Higher Maths Formula List

Exponential \& Logarithmic Functions

$\log _{a} x+\log _{a} y=\log _{a}(x y)$
$\log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right)$
$\log _{a} x^{n}=n \log _{a} x$
$\log _{a} a=1$
$\log _{a} 1=0$

Trigonometry

Trigonometric exact values for common angles in degrees

Angle	0	30°	45°	60°	90°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	No value

The values in the above table are generated from these triangles

Degrees	30°	45°	60°	90°	120°	150°	180°
Radians	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π

Degrees	180°	210°	240°	270°	300°	330°	360°
Radians	π	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$	2π

The Addition Formulas

$\sin (x+a)=\sin x \cos a+\cos x \sin a$
$\sin (x-a)=\sin x \cos a-\cos x \sin a$
$\cos (x+a)=\cos x \cos a-\sin x \sin a$
$\cos (x-a)=\cos x \cos a+\sin x \sin a$

The Double Angle Formulas

$\sin 2 A=2 \sin A \cos A$
$\cos 2 A=\cos ^{2} A-\sin ^{2} A$
$\cos 2 A=2 \cos ^{2} A-1$
$\cos 2 A=1-2 \sin ^{2} A$

Trigonometric Identities

$\sin ^{2} x+\cos ^{2} x=1$

$$
\frac{\sin x}{\cos x}=\tan x
$$

Vectors

For the vector $\underline{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$, the magnitude of \underline{a}, written $|\underline{a}|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}}$

For the vectors $\underline{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ and $\underline{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ the scalar product of $\underline{a} \& \underline{b}$, written
$\underline{a} \cdot \underline{b}$, is given by: $\underline{a} \cdot \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ and $\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta$
where θ is the angle between the positive direction of $\underline{a} \& \underline{b}$

Quadratic Functions

For the quadratic function $a x^{2}+b x+c$ the discriminant is defined by $b^{2}-4 a c$.

If $b^{2}-4 a c<0$ the quadratic function has no real roots
If $b^{2}-4 a c=0$ the quadratic function has one real root
If $b^{2}-4 a c>0$ the quadratic function has two real roots

Note that one real root is sometimes referred to as equal roots.

Differentiation

The Chain Rule

To differentiate the function $y=(a x+b)^{n}$ we use the chain rule.
$\frac{d y}{d x}=n a(a x+b)^{n-1}$

Trigonometric Functions

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Rates of Change

Let $s(t)$ be a function which gives distance, d, at time t, called displacement.

Then $V(t)=s^{\prime}(t)$
i.e. velocity is the derivative of displacement

And $A(t)=V^{\prime}(t) \quad$ i.e. acceleration is the derivative of velocity

Stationary Points

Stationary points occur where $f^{\prime}(x)=0$ or $\frac{d y}{d x}=0$
Stationary points can be a minimum turning point, maximum turning point, or less commonly a point of inflection.

Integration

To integrate the function $y=(a x+b)^{n}$ we use the reverse chain rule.
$\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{(n+1) \cdot a}+c$

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x$
$\cos a x$	$\frac{1}{a} \sin a x$

For the curve $y=f(x)$ the area between the curve, the x-axis and the limits $a \& b$ is given by

$$
\text { Area }=\int_{a}^{b} f(x) d x
$$

The area between two curves, $f(x) \& g(x)$, is given by $\int_{a}^{b}(g(x)-f(x)) d x$, where $g(x)$ is the upper function.

The formula for the area between curves can be written as
Area between curves $=\int_{a}^{b}$ (upper function - lower function) $d x$

Straight Lines

The equation of a straight line is given by $y=m x+c$, where m is the gradient and c is the y-intercept.

An alternative form of the equation of a straight line is $y-b=m(x-a)$, where m is the gradient and (a, b) is any point on the line.

Recurrence Relations

A general form of a recurrence relation is $u_{n+1}=a u_{n}+b$.

The sequence generated by the recurrence relation $u_{n+1}=a u_{n}+b$ converges to a limit if $-1<a<1$ otherwise the sequence diverges i.e. has no limit.

The limit of the sequence generated by $u_{n+1}=a u_{n}+b$ is given by $L=\frac{b}{1-a}$

Circles

The circle with centre (a, b) and radius r is defined by $(x-a)^{2}+(y-b)^{2}=r^{2}$ A special case is the circle centre at the origin $(0,0)$ and radius r which has equation $x^{2}+y^{2}=r^{2}$

The general equation of a circle with centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$ is $x^{2}+y^{2}+2 g x+2 f y+c=0$

