

WHAT TO FOCUS ON?

WHAT TO FOCUS ON?

- ✓ METHOD/UNDERSTAND THE STEPS
- ✓ DIAGRAMS/DRAWING OF APPARATUS
- ✓ FOLLOW UP CALCULATIONS/MANIPULATING DATA/GRAPHS
- ✓ ERRORS
- ✓ CHEMICAL EQUATIONS
- ✓ IMPROVEMENTS
- ✓ RISK ASSESSMENT
- ✓ LIMITATIONS

AS PRACTICAL SKILLS

3

4640

This question is about a white solid, MHCO₃, that dissolves in water and reacts with hydrochloric acid to give a salt.

 $\mathsf{MHCO}_3 \ + \ \mathsf{HCl} \ \rightarrow \ \mathsf{MCl} \ + \ \mathsf{H}_2\mathsf{O} \ + \ \mathsf{CO}_2$

A student was asked to design an experiment to determine a value for the M_r of MHCO₃. The student dissolved 1464 mg of MHCO₃ in water and made the solution up to 250 cm³.

 $(25.0 \text{ cm}^3 \text{ samples of the solution were titrated with 0.102 mol dm}^3 \text{ hydrochloric acid. The results are shown in$ **Table 1**.

			Table			
		Rough	1	2	3	
{	Initial burette reading / cm ³	0.00	10.00	19.50	29.25	7
	Final burette reading / cm ³	10.00	19.50	29.25	38.90]
	_Titre / cm ³	(10.00)	9.50	9.75	9.65	5
		X				\smile

0 3 . 1 Calculate the mean titre and use this to determine the amount, in moles, <u>of HC</u>L that reacted with 25.0 cm³ of the MHCO₃ solution.

[3 marks] MU -0102-5 = 9.709.894XI 500

0 3 . 2 Calculate the amount, in moles, of $MHCO_3$ in 250 cm³ of the solution. Then calculate the experimental value for the M_r of $MHCO_3$. Give your answer to the appropriate number of significant figures.

[3 marks] (0,) in thosy in - 1.464 9.894 x 53

AS PRACTICAL SKILLS

The student identified use of the burette as the largest source of uncertainty in the 0 3 3 experiment. + 0.5ertor Using the same apparatus, suggest how the procedure could be improved to reduce the percentage uncertainty in using the burette. Justify your suggested improvement. 1211 [2 marks] Suggestion r Justification 29 4 100 mh 5 negrephier Another student is required to make up 250 cm³ of an aqueous solution that 0 3 4 contains a known mass of MHCO₃. The student is provided with a sample bottle containing the MHCO₃. Describe the method, including apparatus and practical details, that the student should use to prepare the solution. [6 marks] minnu 0:00 nole odd φ. 1 - 0 100 $M \ge 0.099$ m 60 mud = 0.49 mud+J= 2.09 2.6 - 2.6

AS PRACTICAL SKILLS

Question	Marking Guidance	Mark	Comments
03.1	Selects correct titres mean titre = $\frac{9.75 + 9.65}{2}$		If 3 or more titres used them MAX 1 for conseq M3
	$= 9.7(0)^{2}$ cm ³	1	Calculates mean
	mol HCL = $0.102 \times \frac{9.70}{1000} = 9.89 \times 10^{-4}$	1	Calculates mol (working or result gains credit)
	(allow 9.9x10-4 for M3 but check not via 4 titres in which case		9.92x10 ⁻⁴ scores 1 if all 4 titres used
	only 1 mark)		9.83x10 ⁻⁴ scores 1 if titres 1,2,and 3 used
	mol MHCO ₃ = ANS 3.1 x 10 (= 9.89 x 10 ⁻³)	1	Use ecf if wrong mean calculated above
03.2			
	$Mr = \frac{1464/1000}{M1}$	1	
	Mr = 148 (3sf)	1	Allow ecf following wrong mass conversion
03.3	Suggestion: Use a larger mass of solid OR use a more concentrated solution of MHCO ₃ OR less concentrated / more		
	dilute solution of HCI OR more MHCO ₃		Cannot score justification mark unless suggestion correct, bu suggestion could be after justification
	Justification: So a larger titre/reading will be needed OR	1	
	larger volume of HCl		Assume reference to the solution means the MHCO ₃

Question	Marking Guidance	Mark	Comments		
03.4	This question is marked using levels of response.	6	Indicative Chemistry content		
	Level 3 - Must use volumetric flask to access level 3		Stage 1: transfers known mass of solid		
	Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3. 6 marks - All stages are covered and the description of each stage is complete		 a) Weigh the sample bottle containing the solid on a (2 dp) balance b) Transfer to beaker* and reweigh sample bottle c) Record the difference in mass 		
	5 marks – all stages are covered but up to 2 omissions/errors from different stages. If 2 omissions/errors from same stage only level 2 possible		 d) Place beaker* on balance and tare e) Transfer solid into beaker f) Record mass 		
	Level 2		or g) Known mass provided		
	Answer is mainly coherent and shows progression from stage 1 to stage 3		 h) Transfers (known) mass into beaker* i) Wash all remaining solid from sample bottle into beaker 		
	4 marks - All stages are covered but 3 omissions/errors 3 marks – all stages are attempted		Allow use of weighing boat *Allow other suitable glassware including volumetric flask		
	Level 1 Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.		 Stage 2: Dissolves in water (100 cm²) a) Add distilled / deionised water b) Stir (with a glass rod) or swirl c) Until all solid has dissolved 		
	2 marks – 2 stages attempted		Stage 3: Transfer, washing and agitation		
	1 mark – 1 stage attempted		a) Transfer to <u>volumetric / graduated</u> flask. Allow if a clear		
	Level 0		description/diagram given eg long necked flask with 250cm ³ mark		
	0 marks		b) With washings		
	Insufficient correct chemistry to gain a mark.		 c) Make up to 250cm³ / mark with water d) Shakes/inverts/mixes 		

Example : Back (Indirect) Titration to Determine the Amount of an Insoluble Salt

A student was asked to determine the mass, in grams, of calcium carbonate present in a 0.125 g sample of chalk. The student placed the chalk sample in a 250 cm³ conical flask and added 50.00 cm³ of 0.200 moldm⁻³ HCl using a pipette. The excess HCl was then titrated with 0.250 moldm⁻³ NaOH. The average NaOH titre was 32.12 cm³.

Calculate the mass of calcium carbonate, in grams, present in the chalk sample and the percentage purity.

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

