0 3 . 1		quation, including st dard enthalpy of for			reaction w	rith enthalpy	change equal [1 mark]
0 3 . 2	Explain why CF ₄ has a bond angle of 109.5°. [2 marks]						
0 3 . 3	Table 2 gi	ves some values of	standard e	enthalpies o	of formatio	on (Δ _f H ^e).	
		Substance	F ₂ (g)	CF₄(g)	HF(g)		
		Δ _f H ^Θ / kJ mol ⁻¹	0	-680	-269		
	Use this va	Ipy change for the for $C_2H_6(g) + 7F_2(g)$ alue and the standa enthalpy of formation	$g) \longrightarrow f$	2CF₄(g) + les of forma	6HF(g)		culate the [3 marks]

Standard enthalpy of formation of $C_2H_6(g) =$ _____kJ mol⁻¹

0 3 · 4 Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in **Table 3**.

Table 3

Bond	C–H	C–F	H–F
Mean bond enthalpy / kJ mol ⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F–F bond .

Is the student correct? Justify your answer with a calculation using these data.

[4 marks]

Turn over for the next question

Barcode Typesetter code Turn over ▶