

If the graph of $y=f(x)$ is above the graph of $y=g(x)$ then the area between the graphs of $y=f(x)$ and $y=g(x)$ and the lines $x=a$ and $x=b$ is given by $\int_{a}^{b} f(x)-g(x) \mathrm{d} x$.
GDA Guess the answer - Differentiate your guess (usually using the chain rule) - Adjust

POWERS $\quad \int f^{\prime}(x)(f(x))^{n} \mathrm{~d} x \quad$ Guess $(f(x))^{n+1}$
FRACTIONS $\quad \int \frac{f^{\prime}(x)}{f(x)} \mathrm{d} x \quad$ Guess $\ln |f(x)|$
$\int \frac{\text { linear or higher }}{a x+b} \mathrm{~d} x \quad$ Use Algebraic Division
$\int \frac{\text { lower power }}{\text { factorised thing }} \mathrm{d} x \quad$ Use Partial Fractions
TRIG $\int \cos ^{2} x \mathrm{~d} x$ Use $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \quad \int \tan ^{2} x \mathrm{~d} x$ Use $\tan ^{2} x=\sec ^{2} x-1$
$\int \sin ^{2} x \mathrm{~d} x \quad$ Use $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \int \cot ^{2} x \mathrm{~d} x \quad$ Use $\cot ^{2} x=\operatorname{cosec}^{2} x-1$
SUBSTITUTION Change $\mathrm{d} x$ to $\left(\frac{\mathrm{d} x}{\mathrm{~d} u}\right) \mathrm{d} u$ - Sub in - Change limits
PARTS $\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$

SEPARATION OF VARIABLES

Multiply both sides by $\mathrm{d} x$ - Multiply/divide anything on the 'wrong' side - Put on integral signs Integrate both sides \& don't forget +c

A SERIES is the sum of the terms of a sequence $S_{n}=\sum_{k=1}^{n} u_{n}$
RECURRENCE RELATIONS $u_{n+1}=f\left(u_{n}\right)$ define each term as a function of the previous term.
INCREASING SEQUENCE $u_{n+1}>u_{n}$ for all $n \in \mathbb{N}$
DECREASING SEQUENCE $u_{n+1}<u_{n}$ for all $n \in \mathbb{N}$
PERIODIC SEQUENCE the terms repeat in a cycle
there is an integer k for which $u_{n+k}=u_{n}$ for all $n \in \mathbb{N}$
$k=$ the ORDER of the sequence.

ARITHMETIC SEQUENCE a constant difference between consecutive terms.
$a=$ first term $\quad d=$ common difference
$n^{\text {th }}$ term $=a+(n-1) d$
Sum of 1st n terms $=S_{n}=\frac{n}{2}[2 a+(n-1) d]$
OR $S_{n}=\frac{n}{2}(a+l) \quad l=$ the last $\left(n^{\text {th }} \mid\right.$ term $=a+(n-1) d$

GEOMETRIC SEQUENCE a common ratio between consecutive terms.
$a=$ first term $\quad r=$ common ratio
$u_{n}=a r^{n-1}$
Sum of 1 st n terms $=S_{n}=\frac{a}{1-r}\left(1-r^{n}\right), \quad r \neq 1$

If $|r|<1$ the sequence is CONVERGENT lit converges to 0$)$
Sum of ∞ many terms $=S_{\infty}=\frac{a}{1-r}$ provided $|r|<1$

To solve arithmetic \& geometric sequences \& series problems

1. Translate the information into equations
2. Use simultaneous equations

11: NUMERICAL METHODS

CHANGE OF SIGN (root)

$$
\begin{aligned}
& f(a)=\ldots \\
& f(b)=\ldots \quad \text { lat least 3sf accuracy) }
\end{aligned}
$$

"The function $f(x)$ is continuous on the interval $[a, b]$ and changes sign between $f(a)$ and $f(b)$, therefore the function has at least one root for $a<x<b^{\prime \prime}$

CHANGE OF SIGN (turning point) $\quad f^{\prime}(a)=\ldots$

$$
f^{\prime}(b)=\ldots \quad \text { lat least 3sf accuracy) }
$$

"The function $f^{\prime}(x)$ is continuous on the interval $[a, b]$ and changes sign between $f(a)$ and $f(b)$, therefore the function $f^{\prime}(x)$ has at least one root for $a<x<b$ which means $f(x)$ has at least one turning point for $a<x<b^{\prime \prime}$

CHANGE OF SIGN (intersection)

$$
\begin{aligned}
& h(a)=f(a)-g(a)=\ldots \\
& h(b)=f(b)-g(b)=\ldots \quad \text { (at least 3sf accuracy) }
\end{aligned}
$$

"The function $h(x)=f(x)-g(x)$ is continuous on the interval $[a, b]$ and changes sign between $h(a)$ and $h(b)$, therefore the function $h(x)$ has at least one root for $a<x<b$ which means $y=f(x)$ crosses $y=g(x)$ at least once for $a<x<b^{\prime \prime}$

ITERATIVE METHOD
Rearrange $f(x)=0$ into the form $x=g(x)$
Use the iterative formula $x_{n+1}=g\left(x_{n}\right)$

NEWTON-RAPHSON Form the equation of the tangent to $y=f(x)$ at $x=x_{n}$
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad$ Sub in $y=0$ and rearrange to $x_{n}=\ldots$

TRAPEZIUM RULE

$$
\begin{aligned}
\int_{a}^{b} y \mathrm{~d} x & =\lim _{\delta x \rightarrow 0} \sum_{x=a}^{x=b} f(x) \delta x \\
& \approx \frac{1}{2} h\left[y_{0}+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)+y_{n}\right]
\end{aligned}
$$

$x \in \mathbb{N} \quad x$ is a NATURAL number $0,1,2,3,4, \ldots$
$x \in \mathbb{Z} \quad x$ is an INTEGER $0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots$
All natural numbers are integers: $\mathbb{N} \subset \mathbb{Z}$ All integers are rational: $\mathbb{Z} \subset \mathbb{Q}$ $x \in \mathbb{Q} \quad x$ is a RATIONAL number: $x=\frac{m}{n}, \quad m, n \in \mathbb{Z} \quad$ All rational numbers are real: $\mathbb{Q} \subset \mathbb{R}$ $x \in \mathbb{R} \quad x$ is a REAL number (all numbers not involving $\sqrt{-1}$)

Thing $1 \Rightarrow$ Thing 2	If thing 1 is true, then thing 2 is definitely true	
Thing $1 \Leftarrow$ Thing 2	If thing 2 is true, then thing 1 is definitely true	
Thing $1 \Leftrightarrow$ Thing 2	Thing 1 and thing 2 are EQUIVALENT If thing l is true then thing 2 is definitely true and also if thing 2 is true then thing l is definitely t	
Thing $1 \equiv$ Thing 2	Thing 1 and thing 2 are the same for all values of the unknown eg $x^{2}+3 x \equiv x(x+3)$ because it's always true \ldots but $x^{2}+3 x=x(x+1)$ because it's not always true	
Interval Notation $\quad x \in[a, b]$ means $a \leq x \leq b \quad x \in[a, b)$		
$x \in(a, b)$ means $a<x<b \quad x \in(a, b]$		

Set Notation $\quad\{x \in \mathbb{R}: x<a\} \cup\{x \in \mathbb{R}: x>b\}$ means $x<a$ OR $x>b$ $\{x \in \mathbb{R}: x<a\} \cap\{x \in \mathbb{R}: x>b\}$ means $x<a$ AND ALSO $x>b$

A mathematical proof involves Stating any assumptions made
Showing every step clearly
Having every step follow on logically from the previous step
Covering all possible cases
Writing a statement of proof at the end
To prove an identity you should Begin with one side of the identity Manipulate it until it matches the other side Show every step of your working

You can prove a mathematical statement by EXHAUSTION: breaking the statement into smaller cases and proving each case separately (eg prove for odds then evens)

You can disprove a mathematical statement by COUNTER-EXAMPLE: give one example that does not work for the given statement

PROOF BY CONTRADICTION
l. Start by assuming statement is not true in words
2. Write what this means mathematically
3. Using logical steps, show that this assumption leads to a contradiction
4. Conclude that the assumption is incorrect, so the original statement is true

l: LDS \& SAMPLING

POPULATION: whole set of items of interest.

CENSUS: measures every individual in a population.

SAMPLE: a selection of observations from a subset of the population, which is extrapolated to estimate information about the whole population.

SIMPLE RANDOM SAMPLE: every individual in a population is equally likely to be selected.

SYSTEMATIC SAMPLING: individuals are chosen at regular intervals from an ordered list.

STRATIFIED SAMPLING: population is divided into strata/groups \& random samples taken.

QUOTA SAMPLING: sample that reflects the characteristics of the population is chosen.

OPPORTUNITY SAMPLING: sample is chosen from suitable individuals available at the time.

Large Data Set Key Features (eg outliers, units of data)

2: DATA REPRESENTATION

The MIDPOINT is the average of the upper and lower class boundaries.

The CLASS WIDTH is the difference between the upper and lower class boundaries.

The RANGE measures spread. It is the difference between the largest and smallest values.

The IQR is a measure of spread. It is the difference between the upper and lower quartiles.

VARIANCE is a measure of spread. It is the average distance from each data point to the mean

$$
\frac{\sum(x-\bar{x})^{2}}{n}=\frac{\sum x^{2}}{n}-\bar{x}^{2} \quad \text { Standard Deviation }=\sqrt{\text { Variance }}
$$

The MEAN can be calculated using the formula $\bar{x}=\frac{\sum x}{n}$
The MEDIAN is the middle value when the data values are put in ascending order.

Ungrouped data: \quad For the lower quartile, calculate $\frac{n}{4}$. For the 7 th decile, calculate $\frac{7 n}{10}$ etc If this is a whole number, the data point you need is halfway between this point and the point above. If not, round up.

Grouped data: Use LINEAR INTERPOLATION to find quantiles

An OUTLIER is any value greater than (eg) $\quad Q_{3}+\frac{3}{2}(\mathrm{IQR})$ or less than $Q_{1}-\frac{3}{2}(\mathrm{IQR})$ Removing these values 'CLEANS' the data.

On a histogram: \quad frequency density $=\frac{\text { frequency }}{\text { width }} \times k$

Joining the middle of the top of each bar on the histogram forms a FREQUENCY POLYGON.

BIVARIATE DATA has pairs of two variables, allowing scatter graphs to be drawn.

CORRELATION (and correlation coefficients) describe the relationship between two variables.
Weak/Strong - Positive/Negative - As \qquad increases, \qquad increases/decreases

PMCC Product Moment Correlation Coefficient ρ
ρ describes the strength of the linear correlation (weak/strong, positive/negative) $-1 \leq \rho<0$ Negative correlation, from strong (near -1) to weak (near 0) $0<\rho \leq-1$ Positive correlation, from weak (near 0) to strong (near 1)

LINEARLY CORRELATED variables have scatter graphs with points lying close to a line The REGRESSION LINE of p on t, in the form $p=a+b t$, is the line of best fit of a scatter graph.

If variables are linearly correlated, the regression line is a reliable way to estimate the RESPONSE/DEPENDENT variable using the EXPLANATORY/INDEPENDENT VARIABLE (not the other way round)

TREE DIAGRAMS
VENN DIAGRAMS TWO WAY TABLES
shows the outcomes of two or more events occurring in succession.
shows a graphic representation of two or more events.
shows 2 sets of mutually exclusive evens such as eye colour (blue/brown/ other) and hair colour (blonde/brown/other)

PROBABILITY DISTRIBUTION a table or formula showing all of the possible outcomes and their associated probabilities.

The sum of all probabilities is 1 :

$$
\sum P(X=x)=1
$$

CUMULATIVE PROBABILITY
the probability of obtaining up to and including the outcome.

$P(A)$

$P\left(A^{\prime}\right)$

$P\left(A^{\prime} \cap B\right)$
$P(B)$

$P(A \cap B)$

Useful formula:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$

If A and B are MUTUALLY EXCLUSIVE, $P(A \cap B)=0$

$$
\text { Therefore, } P(A \cup B)=P(A)+P(B)
$$

If A and B are INDEPENDENT, $P(A \cap B)=P(A) \times P(B)$

$$
\text { Therefore, } P(A \cup B)=P(A)+P(B)-P(A) P(B)
$$

The probability that B occurs given that A is known to have occurred is $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
Typical Questions: "Given that A, find the probability of B "
"Find the probability of B, given that A "
"A thing is chosen at random \& found to be A. Find the probability it is B "

INDEPENDENT events

$$
\begin{aligned}
& P(A \mid B)=P\left(A \mid B^{\prime}\right)=P(A) \\
& P(B \mid A)=P\left(B \mid A^{\prime}\right)=P(B) \\
& P(A \cap B)=P(A) \times P(B)
\end{aligned}
$$

$X=$ The number of \ldots. out of n
$X \sim \mathrm{~B}(n, p)$

Conditions for a binomial distribution two possible outcomes a fixed number of trials, n fixed probability of success, p trials are independent

The probability of an individual outcome: $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$

The BINOMIAL COEFFICIENT $\binom{n}{x}=\frac{n!}{x!(n-r)!}$
$=$ the no. of ways x things can be chosen from a list of n things
$P(X \leq x)$ is found using your calculator

$$
\begin{aligned}
& P(X<x)=P(X \leq(x-1)) \\
& P(X \geq x)=1-P(X<x) \\
& P(X>x)=1-P(X \leq x)
\end{aligned}
$$

6: THE NORMAL DISTRIBUTION

$X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \quad \mu=$ population mean, $\sigma^{2}=$ population variance
$Z \sim \mathrm{~N}(0,1) \quad$ the STANDARD NORMAL distribution $Z=\frac{X-\mu}{\sigma}$

KEY FEATURES: Used to model continuous data
Area under curve $=1$
Bell shaped curve, asymptotic at each end
Symmetric about the mean (mean $=$ median $=$ mode
$P(X=a)=0$ for any individual value a
Between $\mu \pm 1 \sigma \approx 68 \%$ of the data
Between $\mu \pm 2 \sigma \approx 95 \%$ of the data
Between $\mu \pm 3 \sigma \approx 99.7 \%$ of the data
The distribution has inflection points at $\mu \pm \sigma$

CALCULATOR INSTRUCTIONS:

TT TOP TIP: Always draw a little sketch and shade the part you want to know/do know If you don't know μ and/or σ, use 2 horizontal axes. One for X and one for Z.

APPROXIMATING THE BINOMIAL Only works if n is large and $p \approx 0.5$

$$
\mathrm{B}(n, p) \rightarrow \mathrm{N}(n p, n p(1-p))
$$

The CONTINUITY CORRECTION (Edexcel and OCR only) must be applied - use a number line!

7: HYPOTHESIS TESTING

A hypothesis test determines whether or not there is sufficient evidence to claim that a population parameter is not what it was previously thought to be. If the probability of the result OR MORE EXTREME is less than the significance level, the result is significant and H_{0} is rejected

NULL HYPOTHESIS	$\mathrm{H}_{0}: \ldots$	what we currently think the parameter is
ALTERNATIVE HYPOTHESIS	$\mathrm{H}_{1}: \ldots$	what someone is claiming (and we are testing)
CRITICAL VALUES	the first valuels) of the test statistic X to fall inside the critical region	
CRITICAL REGION	values of X for which $\mathrm{H}_{0} \underline{\text { would be rejected }}$	
ACCEPTANCE REGION	values of X for which $\mathrm{H}_{0} \underline{\text { would not be rejected }}$	
SIGNIFICANCE LEVEL	probability of incorrectly rejecting H_{0} (probability of critical region)	

BINOMIAL DISTRIBUTION $X \sim B(n, p) \quad$ Population parameter is $p \quad \mathrm{H}_{0}: p=\ldots$
One-tailed test: $\quad \mathrm{H}_{1}: p<\ldots \quad$ find $P(X \leq a)$, compare with the significance level
$\mathrm{H}_{1}: p>\ldots \quad$ find $P(X \geq a)$, compare with the significance level
Two-tailed test: $\quad \mathrm{H}_{1}: p \neq \ldots \quad$ find either $P(X \leq a)$ if a is 'weirdly small' or $P(X \geq a)$ if a is 'weirdly big'. Compare with half the significance level.

NORMAL DISTRIBUTION $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \quad$ Population parameter is $\mu \quad \mathrm{H}_{0}: \mu=\ldots$

$$
\text { Consider } \bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

One-tailed test: $\quad \mathrm{H}_{1}: \mu<\ldots \quad$ find $P(\bar{X} \leq a)$, compare with the significance level $\mathrm{H}_{1}: \mu>\ldots \quad$ find $P(\bar{X} \geq a)$, compare with the significance level

Two-tailed test: $\quad \mathrm{H}_{1}: \mu \neq \ldots \quad$ find either $P(\bar{X} \leq a)$ if a is 'weirdly small' or $P(\bar{X} \geq a)$ if a is 'weirdly big'. Compare with half the significance level

LINEAR CORRELATION
Population parameter is $\rho \quad \mathrm{H}_{0}: \rho=0$
One-tailed test: $\quad \mathrm{H}_{1}: \rho<\ldots \quad$ find the critical value of ρ for the values of n and α.
Compare with the PMCC. PMCC $>\alpha$ is significant
$\mathrm{H}_{1}: p>\ldots$ find the critical value of ρ for the values of n and α.
Compare NEGATIVE α with the PMCC.
$\mathrm{PMCC}<-\alpha$ is a significant result
Two-tailed test: $\quad \mathrm{H}_{1}: p \neq \ldots \quad$ find the critical value of ρ for the values of n and 0.5α. Compare the PMCC with α if the PMCC is 'weirdly big positive', or with $-\alpha$ if the PMCC 'weirdly big negative'. A significant result is $\mathrm{PMCC}>\alpha$ or $\mathrm{PMCC}<-\alpha$

NEWTON'S l st LAW:	an object at rest will stay at rest, an object with constant velocity will move at that velocity unless a resultant force acts upon it.
NEWTON'S 2nd LAW:	\mathbf{F} is force, measured in Newtons $(\mathrm{N}), m$ is mass, measured in $k g$, \mathbf{a} is acceleration, with magnitude measured in ms^{-2}
	$\sum \mathbf{F}=m \mathbf{a}$ The sum of the forces in a particular direction is
	equal to the mass times the acceleration in that direction
NEWTON'S 3rd LAW:	For every action there is an equal and opposite reaction.
RESOLVING FORCES:	The unresolved force is between the perpendicular directions
	A force of magnitude F at angle θ to the direction of motion component $F \cos \theta$ in the direction of the motion component $F \sin \theta$ perpendicular to this direction
RESULTANT FORCE	the sum of all forces acting on an object. If there is a resultant force acting on an object, it will accelerate in

If 3 forces act on an object in equilibrium, you can form a TRIANGLE OF FORCES and use the cosine rule to find missing information.

If a particle is in EQUILIBRIUM the resultant moment and the resultant force are both zero
\qquad
WEIGHT $\mathbf{W}=m \mathbf{g} \quad$ Weight is equal to the mass $m \mathrm{~kg}$ times the force of gravity \mathbf{g} Weight only acts on the body with that mass The magnitude of the weight is equal to the mass $m \mathrm{~kg}$ times the acceleration $g=9.81 \mathrm{~ms}^{-2}$ (which is due to the force of gravity \mathbf{g})
$\begin{array}{ll}\text { TENSION } & \text { Occurs when a string or rod is in tension } \\ \text { THRUST } & \text { Occurs when a rod is in compression }\end{array}$

FRICTION Occurs between an object and a non-smooth surface
$F_{\max }=\mu R \quad$ Opposes motion (or potential motion) and acts parallel to the surface Starts at 0 and increases to prevent motion until it reaches $F_{\text {max }}$ When friction reaches $F_{\text {max }}$ the body is on the point of moving While the body is moving, friction is $F_{\max }$

NORMAL REACTION Occurs between an object and a surface It acts perpendicular to the surface

If particles are connected by an INEXTENSIBLE STRING, their accelerations are equal If particles are connected over a SMOOTH PULLEY, the tensions in the string are equal If a string is LIGHT you do not need to consider its weight

9: CONSTANT ACCELERATION

DISPLACEMENT A vector. The magnitude of displacement is called DISTANCE Displacement is the area under a velocity-time graph

VELOCITY

ACCELERATION
A vector. The magnitude of velocity is called SPEED Velocity is the gradient of a displacement-time graph
A vector. The magnitude of acceleration is also called acceleration Acceleration is the gradient of a velocity-time graph

```
SUVAT (1) Decide which way is positive (up or down, left or right)
```

(2) Complete the table/tables.

Be careful with $\mathbf{s}, \mathbf{u}, \mathbf{v}, \mathbf{a} \pm$ signs
State which particle/section of motion each table is for Consider the links: t for one particle may be $t-2$ for the other For vertical motion under gravity, $a=9.81$ downwards
(3) Write down the equation without the thing you're not interested in
$v=u+a t \quad s=\left(\frac{u+v}{2}\right) t \quad v^{2}=u^{2}+2 a s \quad s=u t+\frac{1}{2} a t^{2} \quad s=v t-\frac{1}{2} a t^{2}$
(4) Sub in clearly then solve/use simultaneous equations to solve

MISTAKES (1) Not thinking about which way is positive (up or down, left or right)
(2) Getting the signs wrong on some of $\mathbf{s}, \mathbf{u}, \mathbf{v}, \mathbf{a}$
(3) Doing a suvat for AC when the acceleration is not constant on AC
(4) Putting in distance not displacement or speed not velocity

PROJECTILES Horizontally
$u=v, a=0$ the only equation is $s=u t$ (use right as positive) Velocity $U \cos \alpha, \alpha$ measured from the positive horizontal
Vertically
$a=9.81 \mathrm{~ms}^{-2}$ downwards (use up as positive) Initial velocity $U \sin \alpha, \alpha$ measured from the positive horizontal
Flight Equation (I) Vertically use $s=y, u=U \sin \alpha, a=-9.81$
(II) Horizontally use $s=x, u=U \cos \alpha$

Rearrange (II) into $t=\ldots$ and sub into (I) carefully
$y=x \tan \alpha-\frac{g x^{2}\left(1+\tan ^{2} \alpha\right)}{2 U^{2}}$

Time of Flight From Ground \downarrow Time to Greatest Height \downarrow Horizontal Range From Ground \leftrightarrow

use $2 \sin \mathscr{A}$ qpyright $\varrho_{\text {sin }}^{20} 29 \alpha^{\text {Tailored Tutors }}$

10: VARIABLE ACCELERATION

Differentiate $|$| s or x (displacement) |
| :--- |
| v (velocity) |
| a (acceleration) |

The constant of integration, c, can be found by substituting in a known displacement/velocity.
The change in displacement from time t_{1} to time t_{2} is $\int_{t_{1}}^{t_{2}} v(t) \mathrm{d} t$.

If the particle doesn't change direction from time t_{1} to time t_{2}, then the change in displacement is the same as the distance travelled.

The change in velocity from time t_{1} to time t_{2} is $\int_{t_{1}}^{t_{2}} a(t) \mathrm{d} t$.

Don't forget: displacement, velocity and acceleration are vectors, so can be positive or negative.
\qquad
Differentiate $\left|\begin{array}{l}\mathbf{r} \text { or } \mathbf{x} \text { (displacement) } \\ \mathbf{v} \text { or } \dot{\mathbf{r}} \text { or } \dot{\mathbf{x}} \text { (velocity) } \\ \mathbf{a} \text { or } \dot{\mathbf{r}} \text { or } \ddot{\mathbf{x}} \text { (acceleration) }\end{array}\right|$ Integrate $+\binom{c_{1}}{c_{2}}$

The constant of integration, $\binom{c_{1}}{c_{2}}$ is found by substituting in a known displacement/velocity.
The change in displacement from time t_{1} to time t_{2} is $\int_{t_{1}}^{t_{2}} \mathbf{v}(t) \mathrm{d} t$.

If the particle doesn't change direction from time t_{1} to time t_{2}, then the change in displacement is the same as the distance travelled.

The change in velocity from time t_{1} to time t_{2} is $\int_{t_{1}}^{t_{2}} \mathbf{a}(t) \mathrm{d} t$.
Don't forget: displacement, velocity and acceleration are vectors, distance, speed and magnitude of acceleration are the length of the corresponding vectors.

11: VECTOR PROBLEMS

New Position $=$ Original Position $+t($ Velocity $)$
New Velocity $=$ Original Velocity $+t$ (Acceleration $)$

Velocity:	\mathbf{i} component	\mathbf{j} component	
"Traveling East"	positive	zero	
"Traveling West"	negative	zero	
"Traveling South"	zero	negative	
"Traveling North"	zero	positive	
"Traveling North East"	positive	positive	\mathbf{i} component $=\mathbf{j}$ component
"Traveling South East"	positive	negative	\mathbf{i} component $=-\mathbf{j}$ component
"Traveling North West"	negative	positive	\mathbf{i} component $=-\mathbf{j}$ component
"Traveling South West"	negative	negative	\mathbf{i} component $=\mathbf{j}$ component

12: MOMENTS

First step	Resolve forces, if needed	
Equation 1	Forces Up = Forces Down	
Equation 2	Forces Left = Forces Right	
Equation 3	Moments Clockwise $=$ Moments Anticlockwise	
		\rightarrow Simultaneous Equations

$\begin{array}{ll}\text { MOMENT } & \text { of } \mathbf{F} \text { about point } \mathrm{P}=|\mathbf{F}| \times d \\ & d \text { is the direct/shortest distance from } \mathrm{P} \text { to the line of action of } \mathbf{F}\end{array}$ The moment measures the turning effect of a force about a point Units are Nm

TILTING When a body is on the point of tiling about a pivot, the reaction in any other supports and the tension in and supporting wires is zero

HINGES At the hinge, the reaction is not perpendicular to the wall Draw the reaction force as \mathbf{X} horizontal and \mathbf{Y} vertical
Left/right, up/down doesn't matter. If it comes out negative it was the other way
The magnitude of the reaction is $\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}$ in direction $\tan \theta=\frac{|\mathbf{Y}|}{|\mathbf{X}|}$
LADDERS Ladder type problems are not set on the AQA exams.
The same ideas apply to beams resting on the floor and a pivot etc
Where the ladder touches the floor:
friction is parallel to the floor, usually towards the wall but might not be the normal reaction \mathbf{R} is perpendicular to the floor
Where the ladder touches the wall:
friction (on a non-smooth wall) is parallel to the wall, usually up the normal reaction \mathbf{S} is perpendicular to the wall

TT TOP TIPS Finding d for each moment is the most common problem Make a separate diagram for each moment.
Opposite the angle is $d \sin \theta$, adjacent to the angle is $d \cos \theta$
Don't put too much information on one diagram

