Network drivers

Thomas Petazzoni
Free Electrons

© Copyright 2009, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Dec 24, 2009,

Document sources, updates and translations:
http://free-electrons.com/docs/network-drivers

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers

http://free-electrons.com/docs/network-drivers

» The struct sk_buff is the structure representing a network
packet

» Designed to easily support encapsulation/decapsulation of data
through the protocol layers

» In addition to the data itself, an sk_buff maintains

P head, the start of the packet

P data, the start of the packet payload
P tail, the end of the packet payload
P end, the end of the packet

» len, the amount of data of the packet

» These fields are updated when the packet goes through the
protocol layers
3

http://lxr.free-electrons.com/ident?i=sk_buff
http://lxr.free-electrons.com/ident?i=sk_buff

» Function dev_alloc_skb() allows to allocate an SKB

» Can be called from an interrupt handler.
Usually the case on reception.

» On Ethernet, the size allocated is usually the length of the packet
+ 2, so that the IP header is word-aligned (the Ethernet header is
14 bytes)

skb = dev_alloc skb(length + NET IP ALIGN);

data, head, tail

length +
NET IP_ALIGN

\/
4

http://lxr.free-electrons.com/ident?i=dev_alloc_skb
http://lxr.free-electrons.com/ident?i=NET_IP_ALIGN
http://lxr.free-electrons.com/ident?i=NET_IP_ALIGN
http://lxr.free-electrons.com/ident?i=dev_alloc_skb

» Need to skip NET IP ALIGN bytes at the beginning of the SKB

» Done with skb_reserve()

skb reserve(skb, NET IP ALIGN);

head
data, tail ——»

$ NET IP ALIGN

length

http://lxr.free-electrons.com/ident?i=NET_IP_ALIGN
http://lxr.free-electrons.com/ident?i=skb_reserve
http://lxr.free-electrons.com/ident?i=skb_reserve
http://lxr.free-electrons.com/ident?i=NET_IP_ALIGN
http://lxr.free-electrons.com/ident?i=NET_IP_ALIGN

@

» The packet payload must be copied from the DMA buffer to the
SKB, using

P static inline void skb copy to linear data(struct sk buff
*skb, const void *from, const unsigned int len);

P static inline void skb copy to linear data offset(struct
sk buff *skb, const int offset, const void *from, const
unsigned int len);

skb copy to linear data(skb, dmabuffer,
length);

head
data, tail — »

’ NET_IP_ALIGN

length

http://lxr.free-electrons.com/ident?i=skb_copy_to_linear_data
http://lxr.free-electrons.com/ident?i=skb_copy_to_linear_data_offset
http://lxr.free-electrons.com/ident?i=skb_copy_to_linear_data
http://lxr.free-electrons.com/ident?i=NET_IP_ALIGN

» skb put() is used to update the SKB pointers after copying the
payload

skb put(skb, length);

head

data ——»

’ NET_IP_ALIGN

length

taill ——»

http://lxr.free-electrons.com/ident?i=skb_put
http://lxr.free-electrons.com/ident?i=skb_put

» This structure represents a single network interface

» Allocation takes place with alloc etherdev ()

P The size of private data must be passed as argument. The pointer
to these private data can be read in net _device->priv

P alloc etherdev() is a specialization of alloc netdev() for
Ethernet interfaces

» Registration with register netdev()

» Unregistration with unregister netdev()

» Liberation with free netdev()

» The methods of a network interface. The most important ones:
» ndo open(), called when the network interface is up'ed
» ndo close(), called when the network interface is down'ed
P ndo start xmit(), to start the transmission of a packet

» And others:

P ndo get stats(), to get statistics

» ndo do ioctl(), to implement device specific operations
P ndo set rx mode(), to select promiscuous, multicast, etc.
P ndo set mac_address(), to set the MAC address

P ndo set multicast list(), to set multicast filters

P Set the netdev ops field in the struct net device structure
to point to the struct net device ops structure.

9

P netif start queue()
P Tells the kernel that the driver is ready to send packets
P netif stop queue()

P Tells the kernel to stop sending packets. Useful at driver cleanup of
course, but also when all transmission buffers are full.

P netif queue stopped()
P Tells whether the queue is currently stopped or not

» netif wake queue()

» Wake-up a queue after anetif stop queue().
The kernel will resume sending packets

» The driver implements the ndo _start xmit () operation
» The kernel calls this operation with a SKB as argument

» The driver sets up DMA buffers and other hardware-dependent
mechanisms and starts the transmission

» Depending on the number of free DMA buffers available, the driver
can also stop the queue with netif stop queue()

» When the packet has been sent, an interrupt is raised. The driver
IS responsible for

» Acknowledging the interrupt
P Freeing the used DMA buffers
» Freeing the SKB with dev_kfree skb irq()

P If the queue was stopped, start it again

» Returns NETDEV_TX OK or NETDEV_TX BUSY N

» Reception is notified by an interrupt. The interrupt handler should
» Allocate an SKB with dev_alloc_skb()
» Reserve the 2 bytes offset with skb_reserve()

» Copy the packet data from the DMA buffers to the SKB

skb copy to linear data() or
skb copy to linear data offset()

» Update the SKB pointers with skb_put ()

» Update the skb->protocol field with eth type trans(skb,
netdevice)

» Give the SKB to the kernel network stack with netif rx(skb)

Reception: NAPI mode (1)

e original mode is nice and simple, but when the network traffic is
high, the interrupt rate is high. The NAPI mode allows to switch to
polled mode when the interrupt rate is too high.

» In the network interface private structure, add a struct
napli struct

» At driver initialization, register the NAPI poll operation:
netif napi add(dev, &bp->napi, macb poll, 64);

P dev is the network interface
P sbp->napi is the struct napi struct
P macb poll is the NAPI poll operation

» 64 is the «weight» that represents the importance of the network
interface. It limits the number of packets each interface can feed to the
networking core in each polling cycle. If this quota is not met, the driver
will return back to interrupt mode. Don't send this quota to a value

greater than the number of packets the interface can store. i3

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Reception: NAPI mode (2)

» In the interrupt handler, when a packet has been received:
if (napi schedule prep(&bp->napi)) {
/* Disable reception interrupts */
napi schedule(& bp->napi);

}
» The kernel will call our pol1 () operation regularly

» The poll () operation has the following prototype

static int macb poll(struct napi struct *napi, int budget)

» It must receive at most budget packets and push them to the
network stack using netif receive skb().

P If less than budget packets have been received, switch back to
interrupt mode using napi complete(& bp->napi) and re-
enable interrupts

» Must return the number of packets received
14

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Communication with the PHY (1)

» Usually, on embedded platforms, the SoC contains the Ethernet
controller, that takes care of layer 2 (MAC) communication.

» An external PHY is responsible for layer 1 communication.

» The MAC and the PHY are connected using a MIl or RMII
Interface

» MIl = Media Independent Interface
» RMIl = Reduced Media Independent Interface

» This interface contains two wires used for the MDIO bus
(Management Data Input/Output)

» The Ethernet driver needs to communicate with the PHY to get
iInformation about the link (up, down, speed, full or half duplex)
and configure the MAC accordingly

15

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

SoG (R)MII

MDIO

» The kernel provides a framework that
» Exposes an APl to communicate with the PHY
» Allows to implement PHY drivers

» Implements a basic generic PHY driver that works with all PHY

» Implemented in drivers/net/phy/

» Documented in Documentation/networking/phy.txt

http://lxr.free-electrons.com/source/drivers/net/phy/
http://free-electrons.com/kerneldoc/latest/networking/phy.txt

@

» The driver must create a MDIO bus structure that tells the PHY
infrastructure how to communicate with the PHY.

» Allocate a MDIO bus structure

struct mii bus *mii bus = mdiobus alloc();

» Fill the MDIO bus structure

mii bus->name = “foo”
mii bus->read = foo mii bus read,
mii bus->write = foo mii bus write,

snprintf(mii bus->id, MII BUS ID SIZE, "3%x", pdev->id);
mii bus->parent = struct net device *

» The foo mii bus read() and foo mii bus write() are
operations to read and write a value to the MDIO bus. They are
hardware specific and must be implemented by the driver.

18

» The ->irq[] array must be allocated and initialized. To use

polling, set the values to PHY POLL.
mii bus->irqg = kmalloc(sizeof(int)*PHY MAX ADDR, GFP_KERNEL) ;
for (i = 0; i < PHY MAX ADDR; i++)

bp->mii bus->irq[i] = PHY POLL;

» Finally, register the MDIO bus. This will scan the bus for PHYs

and fill the mii bus->phy map[] array with the result.
mdiobus register (bp->mii bus)

» The mdiobus register () function filled the mii bus-
>phy map|[] array with struct phy device * pointers

» The appropriate PHY (usually, only one is detected) must be
selected

» Then, connecting to the PHY allows to register a callback that will
be called when the link changes :

P int phy connect direct(
struct net device *dev,
struct phy device *phydev,
void (*handler) (struct net device *),
u32 flags,
phy interface t interface

)

P interface is usually PHY INTERFACE MODE MII Of

PHY INTERFACE MODE RMII
20

» The MAC and the PHY might have different capabilities. Like a
PHY handling Gigabit speed, but not the MAC

» The driver is responsible for updating phydev->advertise and
phydev->supported to remove any PHY capability that the
MAC doesn't support

» A typical solution for a 10/100 controller is
» phydev->supported &= PHY BASIC_ FEATURES

P phydev->advertising = phydev->supported

» The callback that handle link changes should have the following
prototype

void foo handle link change(struct net device *dev)

» It must check the duplex, speed and 1ink fields of the struct
phy device structure, and update the Ethernet controller
configuration accordingly

» duplex is either DUPLEX HALF or DUPLEX FULL

» speed is either SPEED 10, SPEED 100, SPEED 1000,
SPEED 2500 or SPEED 10000

P link is a boolean

» After set up, the PHY driver doesn't operate. To make it poll
regularly the PHY hardware, one must start it with

phy start(phydev)

» And when the network is stopped, the PHY must also be
stopped, using

phy stop(phydev)

ethtool

Oy

P ethtool is a userspace tool that allows to query low-level
iInformation from an Ethernet interface and to modify its
configuration

» On the kernel side, at the driver level, a struct ethtool ops
structure can be declared and connected to the struct
net device using the ethtool ops field.

» List of operations: get _settings(), set settings(),
get drvinfo(), get wol(), set wol(), get link(),
get eeprom(), set eeprom(), get tso(),
set tso(), get flags(), set flags(), eflc.

» Some of these operations can be implemented using the PHY
interface (phy ethtool gset(), phy ethtool sset())or
using generic operations (ethtool op get link() for
example)

24

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

Statistics

» The network driver is also responsible for keeping statistics up to
date about the number of packets/bytes received/transmitted, the

number of errors, of collisions, etc.
P Collecting these informations is left to the driver

» To expose these information, the driver must implement a

get stats () operation, with the following prototype
struct net device stats *foo get stats
(struct net device *dev);

» The net device stats structure must be filled with the driver.

It contains fields such as rx packets, tx packets,
rx bytes, tx bytes, rx errors, tx errors,
rx dropped, tx dropped, multicast, collisions,

efc.

25

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

» To support suspend and resume, the network driver must
iImplement the suspend () and resume () operations

» These operations are referenced by the xxx_driver structure
corresponding to the bus on which the Ethernet controller is

» The suspend() operation should

P Call netif device detach()

» Do the hardware-dependent operations to suspend the devices (like
disable the clocks)

» The resume () operation should

» Do the hardware-dependent operations (like enable the clocks)
P Call netif device attach()

26

» «Essential Linux Device Drivers», chapter 15

» «Linux Device Drivers», chapter 17 (a little bit old)
» Documentation/networking/netdevices.txt
» Documentation/networking/phy.txt

» include/linux/netdevice.h,
include/linux/ethtool.h, include/linux/phy.h,
include/linux/sk buff.h

» And of course, drivers/net/ for several examples of drivers

» Driver code templates in the kernel sources:
drivers/usb/usb-skeleton.c
drivers/net/isa-skeleton.c
drivers/net/pci-skeleton.c

drivers/pci/hotplug/pcihp skeleton.c
27

» Implement a working network
driver for the MACB Ethernet
controller of the AT91SAM9263
CPU

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

