

<u>Higher Maths Formula List</u>

Exponential & Logarithmic Functions

 $log_{a} x + log_{a} y = log_{a}(xy)$ $log_{a} x - log_{a} y = log_{a}(\frac{x}{y})$ $log_{a} x^{n} = n log_{a} x$ $log_{a} a = 1$ $log_{a} 1 = 0$

Trigonometry

Trigonometric exact values for common angles in degrees

Angle	0	30°	45°	60°	90°
mgie	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	No value

The values in the above table are generated from these triangles

Degrees	30°	45°	60°	90°	120°	150°	180°
Radians	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π

Degrees	180°	210°	240°	270°	300°	330°	360°
Radians	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π

The Addition Formulas

- sin(x + a) = sin x cos a + cos x sin a
- sin(x-a) = sin x cos a cos x sin a
- $\cos (x + a) = \cos x \cos a \sin x \sin a$
- cos (x a) = cos x cos a + sin x sin a

The Double Angle Formulas

sin 2A = 2sin A cos A $cos 2A = cos^{2}A - sin^{2}A$ $cos 2A = 2cos^{2}A - 1$ $cos 2A = 1 - 2sin^{2}A$

Trigonometric Identities

 $sin^2 x + cos^2 x = 1$ $\frac{sin x}{cos x} = tan x$

Vectors

For the vector $\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, the magnitude of \underline{a} , written $|\underline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

For the vectors $\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\underline{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ the scalar product of $\underline{a} \& \underline{b}$, written $\underline{a} \cdot \underline{b}$, is given by: $\underline{a} \cdot \underline{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ and $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos\theta$ where θ is the angle between the positive direction of $\underline{a} \& \underline{b}$

Quadratic Functions

For the quadratic function $ax^2 + bx + c$ the discriminant is defined by $b^2 - 4ac$.

If $b^2 - 4ac < 0$ the quadratic function has no real roots If $b^2 - 4ac = 0$ the quadratic function has one real root If $b^2 - 4ac > 0$ the quadratic function has two real roots

Note that one real root is sometimes referred to as *equal* roots.

\sim

Differentiation

The Chain Rule

To differentiate the function $y = (ax + b)^n$ we use the chain rule.

 $\frac{dy}{dx} = na(ax+b)^{n-1}$

Trigonometric Functions

f(x)	f'(x)
sin ax	a cos ax
cos ax	−a sin ax

Rates of Change

Let s(t) be a function which gives distance, d, at time t, called <u>displacement</u>.

Then V(t) = s'(t) i.e. <u>velocity</u> is the derivative of displacement

And A(t) = V'(t) i.e. <u>acceleration</u> is the derivative of velocity

Stationary Points

Stationary points occur where f'(x) = 0 or $\frac{dy}{dx} = 0$ Stationary points can be a <u>minimum turning point</u>, <u>maximum turning point</u>, or less commonly a <u>point of inflection</u>.

mymathsguy.com

Integration

To integrate the function $y = (ax + b)^n$ we use the reverse chain rule.

$$\int (ax+b)^n \, dx = \frac{(ax+b)^{n+1}}{(n+1) \cdot a} + c$$

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax$
cos ax	$\frac{1}{a}$ sin ax

For the curve y = f(x) the area between the curve, the *x*-axis and the limits *a* & *b* is given by

$$Area = \int_{a}^{b} f(x) \, dx$$

The area between two curves, f(x) & g(x), is given by $\int_a^b (g(x) - f(x)) dx$, where g(x) is the <u>upper</u> function.

The formula for the area between curves can be written as

Area between curves = $\int_{a}^{b} (upper function - lower function) dx$

Straight Lines

The equation of a straight line is given by y = mx + c, where m is the gradient and c is the y-intercept.

An alternative form of the equation of a straight line is y - b = m(x - a), where *m* is the gradient and (a, b) is any point on the line.

Recurrence Relations

A general form of a recurrence relation is $u_{n+1} = au_n + b$.

The sequence generated by the recurrence relation $u_{n+1} = au_n + b$ <u>converges</u> to a <u>limit</u> if -1 < a < 1 otherwise the sequence <u>diverges</u> i.e. has no limit.

The limit of the sequence generated by $u_{n+1} = au_n + b$ is given by $L = \frac{b}{1-a}$

<u>Circles</u>

The circle with centre (a, b) and radius r is defined by $(x - a)^2 + (y - b)^2 = r^2$ A special case is the circle centre at the origin (0, 0) and radius r which has equation $x^2 + y^2 = r^2$

The general equation of a circle with centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ is $x^2 + y^2 + 2gx + 2fy + c = 0$