The Ścięncż Cube

Kinetic Energy and Work Done

Kinetic Energy

Class 11/12 | AP Physics | IIT JEE | NEET

Kinetic Energy (KE) is the energy possessed by an object *due to its motion*.

Key Insight: Velocity impacts KE more than mass due to the square relationship.

Example Calculation:

egus ésneisé ent

Bullet vs. Boulder: A Kinetic Energy Comparison

From the above example, you can say that a bullet, despite its small mass, can have higher KE than a larger, slower boulder *due to its high velocity*

Force and Kinetic Energy

- If the applied force increases velocity and hence KE *positive work is done*
- If the applied force decreases velocity and hence KE negative work is done
 We say, the Force is transferring energy into the object (+ve work) or out of the object (-ve work)

• Energy Transfer: Analogous to electronic money transfer, not physical.

eeus ésneisé eht

Deriving Work Done by a Force

Newton's Second Law: F = ma (Eq. 1)

Displacement and Velocity Change:

Initial velocity = v_0 , Final velocity = v, Displacement = d

$$v^2 = v_0^2 + 2ad$$
 (Eq. 2)

Rearranging (2) and Substituting a = F/m in (1)

 $1/2(mv^2) - 1/2(mv_0^2) = Fd$ Change in KE

$$\Delta KE = W = Fd$$

Key Points to Remember

- 1. Work is Scalar: Independent of direction of force.
- 2. Constant Force: Formula applies only for constant force (both, magnitude and direction)
- 3. **Multiple Forces**: Work done can be calculated individually for each force and summed, or by using the resultant force and multiplying it with displacement

EEUS ÉSNEISÈ EKT

Common Misconceptions

S.N	Misconception	Reality
1	Work is only done when the force	Work is done whenever there is a component of
	and motion are in the same	force in the direction of displacement, even if the
	direction.	force itself is not perfectly aligned with
		displacement
2	Applying a force always increases	The kinetic energy can decrease if the force acts
	an object's kinetic energy.	opposite to the direction of motion, leading to
		negative work.
3	The formula $\Delta KE = W$ implies that	This formula represents a change in kinetic energy
	kinetic energy and work are the	as a result of work done; they are related but
	same thing.	distinct concepts.
4	The faster an object moves, the	Work depends on force and displacement, not just
	more work must have been done	the final speed. An object can achieve high speeds
	on it.	with relatively small force over a long distance.
5	Negative work implies that energy	Energy is conserved; negative work means energy
	is lost or destroyed.	is transferred away from the object, not lost.
6	Work is always a transfer of	Work results in energy transfer, but not all energy
	energy.	transfers are work (e.g., heat transfer).

