Mapping of Computer Science A to Think Java

This document is an extended version of the *Topic Outline* from the *AP Computer Science A Course Description*, © 2014 The College Board. Additions are shown in **bold green text**. The original version is here: <u>https://apstudent.collegeboard.org/apcourse/ap-computer-science-a</u>

Following is an outline of the major topics considered for the AP Computer Science A Exam. This outline is intended to define the scope of the course, but not the sequence.

I. Object-Oriented Program Design

The overall goal for designing a piece of software (a computer program) is to correctly solve the given problem. At the same time, this goal should encompass specifying and designing a program that is understandable, and can be adapted to changing circumstances. The design process needs to be based on a thorough understanding of the problem to be solved.

- A. Program and Class Design
 - 1. Problem analysis
 - 2. Data abstraction and encapsulation
 - 3. Class specifications, interface specifications, relationships ("is-a," "has-a"), and extension using inheritance
 - 4. Code reuse
 - 5. Data representation and algorithms
 - 6. Functional decomposition

Implementation techniques

Section 11.8-9, 14.6 Section 11.1, 12.1 Chapter 11 n/a Section 14.7 Section 14.3 Section 7.4, 14.5 Chapter 12-14 Section 6.3, 13.2

II. Program Implementation

A.

B.

Part of the problem-solving process is the statement of solutions in a precise form that invites review and analysis. The implementation of solutions in the Java programming language reinforces concepts, allows potential solutions to be tested, and encourages discussion of solutions and alternatives.

P	rementation teeninqueb	
1.	Top-down	Section 13.2, 14.5
2.	Bottom-up	Section 14.6
3.	Object-oriented	Section 10.5, 14.7
4.	Encapsulation and information hiding	Section 11.1, 12.5
5.	Procedural abstraction	Section 7.3-4, 12.2
Prog	gramming constructs	
1.	Primitive types vs. reference types	Chapter 8-11
2.	Declaration	_
	a. Constants	Section 3.5, 7.2
	b. Variables	Chapter 2
	c. Methods and parameters	Section 4.3, 4.5-6
	d. Classes	Chapter 11-14
	e. Interfaces	n/a

3.	Text output using System.out.print and println	Section 1.4-5
4.	Control	
	a. Method call	Section 4.1-2
	b. Sequential execution	Section 4.4
	c. Conditional execution	Section 5.3-4
	d. Iteration	Section 7.1, 7.5
	e. Recursion	Section 5.8-10, 6.7
5.	Expression evaluation	
	a. Numeric expressions	Section 2.5, 2.9
	b. String expressions	Section 2.8, 9.3-6
	c. Boolean expressions, short-circuit, De Morgan	Section 5.1-3
Java	library classes and interfaces included in the AP Java	ı Subset
Obje	ect	Section 14.3
Integ	ger	Section 9.8
Doul	ble	Section 9.8
Strin	ıg	Chapter 9
Matl	h	Chapter 4-7
List		n/a
Arra	yList	Section 14.1-2

III. Program Analysis

C.

The analysis of programs includes examining and testing programs to determine whether they correctly meet their specifications. It also includes the analysis of programs or algorithms in order to understand their time and space requirements when applied to different data sets.

A.	Testing			
	1. Development of appropriate test cases,	Section 6.2-3		
	including boundary cases	n/a		
	2. Unit testing	Section A.7		
	3. Integration testing	Section A.4		
B.	Debugging			
	1. Error categories: compile-time, run-time, logic	Section 2.10		
	2. Error identification and correction	Appendix C		
	3. Techniques such as using a debugger,	Section A.6		
	adding extra output statements,	Section 12.9		
	or hand-tracing code.	Section 4.7, 5.9, 8.2, 10.6		
C.	Runtime exceptions			
	ArithmeticException	Section 2.10, C.2		
	IllegalArgumentException	n/a		
	IndexOutOfBoundsException	Section 8.2, 9.3, C.2		
	NullPointerException	Section 10.7, 12.6, C.2		
D.	Program correctness			
	1. Pre- and post-conditions	n/a		
	2. Assertions	Section A.7		

E.	Algorithm Analysis		
	1. Statement execution counts	Section 8.8-9, 12.7	
	2. Informal running time comparison	Section 13.4	
F.	Numerical representations of integers		
	1. Non-negative integers in different bases	Section 5.10	
	2. Implications of finite integer bounds	Section 4.1	

IV. Standard Data Structures

Data structures are used to represent information within a program. Abstraction is an important theme in the development and application of data structures.

- A. Primitive data types (int, boolean, double)
- B. Strings
- C. Classes
- D. Lists
- E. Arrays (1-dimensional and 2-dimensional)

V. Standard Operations and Algorithms

Standard algorithms serve as examples of good solutions to standard problems. Many are intertwined with standard data structures. These algorithms provide examples for analysis of program efficiency.

Section 2.1, 2.6, 5.1

Chapter 2, 9

Section 11.1

Chapter 8

Section 14.1-2

A.	Operations on data structures		
	1.	Traversals	Section 8.6, 9.3
	2.	Insertions	n/a
	3.	Deletions	n/a
B.	Sear	Searching	
	1.	Sequential	Section 12.7
	2.	Binary	Section 12.8
C.	Sort	ing	
	1.	Selection	Section 13.3
	2.	Insertion	Section 13.9
	3.	Mergesort	Section 13.4-7

VI. Computing in Context

An awareness of the ethical and social implications of computing systems is necessary for the study of computer science. These topics need not be covered in detail, but should be considered throughout the course.

A.	System reliability	n/a
В.	Privacy	n/a
C.	Legal issues and intellectual property	n/a
D.	Social and ethical ramifications of computer use	n/a

VII. Other Topics in the AP Java Subset

The AP Java subset is intended to outline the features of Java that may appear on the AP Computer Science A Exam. The AP Java subset is NOT intended as an overall prescription for computer science courses — the subset itself will need to be supplemented in order to address all topics in a typical introductory curriculum.

A .	Comments	Section 1.4, 4.9
B .	Concatenation	Section 2.8
С.	Escape Sequences	Section 1.6
D.	Numeric casts	Section 3.7
E.	Object Comparison	Section 11.7, 12.4
F.	Packages (import)	Section 3.2
G.	Visibility	Section 11.4, 11.9

VIII. Topics in Think Java but not in AP

The following sections of Think Java present material that is not part of the AP Java Subset and/or Topic Outline above.

* State/stack diagrams	Section 2.3, 4.7
* Console input (Scanner)	Section 3.2, 3.10
* Formatted output (printf)	Section 3.6
* Using the Javadoc tool	Section 4.9
* Parsing/validating input	Section 5.7, 9.8
* Do-while, break, continue	Section 7.6-7
* Using java.util.Arrays	Section 8.3-4
* Command-line arguments	Section 9.9
* UML class diagrams	Section 10.9, 14.7
* Java library source code	Section 10.10
* Explicit use of "this"	Chapters 11-13
* DrJava, Checkstyle, JUnit	Appendix A
* Java 2D graphics library	Appendix B