Larry L. Peterson and Bruce S. Davie

Computer
Networks

a systems approaclﬂ




In Praise of Computer Networks: A Systems
Approach Fifth Edition

I have known and used this book for years and I always found it very valu-
able as a textbook for teaching computer networks as well as a reference
book for networking professionals. This Fifth Edition maintains the core
value of former editions and brings the clarity of explanation of network
protocols in the introduction of the most up-to-date techniques, technolo-
gies and requirements of networking. Beyond describing the details of past
and current networks, this book successfully motivates the curiosity, and
hopefully new research, for the networks of the future.
Stefano Basagni
Northeastern University

Peterson and Davie have written an outstanding book for the computer

networking world. It is a well-organized book that features a very helpful
“big picture” systems approach. This book is a must have!

Yonshik Choi

Illinois Institute of Technology

The Fifth Edition of Computer Networks: A Systems Approach is well-
suited for the serious student of computer networks, though it remains
accessible to the more casual reader as well. The authors’ enthusiasm for
their subject is evident throughout; they have a thorough and current grasp
of the interesting problems of the field. They explain not only how vari-
ous protocols work, but also why they work the way they do, and even why
certain protocols are the important and interesting ones. The book is also
filled with little touches of historical background, from the main text to
the “Where Are They Now” sidebars to the papers described in each chap-
ter’s “Further Reading” section—these give the reader a perspective on how
things came to be the way they are. All in all, this book provides a lucid and
literate introduction to networking.
Peter Dordal
Loyola University Chicago

I have used Computer Networks: A Systems Approach for over five years in
an introductory course on communications networks aimed at upper-level
undergraduates and first-year Masters students. I have gone through sev-
eral editions and over the years the book has kept what from the beginning



had been its main strength, namely, that it not only describes the ‘how,” but

also the ‘why’ and equally important, the ‘why not’ of things. It is a book

that builds engineering intuition, and in this day and age of fast-paced

technology changes, this is critical to develop a student’s ability to make
informed decisions on how to design or select the next generation systems.

Roch Guerin

University of Pennsylvania

This book is an outstanding introduction to computer networks that is
clear, comprehensive, and chock-full of examples. Peterson and Davie have
a gift for boiling networking down to simple and manageable concepts
without compromising technical rigor. Computer Networks: A Systems
Approach strikes an excellent balance between the principles underlying
network architecture design and the applications built on top. It should
prove invaluable to students and teachers of advanced undergraduate and
graduate networking courses.
Arvind Krishnamurthy
University of Washington

Computer Networks: A Systems Approach has always been one of the best
resources available to gain an in-depth understanding of computer net-
works. The latest edition covers recent developments in the field. Starting
with an overview in Chapter 1, the authors systematically explain the basic
building blocks of networks. Both hardware and software concepts are pre-
sented. The material is capped with a final chapter on applications, which
brings all the concepts together. Optional advanced topics are placed in a
separate chapter. The textbook also contains a set of exercises of varying
difficulty at the end of each chapter which ensure that the students have
mastered the material presented.
Karkal Prabhu
Drexel University

Peterson and Davie provide a detailed yet clear description of the Internet

protocols at all layers. Students will find many study aids that will help

them gain a full understanding of the technology that is transforming our
society. The book gets better with each edition.

Jean Walrand

University of California at Berkeley



Fifth Editio

Com

uter Networl(s




Recommended Reading List

For students interested in furthering their understanding of Computer
Networking, the content in the following books supplements this
textbook:

Network Analysis, Architecture, and Design, 3rd Edition
By James D. McCabe
ISBN: 9780123704801

The lllustrated Network

How TCP/IP Works in a Modern Network
By Walter Goralski

ISBN: 9780123745415

Interconnecting Smart Objects with IP
The Next Internet

By Jean-Philippe Vasseur and Adam Dunkels
ISBN: 9780123751652

Network Quality of Service Know It All
Edited by Adrian Farrel
ISBN: 9780123745972

Optical Networks, 3rd Edition

A Practical Perspective

By Rajiv Ramaswami, Kumar Sivarajan and Galen Sasaki
ISBN: 9780123740922

Broadband Cable Access Networks
The HFC Plant

By David Large and James Farmer
ISBN: 9780123744012

Deploying QoS for Cisco IP and Next Generation Networks
The Definitive Guide

By Vinod Joseph and Brett Chapman

ISBN: 9780123744616

MK

MORGAN KAUFMANN

mkp.com



Fifth Edition
Computer Networks
_ systems approach

Larry L. Peterson and Bruce S. Davie

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD e PARIS » SAN DIEGO M<
SAN FRANCISCO * SINGAPORE ¢ SYDNEY ¢ TOKYO

MORGAN KAUFMANN

LSEVIER Morgan Kaufmann Publishers is an imprint of Elsevier




Acquiring Editor: Rick Adams
Development Editor: Nate McFadden
Project Manager: Paul Gottehrer
Designer: Dennis Schaefer

Morgan Kaufmann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

© 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies
and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing
Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than
as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods or professional practices, may become necessary. Practitioners and
researchers must always rely on their own experience and knowledge in evaluating and using any information or
methods described herein. In using such information or methods they should be mindful of their own safety and the
safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Peterson, Larry L.
Computer networks : a systems approach / Larry L. Peterson and Bruce S. Davie. - 5th ed.
p.- cm. — (The Morgan Kaufmann series in networking)
Includes bibliographical references.
ISBN 978-0-12-385059-1 (hardback)
1. Computer networks. I. Davie, Bruce S. IL. Title.
TK5105.5.P479 2011
004.6-dc22
2011000786

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-385059-1

For information on all Morgan Kaufmann publications
visit our website at www.mkp.com

Typeset by: diacriTech, India

Printed in the United States of America
111213141516 1098765432

Working together to grow
libraries in developing countries

WWW.C[SCViCI'.COm | WWW.bOOkaid.OI’g | WWW.Sabl'C.OI'g

ELSEVIER BOOKAID Qe Foundation



To Lee Peterson and Robert Davie



This page intentionally left blank



I:O rewo I"CI

Once again, this now-classic textbook has been revised to keep it
up-to-date with our evolving field. While the Internet and its proto-
cols now dominate networking everywhere, we see continued evolution
in the technology used to support the Internet, with switching at “layer 2”
providing rich functionality and powerful tools for network management.
The previous edition dealt with switching and routing in two chapters,
but a presentation based on layers is not always the best way to convey
the essentials of the material, since what we call switching and routing
actually play similar and complementary roles. This edition of the book
looks at these topics in an integrated way, which brings out their func-
tional similarities and differences. More advanced topics in routing have
been moved to a second chapter that can be skipped, depending on the
emphasis and level of the class.

I have never been a fan of teaching networking based on a purely layered
approach, asmyforeword to the firstedition indicated (we've reprinted itin
this edition just for fun.) Some key issues in networking, including security
and performance, cannot be solved by assigning them to one layer—there
cannot be a “performance” layer. These sorts of topics are both critical and
cross-cutting, and the organization of this book continues to treat topics,
as well as layers. The organization of this book reflects a great deal of expe-
rience using it as a classroom textbook, and as well a preference for an
approach that brings out fundamentals as well as current practice.

Some moribund technologies are now missing or minimized, including
token ring (one of my old favorites, but clearly it was time to go) and ATM.
This edition recognizes that we need to pay more attention to application
design, and not just packet forwarding. Wireless and mobility gets more
attention as well.

The authors, once again, have worked hard to produce a revision that
conveys the essentials of the field in a way that is pedagogically effective.
I am pleased to say that I think it is better than ever.

David Clark
November, 2010



This page intentionally left blank



Foreword to the
First Edition

he term spaghetti code is universally understood as an insult. All good

computer scientists worship the god of modularity, since modularity
brings many benefits, including the all-powerful benefit of not having to
understand all parts of a problem at the same time in order to solve it.
Modularity thus plays a role in presenting ideas in a book, as well as in
writing code. If a book’s material is organized effectively—modularly—
the reader can start at the beginning and actually make it to the end.

The field of network protocols is perhaps unique in that the “proper”
modularity has been handed down to us in the form of an international
standard: the seven-layer reference model of network protocols from
the ISO. This model, which reflects a layered approach to modularity, is
almost universally used as a starting point for discussions of protocol
organization, whether the design in question conforms to the model or
deviates from it.

It seems obvious to organize a networking book around this layered
model. However, there is a peril to doing so, because the OSI model
is not really successful at organizing the core concepts of networking.
Such basic requirements as reliability, flow control, or security can be
addressed at most, if not all, of the OSI layers. This fact has led to
great confusion in trying to understand the reference model. At times it
even requires a suspension of disbelief. Indeed, a book organized strictly
according to a layered model has some of the attributes of spaghetti code.

Which brings us to this book. Peterson and Davie follow the tradi-
tional layered model, but they do not pretend that this model actually
helps in the understanding of the big issues in networking. Instead, the
authors organize discussion of fundamental concepts in a way that is
independent of layering. Thus, after reading the book, readers will under-
stand flow control, congestion control, reliability enhancement, data
representation, and synchronization, and will separately understand the

Xi



Foreword to the First Edition

implications of addressing these issues in one or another of the traditional
layers.

This is a timely book. It looks at the important protocols in use today—
especially the Internet protocols. Peterson and Davie have a long involve-
ment in and much experience with the Internet. Thus their book reflects
not just the theoretical issues in protocol design, but the real factors that
matter in practice. The book looks at some of the protocols that are just
emerging now, so the reader can be assured of an up-to-date perspec-
tive. But most importantly, the discussion of basic issues is presented in
a way that derives from the fundamental nature of the problem, not the
constraints of the layered reference model or the details of today’s proto-
cols. In this regard, what this book presents is both timely and timeless.
The combination of real-world relevance, current examples, and careful
explanation of fundamentals makes this book unique.

David D. Clark
Massachusetts Institute of Technology



preface

hen the first edition of this book was published in 1996, it was a

novelty to be able to order merchandise on the Internet, and a com-
pany that advertised its domain name was considered cutting edge. The
primary way for a household to connect to the Internet was via a dial-up
modem. Today, Internet commerce is a fact of life, and “.com” stocks have
gone through an entire boom and bust cycle. Wireless networks are every-
where and new Internet-capable devices such as smartphones and tablets
appear on the market at a dizzying pace. It seems the only predictable
thing about the Internet is constant change.

Despite these changes, the question we asked in the first edition is just
as valid today: What are the underlying concepts and technologies that
make the Internet work? The answer is that much of the TCP/IP architec-
ture continues to function just as was envisioned by its creators more than
30 years ago. This isn’t to say that the Internet architecture is uninterest-
ing; quite the contrary. Understanding the design principles that underly
an architecture that has not only survived but fostered the kind of growth
and change that the Internet has seen over the past 3 decades is precisely
the right place to start. Like the previous editions, the Fifth Edition makes
the “why” of the Internet architecture its cornerstone.

Audience

Our intent is that the book should serve as the text for a comprehensive
networking class, at either the graduate or upper-division undergradu-
ate level. We also believe that the book’s focus on core concepts should
be appealing to industry professionals who are retraining for network-
related assignments, as well as current network practitioners who want
to understand the “whys” behind the protocols they work with every day
and to see the big picture of networking.

Itis our experience that both students and professionals learning about
networks for the first time often have the impression that network pro-
tocols are some sort of edict handed down from on high, and that their
job is to learn as many TLAs (Three-Letter Acronyms) as possible. In



Xiv

Preface

fact, protocols are the building blocks of a complex system developed
through the application of engineering design principles. Moreover, they
are constantly being refined, extended, and replaced based on real-world
experience. With this in mind, our goal with this book is to do more than
survey the protocols in use today. Instead, we explain the underlying
principles of sound network design. We feel that this grasp of under-
lying principles is the best tool for handling the rate of change in the
networking field.

We also recognize that there are many different ways that people
approach networks. In contrast to when we wrote our first edition, most
people will pick up this book having considerable experience as users of
networks. Some will be looking to become designers of networking prod-
ucts or protocols. Others may be interested in managing networks, while
an increasingly large number will be current or prospective application
developers for networked devices. Our focus has traditionally been on
the designers of future products and protocols, and that continues to be
the case, but in this edition we have tried to address the perspectives of
network managers and application developers as well.

Changes in the Fifth Edition

Even though our focus is on the underlying principles of networking, we
illustrate these principles using examples from today’s working Internet.
Therefore, we added a significant amount of new material to track many
of the important recent advances in networking. We also deleted, reorga-
nized, and changed the focus of existing material to reflect changes that
have taken place over the past decade.

Perhaps the most significant change we have noticed since writing the
first edition is that almost every reader is now familiar with networked
applications such as the World Wide Web and email. For this reason, we
have increased the focus on applications, starting in the first chapter. We
use applications as the motivation for the study of networking, and to
derive a set of requirements that a useful network must meet if it is to
support both current and future applications on a global scale. However,
we retain the problem-solving approach of previous editions that starts
with the problem of interconnecting hosts and works its way up the lay-
ers to conclude with a detailed examination of application layer issues.
We believe it is important to make the topics covered in the book rel-
evant by starting with applications and their needs. At the same time,



we feel that higher layer issues, such as application layer and transport
layer protocols, are best understood after the basic problems of connect-
ing hosts and switching packets have been explained. That said, we have
made it possible to approach the material in a more top-down manner, as
described below.

As in prior editions, we have added or increased coverage of impor-
tant new topics, and brought other topics up to date. Major new or
substantially updated topics in this edition are:

m Updated material on wireless technology, particularly the various
flavors of 802.11 (Wi-Fi) as well as cellular wireless technologies
including the third generation (3G) and emerging 4G standards.

m Updated coverage of congestion control mechanisms, particularly
for high bandwidth-delay product networks and wireless networks.

m Updated material on Web Services, including the SOAP and REST
(Representational State Transfer) architectures.

m Expanded and updated coverage of interdomain routing and the
border gateway protocol (BGP).

= Expanded coverage on protocols for multimedia applications such
as voice over IP (VOIP) and video streaming.

We also reduced coverage of some topics that are less relevant today.
Protocols moving into the “historic” category for this edition include
asynchronous transfer mode (ATM) and token rings.

One of the most significant changes in this edition is the separation of
material into “introductory” and “advanced” sections. We wanted to make
the book more accessible to people new to networking technologies and
protocols, without giving up the advanced material required for upper-
level classes. The most apparent effect of this change is that Chapter 3
now covers the basics of switching, routing, and Internetworking, while
Chapter 4 covers the more advanced routing topics such as BGP, IP version
6, and multicast. Similarly, transport protocol fundamentals are covered
in Chapter 5 with the more advanced material such as TCP congestion
control algorithms appearing in Chapter 6. We believe this will make it pos-
sible for readers new to the field to grasp important foundational concepts
without getting overwhelmed by more complex topics.

As in the last edition, we have included a number of “where are they

now?” sidebars. These short discussions, updated for this edition, focus
on the success and failure of protocols in the real world. Sometimes they

Preface

Xv



xvi

Preface

describe a protocol that most people have written off but which is actually
enjoying unheralded success; other times they trace the fate of a proto-
col that failed to thrive over the long run. The goal of these sidebars is to
make the material relevant by showing how technologies have fared in the
competitive world of networking.

Approach

For an area that’s as dynamic and changing as computer networks, the
most important thing a textbook can offer is perspective—to distinguish
between what’s important and what’s not, and between what’s lasting
and what’s superficial. Based on our experience over the past 25-plus
years doing research that has led to new networking technology, teaching
undergraduate and graduate students about the latest trends in net-
working, and delivering advanced networking products to market, we
have developed a perspective—which we call the systems approach—
that forms the soul of this book. The systems approach has several
implications:

m First Principles. Rather than accept existing artifacts as gospel, we
start with first principles and walk you through the thought process
that led to today’s networks. This allows us to explain why
networks look like they do. It is our experience that once you
understand the underlying concepts, any new protocol that
you are confronted with will be relatively easy to digest.

m Non-layerist. Although the material is loosely organized around the
traditional network layers, starting at the bottom and moving up
the protocol stack, we do not adopt a rigidly layerist approach.
Many topics—congestion control and security are good
examples—have implications up and down the hierarchy, and so
we discuss them outside the traditional layered model. Similarly,
routers and switches have so much in common (and are often
combined as single products) that we discuss them in the same
chapter. In short, we believe layering makes a good servant but a
poor master; it’s more often useful to take an end-to-end
perspective.

m Real-world examples. Rather than explain how protocols work
in the abstract, we use the most important protocols in use
today—most of them from the TCP/IP Internet—to illustrate how
networks work in practice. This allows us to include real-world
experiences in the discussion.



Preface

m Software. Although at the lowest levels networks are constructed
from commodity hardware that can be bought from computer
vendors and communication services that can be leased from the
phone company, it is the software that allows networks to provide
new services and adapt quickly to changing circumstances. It is for
this reason that we emphasize how network software is
implemented, rather than stopping with a description of the
abstract algorithms involved. We also include code segments taken
from a working protocol stack to illustrate how you might
implement certain protocols and algorithms.

m End-to-end focus. Networks are constructed from many
building-block pieces, and while it is necessary to be able to
abstract away uninteresting elements when solving a particular
problem, it is essential to understand how all the pieces fit together
to form a functioning network. We therefore spend considerable
time explaining the overall end-to-end behavior of networks, not
just the individual components, so that it is possible to understand
how a complete network operates, all the way from the application
to the hardware.

m Performance. The systems approach implies doing experimental
performance studies, and then using the data you gather both to
quantitatively analyze various design options and to guide you in
optimizing the implementation. This emphasis on empirical
analysis pervades the book.

m Design Principles. Networks are like other computer systems—for
example, operating systems, processor architectures, distributed
and parallel systems, and so on. They are all large and complex. To
help manage this complexity, system builders often draw on a
collection of design principles. We highlight these design principles
as they are introduced throughout the book, illustrated, of course,
with examples from computer networks.

Pedagogy and Features

The Fifth Edition retains the key pedagogical features from prior editions,
which we encourage you to take advantage of:

m Problem statements. At the start of each chapter, we describe
a problem that identifies the next set of issues that must be
addressed in the design of a network. This statement introduces
and motivates the issues to be explored in the chapter.



XV

Preface

Shaded sidebars. Throughout the text, shaded sidebars elaborate
on the topic being discussed or introduce a related advanced topic.
In many cases, these sidebars relate real-world anecdotes about
networking.

Where-are-they-now sidebars. These new elements, a distinctively
formatted style of sidebar, trace the success and failure of protocols
in real-world deployment.

Highlighted paragraphs. These paragraphs summarize an
important nugget of information that we want you to take away
from the discussion, such as a widely applicable system design
principle.

Real protocols. Even though the book’s focus is on core concepts
rather than existing protocol specifications, real protocols are used
to illustrate most of the important ideas. As a result, the book can
be used as a source of reference for many protocols. To help you
find the descriptions of the protocols, each applicable section
heading parenthetically identifies the protocols described in that
section. For example, Section 5.2, which describes the principles of
reliable end-to-end protocols, provides a detailed description of
TCP, the canonical example of such a protocol.

What'’s Next? discussions. We conclude the main body of each
chapter with an important issue that is currently unfolding in the
research community, the commercial world, or society as a whole.
We have found that discussing these forward-looking issues helps
to make the subject of networking more relevant and exciting.

Recommended reading. These highly selective lists appear at the
end of each chapter. Each list generally contains the seminal
papers on the topics just discussed. We strongly recommend that
advanced readers (e.g., graduate students) study the papers in this
reading list to supplement the material covered in the chapter.

Road Map and Course Use

The book is organized as follows:

Chapter 1 introduces the set of core ideas that are used throughout
the rest of the text. Motivated by wide-spread applications, it
discusses what goes into a network architecture, provides an



Preface

introduction to protocol implementation issues, and defines the
quantitative performance metrics that often drive network design.

Chapter 2 surveys the many ways that a user can get connected to a
larger network such as the Internet, thus introducing the concept
of links. It also describes many of the issues that all link-level
protocols must address, including encoding, framing, and error
detection. The most important link technologies today—Ethernet
and Wireless—are described here.

Chapter 3 introduces the basic concepts of switching and routing,
starting with the virtual circuit and datagram models. Bridging and
LAN switching are covered, followed by an introduction to
internetworking, including the Internet Protocol (IP) and routing
protocols. The chapter concludes by discussing a range of
hardware- and software-based approaches to building routers and
switches.

Chapter 4 covers advanced Internetworking topics. These include
multi-area routing protocols, interdomain routing and BGP, IP
version 6, multiprotocol label switching (MPLS) and multicast.

Chapter 5 moves up to the transport level, describing both the
Internet’s Transmission Control Protocol (TCP) and Remote
Procedure Call (RPC) used to build client-server applications in
detail. The Real-time Transport Protocol (RTP), which supports
multimedia applications, is also described.

Chapter 6 discusses congestion control and resource allocation.
The issues in this chapter cut across the link level (Chapter 2),
the network level (Chapters 3 and 4) and the transport level
(Chapter 5). Of particular note, this chapter describes how
congestion control works in TCP, and it introduces the
mechanisms used to provide quality of service in IP.

Chapter 7 considers the data sent through a network. This includes
both the problems of presentation formatting and data
compression. XML is covered here, and the compression section
includes explanations of how MPEG video compression and MP3
audio compression work.

Chapter 8 discusses network security, beginning with an overview
of cryptographic tools, the problems of key distribution, and a

XIX



XX

Preface

discussion of several authentication techniques using both public
and private keys. The main focus of this chapter is the building of
secure systems, using examples including Pretty Good Privacy
(PGP), Secure Shell (SSH), and the IP Security architecture (IPSEC).
Firewalls are also covered here.

m Chapter 9 describes a representative sample of network
applications, and the protocols they use, including traditional
applications like email and the Web, multimedia applications such
as IP telephony and video streaming, and overlay networks like
peer-to-peer file sharing and content distribution networks.
Infrastructure services—the Domain Name System (DNS) and
network management—are described. The Web Services
architectures for developing new application protocols are also
presented here.

For an undergraduate course, extra class time will most likely be
needed to help students digest the introductory material in the first
chapter, probably at the expense of the more advanced topics covered
in Chapters 4 and 6 through 8. Chapter 9 then returns to the popular
topic of network applications. An undergraduate class might reason-
ably skim the more advanced sections (e.g., Sections 5.3, 9.3.1, 9.3.2
and 9.2.2.)

In contrast, the instructor for a graduate course should be able to cover
the first chapter in only a lecture or two—with students studying the
material more carefully on their own—thereby freeing up additional class
time to cover Chapter 4 and the later chapters in depth.

For those of you using the book in self-study, we believe that the top-
ics we have selected cover the core of computer networking, and so we
recommend that the book be read sequentially, from front to back. In
addition, we have included a liberal supply of references to help you
locate supplementary material that is relevant to your specific areas of
interest, and we have included solutions to select exercises.

The book takes a unique approach to the topic of congestion control
by pulling all topics related to congestion control and resource allocation
together in a single place—Chapter 6. We do this because the problem
of congestion control cannot be solved at any one level, and we want
you to consider the various design options at the same time. (This is



Preface

consistent with our view that strict layering often obscures important

design trade-offs.) A more traditional treatment of congestion control is
possible, however, by studying Section 6.2 in the context of Chapter 3 and
Section 6.3 in the context of Chapter 5.

A Top-Down Pathway

Because most students today come to a networking class familiar with
networked applications, a number of classes take the application as their
starting point. While we do cover applications at a high level in Chapter 1,
it is not until Chapter 9 that application layer issues are discussed in
detail. Recognizing that some professors or readers may wish to follow
a more top-down ordering, we suggest the following as a possible way to
approach the material in this book.

Chapter 1. This describes applications and their requirements to
set the stage for the rest of the material.

Chapter 9. The sections on traditional applications (Section 9.1)
and multimedia applications (Section 9.2) will introduce readers
to the concepts of network protocols using the examples of
applications with which they are already familiar. Section 9.3.1
(DNS) could also be covered.

Section 7.2 could be covered next to explain how the data that is
generated by multimedia applications is encoded and compressed.

Chapter 5. Transport protocol basics can now be covered,
explaining how the data generated by the application layer
protocols can be reliably carried across a network.

Chapter 3. Switching, Internetworking, and Routing can be
understood as providing the infrastructure over which transport
protocols run.

Chapter 2. Finally, the issues of how data is actually encoded and

transmitted on physical media such as Ethernets and wireless links
can be covered.

Clearly we have skipped quite a few sections in this ordering. For
a more advanced course or comprehensive self-study, topics such as
resource allocation (Chapter 6), security (Chapter 8), and the advanced
topics in Chapter 4 could be added in towards the end. Security could

XXi



XX

Preface

be covered almost stand-alone, but all these advanced topics will make
most sense after IP and TCP have been covered in Chapters 3 and 5
respectively.

Note that the slides made available on our companion site include a
set that follows this top-down ordering in addition to the set that follows
the order of the book.

Exercises

Significant effort has gone into improving the exercises with each new
edition. In the Second Edition we greatly increased the number of prob-
lems and, based on class testing, dramatically improved their quality.
In the Third Edition we made two other important changes, which we
retained here:

m For those exercises that we felt are particularly challenging or
require special knowledge not provided in the book (e.g.

probability expertise) we have added an icon ﬁ to indicate the
extra level of difficulty

= In each chapter we added some extra representative exercises for
which worked solutions are provided in the back of the book. These
exercises, marked \/ , are intended to provide some help in
tackling the other exercises in the book.

In this edition we have added new exercises to reflect the updated
content.

The current set of exercises are of several different styles:

= Analytical exercises that ask the student to do simple algebraic

calculations that demonstrate their understanding of fundamental
relationships

m Design questions that ask the student to propose and evaluate
protocols for various circumstances

= Hands-on questions that ask the student to write a few lines of code
to test an idea or to experiment with an existing network utility

m Library research questions that ask the student to learn more about
a particular topic

Also, as described in more detail below, socket-based programming
assignments, as well as simulation labs, are available online.



Supplemental Materials and Online Resources

To assist instructors, we have prepared an instructor’s manual that
contains solutions to selected exercises. The manual is available from the
publisher.

Additional support materials, including lecture slides, figures from the
text, socket-based programming assignments, and sample exams and
programming assignments are available through the Morgan Kaufmann
Web site at http://mkp.com/computer-networks.

And finally, as with the Fourth Edition, a set of laboratory experi-
ments supplement the book. These labs, developed by Professor Emad
Aboelela from the University of Massachusetts Dartmouth, use simula-
tion to explore the behavior, scalability, and performance of protocols
covered in the book. Sections that discuss material covered by the lab-
oratory exercises are marked with the icon shown in the margin. The
simulations use the OPNET simulation toolset, which is available for free
to any one using Computer Networks in their course.

Acknowledgments

This book would not have been possible without the help of many peo-
ple. We would like to thank them for their efforts in improving the end
result. Before we do so, however, we should mention that we have done
our best to correct the mistakes that the reviewers have pointed out and
to accurately describe the protocols and mechanisms that our colleagues
have explained to us. We alone are responsible for any remaining errors.
If you should find any of these, please send an email to our publisher,
Morgan Kaufmann, at netbugsPD5e@mkp.com, and we will endeavor to
correct them in future printings of this book.

First, we would like to thank the many people who reviewed drafts of
all or parts of the manuscript. In addition to those who reviewed prior
editions, we wish to thank Peter Dordal, Stefano Basagni, Yonshik Choi,
Wenbing Zhao, Sarvesh Kulkarni, James Menth, and John Doyle (and one
anonymous reviewer) for their thorough reviews. Thanks also to Dina
Katabi and Hari Balakrishnan for their reviews of various sections. We also
wish to thank all those who provided feedback and input to help us decide
what to do in this edition.

Several members of the Network Systems Group at Princeton con-
tributed ideas, examples, corrections, data, and code to this book. In

Preface

XX



xxiv

Preface

T R

particular, we would like to thank Andy Bavier, Tammo Spalink, Mike
Wawrzoniak, Stephen Soltesz, and KyoungSoo Park. Thanks also to
Shankar M. Banik for developing the two comprehensive sets of slides to
accompany the book.

Third, we would like to thank our series editor, David Clark, as well as
all the people at Morgan Kaufmann who helped shepherd us through the
book-writing process. A special thanks is due to our original sponsoring
editor, Jennifer Young; our editor for this edition, Rick Adams; our devel-
opmental editor, Nate McFadden; assistant editor David Bevans; and our
production editor, Paul Gottehrer. Thanks also to the publisher at MKP,
Laura Colantoni, whose leadership inspired us to embark on this revision.




Contents

Foreword ix
Foreword to the First Edition xi
Preface xiii

1 Foundation

Problem: Building a Network 1
1.1 Applications 2
1.1.1 Classes of Applications 3
1.2 Requirements 6
1.2.1 Perspectives 7
1.2.2  Scalable Connectivity 8
1.2.3 Cost-Effective Resource Sharing 13
1.2.4 Support for Common Services 18
1.2.5 Manageability 23
1.3 Network Architecture 24
1.3.1 Layering and Protocols 24
1.3.2 Internet Architecture 33
1.4 Implementing Network Software 36
1.4.1 Application Programming Interface
(Sockets) 37
1.4.2 Example Application 40
1.5 Performance 44
1.5.1 Bandwidth and Latency 44
1.5.2 Delay x Bandwidth Product 48
1.5.3 High-Speed Networks 51
1.5.4 Application Performance Needs 53
1.6 Summary 55
What'’s Next: Cloud Computing 57
Further Reading 58
Exercises 60
2 Getting Connected
Problem: Connecting to a Network 71
2.1 Perspectives on Connecting 72
2.1.1 Classes of Links 75

XXV



XXVi

Contents

2.2
2.3

24

2.5

2.6

2.7

2.8

Encoding (NRZ, NRZI, Manchester, 4B/5B)
Framing

2.3.1 Byte-Oriented Protocols (BISYNC, PPP,
DDCMP)

2.3.2 Bit-Oriented Protocols (HDLC)
2.3.3 Clock-Based Framing (SONET)
Error Detection

2.4.1 Two-Dimensional Parity

2.4.2 Internet Checksum Algorithm
2.4.3 Cyclic Redundancy Check
Reliable Transmission

2.5.1 Stop-and-Wait

2.5.2 Sliding Window

2.5.3 Concurrent Logical Channels
Ethernet and Multiple Access Networks (802.3)
2.6.1 Physical Properties

2.6.2 Access Protocol

2.6.3 Experience with Ethernet
Wireless

2.7.1 802.11/Wi-Fi

2.7.2  Bluetooth®(802.15.1)

2.7.3 Cell Phone Technologies
Summary

What’s Next: “The Internet of Things”
Further Reading
Exercises

3

Internetworking

Problem: Not All Networks are Directly Connected

3.1

3.2

Switching and Bridging

3.1.1 Datagrams

3.1.2 Virtual Circuit Switching
3.1.3 Source Routing

3.1.4 Bridges and LAN Switches
Basic Internetworking (IP)

3.2.1 WhatIs an Internetwork?
3.2.2 Service Model

3.2.3 Global Addresses

3.2.4 Datagram Forwarding in IP
3.2.5 Subnetting and Classless Addressing

78
81

83
85
88
91
93
94
97
102
103
106
118
119
120
122
127
128
135
142
144
148
150
151
153

169
170
172
174
186
189
203
203
206
213
216
220



3.2.6 Address Translation (ARP)

3.2.7 Host Configuration (DHCP)

3.2.8 Error Reporting (ICMP)

3.2.9 Virtual Networks and Tunnels

3.3 Routing
3.3.1 Network as a Graph
3.3.2 Distance Vector (RIP)
3.3.3 Link State (OSPF)
3.3.4 Metrics
3.4 Implementation and Performance
3.4.1 Switch Basics
3.4.2 Ports
3.4.3 Fabrics
3.4.4 Router Implementation
3.5 Summary
What'’s Next: The Future Internet
Further Reading
Exercises

4 Advanced Internetworking

Problem: Scaling to Billions
4.1 The Global Internet
4.1.1 Routing Areas

4.1.2 Interdomain Routing (BGP)

4.1.3 IP Version 6 (IPv6)
4.2 Multicast
4.2.1 Multicast Addresses

4.2.2 Multicast Routing (DVMRP, PIM, MSDP)
4.3 Multiprotocol Label Switching (MPLS)
4.3.1 Destination-Based Forwarding

4.3.2 Explicit Routing

4.3.3 Virtual Private Networks and Tunnels

4.4 Routing among Mobile Devices

4.4.1 Challenges for Mobile Networking
4.4.2 Routing to Mobile Hosts (Mobile IP)

4.5 Summary

What’s Next: Deployment of IPv6
Further Reading

Exercises

228
231
235
235
240
242
243
252
262
266
267
270
273
277
280
281
282
284

307
308
310
313
324
338
340
341
354
355
362
364
369
369
372
379
380
381
382

(Contents

XXvii



xXxviii

Contents

5 End-to-End Protocols

Problem: Getting Process to Communicate
5.1 Simple Demultiplexer (UDP)
5.2 Reliable Byte Stream (TCP)

5.2.1 End-to-End Issues

5.2.2 Segment Format

5.2.3 Connection Establishment and
Termination

5.2.4 Sliding Window Revisited

5.2.5 Triggering Transmission

5.2.6 Adaptive Retransmission

5.2.7 Record Boundaries

5.2.8 TCP Extensions

5.2.9 Performance

5.2.10 Alternative Design Choices
5.3 Remote Procedure Call

5.3.1 RPC Fundamentals

5.3.2 RPC Implementations (SunRPC, DCE)
5.4 Transport for Real-Time Applications (RTP)

5.4.1 Requirements
5.4.2 RTP Design
5.4.3 Control Protocol
5.5 Summary
What'’s Next: Transport Protocol Diversity
Further Reading
Exercises

6 Congestion Control and Resource
Allocation
Problem: Allocating Resources
6.1 Issues in Resource Allocation
6.1.1 Network Model
6.1.2 Taxonomy
6.1.3 Evaluation Criteria
6.2 Queuing Disciplines
6.2.1 FIFO
6.2.2 Fair Queuing
6.3 TCP Congestion Control

6.3.1 Additive Increase/Multiplicative
Decrease

391
393
396
397
400

402
407
414
418
422
423
425
428
431
431
440
447
449
452
456
460
461
462
463

479
480
481
485
488
492
492
494
499

500



6.3.2 Slow Start

6.3.3 Fast Retransmit and Fast Recovery
6.4 Congestion-Avoidance Mechanisms

6.4.1 DECbit

6.4.2 Random Early Detection (RED)

6.4.3 Source-Based Congestion Avoidance
6.5 Quality of Service

6.5.1 Application Requirements

6.5.2 Integrated Services (RSVP)

6.5.3 Differentiated Services (EE AF)

6.5.4 Equation-Based Congestion Control
6.6 Summary
What'’s Next: Refactoring the Network
Further Reading
Exercises

7 End-to-End Data

Problem: What Do We Do with the Data?
7.1 Presentation Formatting
7.1.1 Taxonomy
7.1.2 Examples (XDR, ASN.1, NDR)
7.1.3 Markup Languages (XML)
7.2 Multimedia Data
7.2.1 Lossless Compression Techniques

7.2.2 Image Representation and
Compression (GIE JPEG)

7.2.3 Video Compression (MPEG)
7.2.4 Transmitting MPEG over a Network
7.2.5 Audio Compression (MP3)

7.3 Summary

What'’s Next: Video Everywhere

Further Reading

Exercises

8 Network Security

Problem: Security Attacks

8.1 Cryptographic Building Blocks
8.1.1 Principles of Ciphers
8.1.2 Symmetric-Key Ciphers

505
510
514
515
516
523
530
531
537
549
557
559
560
561
563

579
581
583
587
592
596
598

601
609
614
619
621
622
623
624

633
635
635
638

(Contents

XXiX



XXX

Contents

8.2

8.3

8.4

8.5

8.6

8.1.3 Public-Key Ciphers

8.1.4 Authenticators

Key Predistribution

8.2.1 Predistribution of Public Keys

8.2.2 Predistribution of Symmetric Keys
Authentication Protocols

8.3.1 Originality and Timeliness Techniques
8.3.2 Public-Key Authentication Protocols

8.3.3 Symmetric-Key Authentication
Protocols

8.3.4 Diffie-Hellman Key Agreement
Example Systems

8.4.1 Pretty Good Privacy (PGP)
8.4.2 Secure Shell (SSH)

8.4.3 Transport Layer Security
(TLS, SSL, HTTPS)

8.4.4 1P Security (IPsec)

8.4.5 Wireless Security (802.11i)

Firewalls

8.5.1 Strengths and Weaknesses of Firewalls
Summary

What’s Next: Coming to Grips with Security
Further Reading
Exercises

9 Applications

Problem: Applications Need their Own Protocols

9.1

9.2

9.3

Traditional Applications

9.1.1 Electronic Mail (SMTP, MIME, IMAP)
9.1.2 World Wide Web (HTTP)

9.1.3 Web Services

Multimedia Applications

9.2.1 Session Control and Call Control
(SDP, SIP, H.323)

9.2.2 Resource Allocation for Multimedia
Applications

Infrastructure Services
9.3.1 Name Service (DNS)
9.3.2 Network Management (SNMP)

640
643
647
648
653
654
655
656

658
662
664
665
667

670
675
678
681
684
686
688
689
690

697
698
700
708
718
727

728

739
744
745
756



9.4 Overlay Networks

9.4.1 Routing Overlays

9.4.2 Peer-to-Peer Networks

9.4.3 Content Distribution Networks
9.5 Summary
What's Next: New Network Architecture
Further Reading
Exercises

Solutions to Select Exercises
Glossary

Bibliography

Index

759
762
769
783
789
790
791
793

801
815
837
851

(Contents

XXXi






Foundation

I must Create a System, or be enslav’d by another Man’s; | will not Reason and
Compare: my business is to Create.
-William Blake

Suppose you want to build a computer network, one that has the
potential to grow to global proportions and to support applica-
tions as diverse as teleconferencing, video on demand, electronic
commerce, distributed computing, and digital libraries. What avail-
able technologies would serve as the underlying building blocks,

and what kind of software architecture would you design to
integrate these building blocks into an effective communica-

tion service? Answering this question is the overriding goal of

this book—to describe the available building materials and

PROBLEM: BUILDING A NETWORK

then to show how they can be used to construct a network
from the ground up.

Before we can understand how to design a computer net-
work, we should first agree on exactly what a computer
network is. At one time, the term network meant the set of
serial lines used to attach dumb terminals to mainframe com-
puters. Other important networks include the voice telephone
network and the cable TV network used to disseminate video
signals. The main things these networks have in common are
that they are specialized to handle one particular kind of data

Computer Networks: A Systems Approach. DOI: 10.1016/B978-0-12-385059-1.00001-6
Copyright © 2012 Elsevier,Inc. All rights reserved.




2

CHAPTER 1 Foundation

(keystrokes, voice, or video) and they typically connect to special-purpose devices
(terminals, hand receivers, and television sets).

What distinguishes a computer network from these other types of networks?
Probably the most important characteristic of a computer network is its generality.
Computer networks are built primarily from general-purpose programmable hard-
ware, and they are not optimized for a particular application like making phone calls
or delivering television signals. Instead, they are able to carry many different types of
data, and they support a wide, and ever growing, range of applications. Today’'s com-
puter networks are increasingly taking over the functions previously performed by
single-use networks. This chapter looks at some typical applications of computer
networks and discusses the requirements that a network designer who wishes to
support such applications must be aware of.

Once we understand the requirements, how do we proceed? Fortunately, we will
not be building the first network. Others, most notably the community of researchers
responsible for the Internet, have gone before us. We will use the wealth of experience
generated from the Internet to guide our design. This experience is embodied in a
network architecture that identifies the available hardware and software components
and shows how they can be arranged to form a complete network system.

In addition to understanding how networks are built, it is increasingly important
to understand how they are operated or managed and how network applications
are developed. Most of us now have computer networks in our homes, offices, and
in some cases in our cars, so operating networks is no longer a matter only for
a few specialists. And, with the proliferation of programmable, network-attached
devices such as smartphones, many more of this generation will develop networked
applications than in the past. So we need to consider networks from these multiple
perspectives: builders, operators, application developers.

To start us on the road toward understanding how to build, operate, and pro-
gram a network, this chapter does four things. First, it explores the requirements that
different applications and different communities of people place on the network.
Second, it introduces the idea of a network architecture, which lays the foundation
for the rest of the book. Third, it introduces some of the key elements in the imple-
mentation of computer networks. Finally, it identifies the key metrics that are used
to evaluate the performance of computer networks.

B ———— : e —————

1.1 APPLICATIONS

Most people know the Internet through its applications: the World Wide
Web, email, online social networking, streaming audio and video, instant
messaging, file-sharing, to name just a few examples. That is to say, we




)
I
i

interact with the Internet as users of the network. Internet users repre-
sent the largest class of people who interact with the Internet in some way,
but there are several other important constituencies. There is the group
of people who create the applications—a group that has greatly expanded
in recent years as powerful programming platforms and new devices such
as smartphones have created new opportunities to develop applications
quickly and to bring them to alarge market. Then there are those who oper-
ate or manage networks—mostly a behind-the-scenes job, but a critical
one and often a very complex one. With the prevalence of home networks,
more and more people are also becoming, if only in a small way, network
operators. Finally, there are those who design and build the devices and
protocols that collectively make up the Internet. That final constituency
is the traditional target of networking textbooks such as this one and will
continue to be our main focus. However, throughout this book we will also
consider the perspectives of application developers and network opera-
tors. Consideringthese perspectives will enable us to better understand the
diverse requirements that a network must meet. Application developers
will also be able to make applications that work better if they understand
how the underlying technology works and interacts with the applica-
tions. So, before we start figuring out how to build a network, let’s look
more closely at the types of applications that today’s networks support.

1.1.1 Classes of Applications

The World Wide Web is the Internet application that catapulted the Inter-
net from a somewhat obscure tool used mostly by scientists and engineers
to the mainstream phenomenon that it is today. The Web itself has
become such a powerful platform that many people confuse it with the
Internet (as in “the Interwebs”), and it’s a bit of a stretch to say that the
Web is a single application.

In its basic form, the Web presents an intuitively simple interface. Users
view pages full of textual and graphical objects and click on objects that
they want to learn more about, and a corresponding new page appears.
Most people are also aware that just under the covers each selectable
object on a page is bound to an identifier for the next page or object to
be viewed. This identifier, called a Uniform Resource Locator (URL), pro-
vides a way of identifying all the possible objects that can be viewed from
your web browser. For example,

http://www.cs.princeton.edu/-llp/index.html

1.1 Applications



4

T

et
i

CHAPTER 1 Foundation

is the URL for a page providing information about one of this book’s
authors: the string http indicates that the Hypertext Transfer Protocol
(HTTP) should be used to download the page, www.cs.princeton.edu is the
name of the machine that serves the page, and

/Hlp/index.html

uniquely identifies Larry’s home page at this site.

What most web users are not aware of, however, is that by clicking
on just one such URL over a dozen messages may be exchanged over
the Internet, and many more than that if the web page is complicated
with lots of embedded objects. This message exchange includes up to
six messages to translate the server name (www.cs.princeton.edu) into its
Internet Protocol (IP) address (128.112.136.35), three messages to set up
a Transmission Control Protocol (TCP) connection between your browser
and this server, four messages for your browser to send the HTTP “GET”
request and the server to respond with the requested page (and for each
side to acknowledge receipt of that message), and four messages to tear
down the TCP connection. Of course, this does not include the millions
of messages exchanged by Internet nodes throughout the day, just to let
each other know that they exist and are ready to serve web pages, trans-
late names to addresses, and forward messages toward their ultimate
destination.

Another widespread application class of the Internet is the delivery
of “streaming” audio and video. Services such as video on demand and
Internet radio use this technology. While we frequently start at a web-
site to initiate a streaming session, the delivery of audio and video has
some important differences from fetching a simple web page of text and
images. For example, you often don’t want to download an entire video
file—a process that might take minutes to hours—before watching the
first scene. Streaming audio and video implies a more timely transfer of
messages from sender to receiver, and the receiver displays the video or
plays the audio pretty much as it arrives.

Note that the difference between streaming applications and the
more traditional delivery of a page of text or still images is that
humans consume audio and video streams in a continuous manner,
and discontinuity—in the form of skipped sounds or stalled video—is
not acceptable. By contrast, a page of text can be delivered and read in
bits and pieces. This difference affects how the network supports these
different classes of applications.




A subtly different application class is real-time audio and video. These
applications have considerably tighter timing constraints than streaming
applications. When using a voice-over-IP application such as Skype™ or
avideoconferencing application, the interactions among the participants
must be timely. When a person at one end gestures, then that action must
be displayed at the other end as quickly as possible. When one person
tries to interrupt another, the interrupted person needs to hear that as
soon as possible! and decide whether to allow the interruption or to keep
talking over the interrupter. Too much delay in this sort of environment
makes the system unusable. Contrast this with video on demand where,
if it takes several seconds from the time the user starts the video until
the first image is displayed, the service is still deemed satisfactory. Also,
interactive applications usually entail audio and/or video flows in both
directions, while a streaming application is most likely sending video or
audio in only one direction.

Videoconferencing tools that run over the Internet have been around
now since the early 1990s but have achieved much more widespread use
in the last couple of years, as higher network speeds and more powerful
computers have become commonplace. An example of one such system
is shown in Figure 1.1. Just as downloading a web page involves a bit
more than meets the eye, so too with video applications. Fitting the video
content into a relatively low bandwidth network, for example, or mak-
ing sure that the video and audio remain in sync and arrive in time for a
good user experience are all problems that network and protocol design-
ers have to worry about. We’ll look at these and many other issues related
to multimedia applications later in the book.

Although they are just two examples, downloading pages from the
web and participating in a videoconference demonstrate the diversity
of applications that can be built on top of the Internet and hint at the
complexity of the Internet’s design. Later in the book we will develop a
more complete taxonomy of application types to help guide our discus-
sion of key design decisions as we seek to build, operate, and use networks
that support such a wide range of applications. In Chapter 9, the book
concludes by revisiting these two specific applications, as well as several
others that illustrate the breadth of what is possible on today’s Internet.

'Not quite “as soon as possible”—human factors research indicates 300 ms is a reason-
able upper bound for how much round-trip delay can be tolerated in a telephone call
before humans complain, and a 100-ms delay sounds very good.

1.1 Applications



6 CHAPTER 1 Foundation

Cisco WebEx Meeting Center - PDSe

=— — e
lwd)a( Meeting No. 203 034 752 | Attendee ID: 3 | Connected © & Js‘é] @

¥ jii Participants2 of 2 ready

@& ) Name
___________________________________________________________________________ © |\ |Bruce Davie (Hos .
& § lany 5

Internet: View from your laptop

Broadband
Subscribers

Provider (ISP)

Internet Service / YouTube.com

Rest of the
Internet

il \ Netflix.com

Access Technology (e.g., FIOS, WiFi, WiMax, Cellular...)

——.f_ cnn.com

M FIGURE 1.1 A multimedia application including videoconferencing.

‘l For now, this quick look at a few typical applications will suffice to enable
£::N . .

LAB 00: us to start looking at the problems that must be addressed if we are to
Introduction  build a network that supports such application diversity.

1.2 REQUIREMENTS

We have established an ambitious goal for ourselves: to understand how
to build a computer network from the ground up. Our approach to
accomplishing this goal will be to start from first principles and then
ask the kinds of questions we would naturally ask if building an actual
network. At each step, we will use today’s protocols to illustrate vari-
ous design choices available to us, but we will not accept these existing
artifacts as gospel. Instead, we will be asking (and answering) the ques-
tion of why networks are designed the way they are. While it is tempting



ﬂ:

I

"
o
| 1

1.2 Requirements 7

to settle for just understanding the way it’s done today, it is important
to recognize the underlying concepts because networks are constantly
changing as the technology evolves and new applications are invented.
It is our experience that once you understand the fundamental ideas, any
new protocol that you are confronted with will be relatively easy to digest.

1.2.1 Perspectives

As we noted above, a student of networks can take several perspectives.
When we wrote the first edition of this book, the majority of the popula-
tion had no Internet access at all, and those who did obtained it while at
work, at a university, or by a dial-up modem at home. The set of popular
applications could be counted on one’s fingers. Thus, like most books at
the time, ours focused on the perspective of someone who would design
networking equipment and protocols. We continue to focus on this per-
spective, and our hope is that after reading this book you will know how
to design the networking equipment and protocols of the future. However,
we also want to cover the perspectives of two additional groups that are
of increasing importance: those who develop networked applications and
those who manage or operate networks. Let’s consider how these three
groups might list their requirements for a network:

m An application programmer would list the services that his or her
application needs—for example, a guarantee that each message
the application sends will be delivered without error within a
certain amount of time or the ability to switch gracefully among
different connections to the network as the user moves around.

m A network operator would list the characteristics of a system that is
easy to administer and manage—for example, in which faults can
be easily isolated, new devices can be added to the network and
configured correctly, and it is easy to account for usage.

m A network designer would list the properties of a cost-effective
design—for example, that network resources are efficiently utilized
and fairly allocated to different users. Issues of performance are
also likely to be important.

This section attempts to distill these different perspectives into a high-
level introduction to the major considerations that drive network design
and, in doing so, identifies the challenges addressed throughout the rest
of this book.



TR R

8 CHAPTER 1 Foundation

1.2.2 Scalable Connectivity

Starting with the obvious, a network must provide connectivity among a
set of computers. Sometimes it is enough to build a limited network that
connects only a few select machines. In fact, for reasons of privacy and
security, many private (corporate) networks have the explicit goal of lim-
iting the set of machines that are connected. In contrast, other networks
(of which the Internet is the prime example) are designed to grow in a
way that allows them the potential to connect all the computers in the
world. A system that is designed to support growth to an arbitrarily large
size is said to scale. Using the Internet as a model, this book addresses
the challenge of scalability.

Links, Nodes, and Clouds

To understand the requirements of connectivity more fully, we need to
take a closer look at how computers are connected in a network. Connec-
tivity occurs at many different levels. At the lowest level, a network can
consist of two or more computers directly connected by some physical
medium, such as a coaxial cable or an optical fiber. We call such a phys-
ical medium a link, and we often refer to the computers it connects as
nodes. (Sometimes a node is a more specialized piece of hardware rather
than a computer, but we overlook that distinction for the purposes of this
discussion.) As illustrated in Figure 1.2, physical links are sometimes lim-
ited to a pair of nodes (such a link is said to be point-to-point), while in
other cases more than two nodes may share a single physical link (such a
link is said to be multiple-access). Wireless links, such as those provided by
cellular networks and Wi-Fi networks, are an increasingly important class
of multiple-access links. It is often the case that multiple-access links are
limited in size, in terms of both the geographical distance they can cover
and the number of nodes they can connect.

If computer networks were limited to situations in which all nodes
are directly connected to each other over a common physical medium,
then either networks would be very limited in the number of comput-
ers they could connect, or the number of wires coming out of the back
of each node would quickly become both unmanageable and very expen-
sive. Fortunately, connectivity between two nodes does not necessarily
imply a direct physical connection between them—indirect connectiv-
ity may be achieved among a set of cooperating nodes. Consider the



M FIGURE 1.2 Direct links: (a) point-to-point; (b) multiple-access.

following two examples of how a collection of computers can be indirectly
connected.

Figure 1.3 shows a set of nodes, each of which is attached to one or
more point-to-point links. Those nodes that are attached to at least two
links run software that forwards data received on one link out on another.
If organized in a systematic way, these forwarding nodes form a switched
network. There are numerous types of switched networks, of which the
two most common are circuit switched and packet switched. The former
is most notably employed by the telephone system, while the latter is
used for the overwhelming majority of computer networks and will be
the focus of this book. (Circuit switching is, however, making a bit of a
comeback in the optical networking realm, which turns out to be impor-
tant as demand for network capacity constantly grows.) The important
feature of packet-switched networks is that the nodes in such a network
send discrete blocks of data to each other. Think of these blocks of data as
corresponding to some piece of application data such as a file, a piece of
email, or an image. We call each block of data either a packet or a message,
and for now we use these terms interchangeably; we discuss the reason
they are not always the same in Section 1.2.3.

Packet-switched networks typically use a strategy called store-and-
forward. As the name suggests, each node in a store-and-forward network
first receives a complete packet over some link, stores the packet in its
internal memory, and then forwards the complete packet to the next

1.2 Requirements



10

CHAPTER 1 Foundation

M FIGURE 1.3 Switched network.

node. In contrast, a circuit-switched network first establishes a dedicated
circuit across a sequence of links and then allows the source node to send
a stream of bits across this circuit to a destination node. The major rea-
son for using packet switching rather than circuit switching in a computer
network is efficiency, discussed in the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside
that implement the network (they are commonly called switches, and
their primary function is to store and forward packets) and the nodes
on the outside of the cloud that use the network (they are commonly
called hosts, and they support users and run application programs). Also
note that the cloud in Figure 1.3 is one of the most important icons of
computer networking. In general, we use a cloud to denote any type of
network, whether it is a single point-to-point link, a multiple-access link,
or a switched network. Thus, whenever you see a cloud used in a figure,



M FIGURE 1.4 Interconnection of networks.

you can think of it as a placeholder for any of the networking technologies
covered in this book.?

A second way in which a set of computers can be indirectly connected
is shown in Figure 1.4. In this situation, a set of independent networks
(clouds) are interconnected to form an internetwork, or internet for short.
We adopt the Internet’s convention of referring to a generic internet-
work of networks as a lowercase i internet, and the currently operational
TCP/IP Internet as the capital I Internet. A node that is connected to two
or more networks is commonly called a router or gateway, and it plays
much the same role as a switch—it forwards messages from one net-
work to another. Note that an internet can itself be viewed as another
kind of network, which means that an internet can be built from an
interconnection of internets. Thus, we can recursively build arbitrarily
large networks by interconnecting clouds to form larger clouds. It can

2Interestingly, the use of clouds in this way predates the term cloud computing by at
least a couple of decades, but there is a connection between these two usages, which
we'll discuss later.

1.2 Requirements



12

CHAPTER 1 Foundation

reasonably be argued that this idea of interconnecting widely differing
networks was the fundamental innovation of the Internet and that the
successful growth of the Internet to global size and billions of nodes
was the result of some very good design decisions by the early Internet
architects, which we will discuss later.

Just because a set of hosts are directly or indirectly connected to each
other does not mean that we have succeeded in providing host-to-host
connectivity. The final requirement is that each node must be able to
say which of the other nodes on the network it wants to communicate
with. This is done by assigning an address to each node. An address is a
byte string that identifies a node; that is, the network can use a node’s
address to distinguish it from the other nodes connected to the network.
When a source node wants the network to deliver a message to a certain
destination node, it specifies the address of the destination node. If the
sending and receiving nodes are not directly connected, then the switches
and routers of the network use this address to decide how to forward the
message toward the destination. The process of determining systemati-
cally how to forward messages toward the destination node based on its
address is called routing.

This brief introduction to addressing and routing has presumed that
the source node wants to send a message to a single destination node
(unicast). While this is the most common scenario, it is also possible that
the source node might want to broadcast a message to all the nodes on the
network. Or, a source node might want to send a message to some subset
of the other nodes but not all of them, a situation called multicast. Thus,
in addition to node-specific addresses, another requirement of a network
is that it support multicast and broadcast addresses.

The main idea to take away from this discussion is that we can define a network
recursively as consisting of two or more nodes connected by a physical link, or
as two or more networks connected by a node. In other words, a network can be
constructed from a nesting of networks, where at the bottom level, the network is
implemented by some physical medium. Among the key challenges in providing
network connectivity are the definition of an address for each node that is reach-
able on the network (including support for broadcast and multicast), and the
use of such addresses to forward messages toward the appropriate destination
node(s).

J




)
I
i

1.2.3 Cost-Effective Resource Sharing

As stated above, this book focuses on packet-switched networks. This
section explains the key requirement of computer networks—efficiency—
that leads us to packet switching as the strategy of choice.

Given a collection of nodes indirectly connected by a nesting of net-
works, it is possible for any pair of hosts to send messages to each other
across a sequence of links and nodes. Of course, we want to do more than
support just one pair of communicating hosts—we want to provide all
pairs of hosts with the ability to exchange messages. The question, then,
is how do all the hosts that want to communicate share the network, espe-
cially if they want to use it at the same time? And, as if that problem isn’t
hard enough, how do several hosts share the same /ink when they all want
to use it at the same time?

To understand how hosts share a network, we need to introduce a fun-
damental concept, multiplexing, which means that a system resource is
shared among multiple users. At an intuitive level, multiplexing can be
explained by analogy to a timesharing computer system, where a single
physical processor is shared (multiplexed) among multiple jobs, each of
which believes it has its own private processor. Similarly, data being sent
by multiple users can be multiplexed over the physical links that make up
a network.

To see how this might work, consider the simple network illustrated in
Figure 1.5, where the three hosts on the left side of the network (senders
S1-S3) are sending data to the three hosts on the right (receivers R1-R3)
by sharing a switched network that contains only one physical link. (For
simplicity, assume that host S1 is sending data to host R1, and so on.)
In this situation, three flows of data—corresponding to the three pairs of
hosts—are multiplexed onto a single physical link by switch 1 and then
demultiplexed back into separate flows by switch 2. Note that we are being
intentionally vague about exactly what a “flow of data” corresponds to.
For the purposes of this discussion, assume that each host on the left
has a large supply of data that it wants to send to its counterpart on the
right.

There are several different methods for multiplexing multiple flows
onto one physical link. One common method is synchronous time-
division multiplexing (STDM). The idea of STDM is to divide time into
equal-sized quanta and, in a round-robin fashion, give each flow a chance

1.2 Requirements

13



14

CHAPTER 1 Foundation

M FIGURE 1.5 Multiplexing multiple logical flows over a single physical link.

to send its data over the physical link. In other words, during time quan-
tum 1, data from S1 to R1 is transmitted; during time quantum 2, data
from S2 to R2 is transmitted; in quantum 3, S3 sends data to R3. At
this point, the first flow (S1 to R1) gets to go again, and the process
repeats. Another method is frequency-division multiplexing (FDM). The
idea of FDM is to transmit each flow over the physical link at a different
frequency, much the same way that the signals for different TV stations
are transmitted at a different frequency over the airwaves or on a coaxial
cable TV link.

Although simple to understand, both STDM and FDM are limited in
two ways. First, if one of the flows (host pairs) does not have any data
to send, its share of the physical link—that is, its time quantum or its
frequency—remains idle, even if one of the other flows has data to trans-
mit. For example, S3 had to wait its turn behind S1 and S2 in the previous
paragraph, even if S1 and S2 had nothing to send. For computer com-
munication, the amount of time that a link is idle can be very large—for
example, consider the amount of time you spend reading a web page
(leaving the link idle) compared to the time you spend fetching the page.
Second, both STDM and FDM are limited to situations in which the maxi-
mum number of flows is fixed and known ahead of time. It is not practical



to resize the quantum or to add additional quanta in the case of STDM or
to add new frequencies in the case of FDM.

The form of multiplexing that addresses these shortcomings, and of
which we make most use in this book, is called statistical multiplexing.
Although the name is not all that helpful for understanding the concept,
statistical multiplexing is really quite simple, with two key ideas. First, it
is like STDM in that the physical link is shared over time—first data from
one flow is transmitted over the physical link, then data from another flow
is transmitted, and so on. Unlike STDM, however, data is transmitted from
each flow on demand rather than during a predetermined time slot. Thus,
if only one flow has data to send, it gets to transmit that data without wait-
ing for its quantum to come around and thus without having to watch the
quanta assigned to the other flows go by unused. It is this avoidance of
idle time that gives packet switching its efficiency.

As defined so far, however, statistical multiplexing has no mechanism
to ensure that all the flows eventually get their turn to transmit over the
physical link. That is, once a flow begins sending data, we need some
way to limit the transmission, so that the other flows can have a turn.
To account for this need, statistical multiplexing defines an upper bound
on the size of the block of data that each flow is permitted to transmit at
a given time. This limited-size block of data is typically referred to as a
packet, to distinguish it from the arbitrarily large message that an applica-
tion program might want to transmit. Because a packet-switched network
limits the maximum size of packets, a host may not be able to send a
complete message in one packet. The source may need to fragment the
message into several packets, with the receiver reassembling the packets
back into the original message.

In other words, each flow sends a sequence of packets over the physical
link, with a decision made on a packet-by-packet basis as to which flow’s
packet to send next. Notice that, if only one flow has data to send, then it
can send a sequence of packets back-to-back; however, should more than
one of the flows have data to send, then their packets are interleaved on
the link. Figure 1.6 depicts a switch multiplexing packets from multiple
sources onto a single shared link.

The decision as to which packet to send next on a shared link can be
made in a number of different ways. For example, in a network consisting
of switches interconnected by links such as the one in Figure 1.5, the

1.2 Requirements

15



16

CHAPTER 1 Foundation

M FIGURE 1.6 A switch multiplexing packets from multiple sources onto one shared link.

decision would be made by the switch that transmits packets onto the
shared link. (As we will see later, not all packet-switched networks actu-
ally involve switches, and they may use other mechanisms to determine
whose packet goes onto the link next.) Each switch in a packet-switched
network makes this decision independently, on a packet-by-packet basis.
One of the issues that faces a network designer is how to make this deci-
sion in a fair manner. For example, a switch could be designed to service
packets on a first-in, first-out (FIFO) basis. Another approach would be
to transmit the packets from each of the different flows that are currently
sending data through the switch in a round-robin manner. This might be
done to ensure that certain flows receive a particular share of the link’s
bandwidth or that they never have their packets delayed in the switch
for more than a certain length of time. A network that attempts to allo-
cate bandwidth to particular flows is sometimes said to support quality of
service (QoS), a topic that we return to in Chapter 6.

Also, notice in Figure 1.6 that since the switch has to multiplex three
incoming packet streams onto one outgoing link, it is possible that the
switch will receive packets faster than the shared link can accommodate.
In this case, the switch is forced to buffer these packets in its mem-
ory. Should a switch receive packets faster than it can send them for
an extended period of time, then the switch will eventually run out of



buffer space, and some packets will have to be dropped. When a switch
is operating in this state, it is said to be congested.

f
The bottom line is that statistical multiplexing defines a cost-effective way for

multiple users (e.g., host-to-host flows of data) to share network resources (links
and nodes) in a fine-grained manner. It defines the packet as the granularity with
which the links of the network are allocated to different flows, with each switch
able to schedule the use of the physical links it is connected to on a per-packet
basis. Fairly allocating link capacity to different flows and dealing with congestion
when it occurs are the key challenges of statistical multiplexing.

Dnip—d

One way to characterize networks is according to their size. Two well-known
examples are local area networks (LANs) and wide area networks (WANs);
the former typically extend less than 1 km, while the latter can be worldwide.
Other networks are classified as metropolitan area networks (MIANs), which
usually span tens of kilometers. The reason such classifications are interest-
ing is that the size of a network often has implications for the underlying
technology that can be used, with a key factor being the amount of time it
takes for data to propagate from one end of the network to the other; we
discuss this issue more in later chapters.

An interesting historical note is that the term wide area network was not
applied to the first WANSs because there was no other sort of network to dif-
ferentiate them from. When computers were incredibly rare and expensive,
there was no point in thinking about how to connect all the computers in
the local area—there was only one computer in that area. Only as comput-
ers began to proliferate did LANs become necessary, and the term “WAN”"
was then introduced to describe the larger networks that interconnected
geographically distant computers.

Another kind of network that we need to be aware of is SANs (usually
now expanded as storage area networks, but formerly also known as sys-
tem area networks). SANs are usually confined to a single room and connect
the various components of a large computing system. For example, Fibre
Channel is a common SAN technology used to connect high-performance
computing systems to storage servers and data vaults. Although this book
does not describe such networks in detail, they are worth knowing about
because they are often at the leading edge in terms of performance, and
because it is increasingly common to connect such networks into LANs
and WANSs.

1.2 Requirements

17



18

CHAPTER 1 Foundation

1.2.4 Support for Common Services

The previous section outlined the challenges involved in providing cost-
effective connectivity among a group of hosts, but it is overly simplistic to
view a computer network as simply delivering packets among a collection
of computers. It is more accurate to think of a network as providing the
means for a set of application processes that are distributed over those
computers to communicate. In other words, the next requirement of a
computer network is that the application programs running on the hosts
connected to the network must be able to communicate in a meaningful
way. From the application developer’s perspective, the network needs to
make his or her life easier.

When two application programs need to communicate with each
other, a lot of complicated things must happen beyond simply sending
a message from one host to another. One option would be for application
designers to build all that complicated functionality into each application
program. However, since many applications need common services, it is
much more logical to implement those common services once and then
to let the application designer build the application using those services.
The challenge for a network designer is to identify the right set of com-
mon services. The goal is to hide the complexity of the network from the
application without overly constraining the application designer.

Intuitively, we view the network as providing logical channels over
which application-level processes can communicate with each other;
each channel provides the set of services required by that application. In
other words, just as we use a cloud to abstractly represent connectivity
among a set of computers, we now think of a channel as connecting one
process to another. Figure 1.7 shows a pair of application-level processes
communicating over a logical channel that is, in turn, implemented on
top of a cloud that connects a set of hosts. We can think of the channel as
being like a pipe connecting two applications, so that a sending applica-
tion can put data in one end and expect that data to be delivered by the
network to the application at the other end of the pipe.

The challenge is to recognize what functionality the channels should
provide to application programs. For example, does the application
require a guarantee that messages sent over the channel are delivered,
or is it acceptable if some messages fail to arrive? Is it necessary that mes-
sages arrive at the recipient process in the same order in which they are
sent, or does the recipient not care about the order in which messages




Host

1H°5t / Application
v

Host

Application

Host

B FIGURE 1.7 Processes communicating over an abstract channel.

arrive? Does the network need to ensure that no third parties are able
to eavesdrop on the channel, or is privacy not a concern? In general, a
network provides a variety of different types of channels, with each appli-
cation selecting the type that best meets its needs. The rest of this section
illustrates the thinking involved in defining useful channels.

Identifying Common Communication Patterns

Designing abstract channels involves first understanding the communi-
cation needs of a representative collection of applications, then extracting
their common communication requirements, and finally incorporating
the functionality that meets these requirements in the network.

One of the earliest applications supported on any network is a file
access program like the File Transfer Protocol (FTP) or Network File Sys-
tem (NFS). Although many details vary—for example, whether whole files
are transferred across the network or only single blocks of the file are read/
written at a given time—the communication component of remote file
access is characterized by a pair of processes, one that requests that a
file be read or written and a second process that honors this request. The

1.2 Requirements

19



T

et
i

20 CHAPTER 1 Foundation

process that requests access to the file is called the client, and the process
that supports access to the file is called the server.

Reading a file involves the client sending a small request message to a
server and the server responding with a large message that contains the
data in the file. Writing works in the opposite way—the client sends a large
message containing the data to be written to the server, and the server
responds with a small message confirming that the write to disk has taken
place.

A digital library is a more sophisticated application than file transfer,
but it requires similar communication services. For example, the Associ-
ation for Computing Machinery (ACM) operates a large digital library of
computer science literature at

http://portal.acm.org/dl.cfm

This library has a wide range of searching and browsing features to help
users find the articles they want, but ultimately much of what it does
is respond to user requests for files, such as electronic copies of journal
articles, much like an FTP server.

Using file access, a digital library, and the two video applications
described in the introduction (videoconferencing and video on demand)
as a representative sample, we might decide to provide the following two
types of channels: request/reply channels and message stream channels.
The request/reply channel would be used by the file transfer and digital
library applications. It would guarantee that every message sent by one
side is received by the other side and that only one copy of each message
is delivered. The request/reply channel might also protect the privacy and
integrity of the data that flows over it, so that unauthorized parties cannot
read or modify the data being exchanged between the client and server
processes.

The message stream channel could be used by both the video on
demand and videoconferencing applications, provided it is parameter-
ized to support both one-way and two-way traffic and to support different
delay properties. The message stream channel might not need to guaran-
tee that all messages are delivered, since a video application can operate
adequately even if some video frames are not received. It would, however,
need to ensure that those messages that are delivered arrive in the same
order in which they were sent, to avoid displaying frames out of sequence.
Like the request/reply channel, the message stream channel might want



to ensure the privacy and integrity of the video data. Finally, the message
stream channel might need to support multicast, so that multiple parties
can participate in the teleconference or view the video.

While it is common for a network designer to strive for the smallest
number of abstract channel types that can serve the largest number of
applications, there is a danger in trying to get away with too few channel
abstractions. Simply stated, if you have a hammer, then everything looks
like a nail. For example, if all you have are message stream and request/
reply channels, then it is tempting to use them for the next application that
comes along, even if neither type provides exactly the semantics needed by
the application. Thus, network designers will probably be inventing new
types of channels—and adding options to existing channels—for as long
as application programmers are inventing new applications.

Also note that independent of exactly what functionality a given chan-
nel provides, there is the question of where that functionality is imple-
mented. In many cases, it is easiest to view the host-to-host connectivity
of the underlying network as simply providing a bit pipe, with any high-
level communication semantics provided at the end hosts. The advantage
of this approach is that it keeps the switches in the middle of the network
as simple as possible—they simply forward packets—but it requires the
end hosts to take on much of the burden of supporting semantically rich
process-to-process channels. The alternative is to push additional func-
tionality onto the switches, thereby allowing the end hosts to be “dumb”
devices (e.g., telephone handsets). We will see this question of how vari-
ous network services are partitioned between the packet switches and the
end hosts (devices) as a recurring issue in network design.

Reliability

As suggested by the examples just considered, reliable message delivery
is one of the most important functions that a network can provide. It
is difficult to determine how to provide this reliability, however, without
first understanding how networks can fail. The first thing to recognize is
that computer networks do not exist in a perfect world. Machines crash
and later are rebooted, fibers are cut, electrical interference corrupts bits
in the data being transmitted, switches run out of buffer space, and, as
if these sorts of physical problems aren’t enough to worry about, the
software that manages the hardware may contain bugs and sometimes
forwards packets into oblivion. Thus, a major requirement of a network

1.2 Requirements

21



22 CHAPTER 1 Foundation

is to recover from certain kinds of failures, so that application programs
don’t have to deal with them or even be aware of them.

There are three general classes of failure that network designers have
to worry about. First, as a packet is transmitted over a physical link, bit
errors may be introduced into the data; that is, a 1 is turned into a 0 or
vice versa. Sometimes single bits are corrupted, but more often than not a
burst error occurs—several consecutive bits are corrupted. Bit errors typi-
cally occur because outside forces, such as lightning strikes, power surges,
and microwave ovens, interfere with the transmission of data. The good
news is that such bit errors are fairly rare, affecting on average only one
out of every 10° to 107 bits on a typical copper-based cable and one out
of every 10'? to 10'* bits on a typical optical fiber. As we will see, there
are techniques that detect these bit errors with high probability. Once
detected, it is sometimes possible to correct for such errors—if we know
which bit or bits are corrupted, we can simply flip them—while in other
cases the damage is so bad that it is necessary to discard the entire packet.
In such a case, the sender may be expected to retransmit the packet.

The second class of failure is at the packet, rather than the bit, level;
that is, a complete packet is lost by the network. One reason this can hap-
pen is that the packet contains an uncorrectable bit error and therefore
has to be discarded. A more likely reason, however, is that one of the nodes
that has to handle the packet—for example, a switch that is forwarding it
from one link to another—is so overloaded that it has no place to store
the packet and therefore is forced to drop it. This is the problem of con-
gestion mentioned in Section 1.2.3. Less commonly, the software running
on one of the nodes that handles the packet makes a mistake. For exam-
ple, it might incorrectly forward a packet out on the wrong link, so that
the packet never finds its way to the ultimate destination. As we will see,
one of the main difficulties in dealing with lost packets is distinguishing
between a packet that is indeed lost and one that is merely late in arriving
at the destination.

The third class of failure is at the node and link level; that is, a physical
link is cut, or the computer it is connected to crashes. This can be caused
by software that crashes, a power failure, or a reckless backhoe operator.
Failures due to misconfiguration of a network device are also common.
While any of these failures can eventually be corrected, they can have a
dramatic effect on the network for an extended period of time. However,
they need not totally disable the network. In a packet-switched network,



for example, it is sometimes possible to route around a failed node or link.
One of the difficulties in dealing with this third class of failure is distin-
guishing between a failed computer and one that is merely slow or, in the
case of a link, between one that has been cut and one that is very flaky
and therefore introducing a high number of bit errors.

1.2 Requirements

The key idea to take away from this discussion is that defining useful chan-
nels involves both understanding the applications’ requirements and recognizing
the limitations of the underlying technology. The challenge is to fill in the gap
between what the application expects and what the underlying technology can
provide. This is sometimes called the semantic gap.

1.2.5 Manageability

A final requirement, which seems to be neglected or left till last all
too often,”® is that networks need to be managed. Managing a network
includes making changes as the network grows to carry more traffic or
reach more users, and troubleshooting the network when things go wrong
or performance isn’t as desired.

This requirement is partly related to the issue of scalability discussed
above—as the Internet has scaled up to support billions of users and at
least hundreds of millions of hosts, the challenges of keeping the whole
thing running correctly and correctly configuring new devices as they are
added have become increasingly problematic. Configuring a single router
in a network is often a task for a trained expert; configuring thousands
of routers and figuring out why a network of such a size is not behaving
as expected can become a task beyond any single human. Furthermore,
to make the operation of a network scalable and cost-effective, network
operators typically require many management tasks to be automated or
at least performed by relatively unskilled personnel.

An important development in networking since we wrote the first edi-
tion of this book is that networks in the home are now commonplace. This
means that network management is no longer the province of experts but
needs to be accomplished by consumers with little to no special training.
This is sometimes stated as a requirement that networking devices should
be “plug-and-play”—a goal that has proven quite elusive. We will discuss

3As we have done in this section.

23



24

CHAPTER 1 Foundation

some ways that this requirement has been addressed in part later on, but
it is worth noting for now that improving the manageability of networks
remains an important area of current research.

1.3 NETWORK ARCHITECTURE

In case you hadn’t noticed, the previous section established a pretty sub-
stantial set of requirements for network design—a computer network
must provide general, cost-effective, fair, and robust connectivity among
a large number of computers. As if this weren’t enough, networks do not
remain fixed at any single point in time but must evolve to accommo-
date changes in both the underlying technologies upon which they are
based as well as changes in the demands placed on them by applica-
tion programs. Furthermore, networks must be manageable by humans
of varying levels of skill. Designing a network to meet these requirements
is no small task.

To help deal with this complexity, network designers have developed
general blueprints—usually called network architectures—that guide the
design and implementation of networks. This section defines more care-
fully what we mean by a network architecture by introducing the central
ideas that are common to all network architectures. It also introduces
two of the most widely referenced architectures—the OSI (or 7-layer)
architecture and the Internet architecture.

1.3.1 Layering and Protocols

Abstraction—the hiding of details behind a well-defined interface—is
the fundamental tool used by system designers to manage complexity.
The idea of an abstraction is to define a model that can capture some
important aspect of the system, encapsulate this model in an object that
provides an interface that can be manipulated by other components of
the system, and hide the details of how the object is implemented from
the users of the object. The challenge is to identify abstractions that
simultaneously provide a service that proves useful in a large number of
situations and that can be efficiently implemented in the underlying sys-
tem. This is exactly what we were doing when we introduced the idea of
a channel in the previous section: we were providing an abstraction for
applications that hides the complexity of the network from application
writers.




S

1.3 Network architecture 25

Abstractions naturally lead to layering, especially in network systems.
The general idea is that you start with the services offered by the underly-
ing hardware and then add a sequence of layers, each providing a higher
(more abstract) level of service. The services provided at the high lay-
ers are implemented in terms of the services provided by the low layers.
Drawing on the discussion of requirements given in the previous section,
for example, we might imagine a simple network as having two lay-
ers of abstraction sandwiched between the application program and the
underlying hardware, as illustrated in Figure 1.8. The layer immediately
above the hardware in this case might provide host-to-host connectivity,
abstracting away the fact that there may be an arbitrarily complex net-
work topology between any two hosts. The next layer up builds on the
available host-to-host communication service and provides support for
process-to-process channels, abstracting away the fact that the network
occasionally loses messages, for example.

Layering provides two nice features. First, it decomposes the problem
of building a network into more manageable components. Rather than
implementing a monolithic piece of software that does everything you
will ever want, you can implement several layers, each of which solves
one part of the problem. Second, it provides a more modular design. If
you decide that you want to add some new service, you may only need to
modify the functionality at one layer, reusing the functions provided at all
the other layers.

Thinking of a system as a linear sequence of layers is an oversimplifica-
tion, however. Many times there are multiple abstractions provided at any
given level of the system, each providing a different service to the higher
layers but building on the same low-level abstractions. To see this, con-
sider the two types of channels discussed in Section 1.2.4: One provides a

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

M FIGURE 1.8 Example of a layered network system.



26

CHAPTER 1 Foundation

Application programs

Request/reply Message stream
channel channel

Host-to-host connectivity

Hardware

M FIGURE 1.9 Layered system with alternative abstractions available at a given layer.

request/reply service and one supports a message stream service. These
two channels might be alternative offerings at some level of a multilevel
networking system, as illustrated in Figure 1.9.

Using this discussion of layering as a foundation, we are now ready
to discuss the architecture of a network more precisely. For starters, the
abstract objects that make up the layers of a network system are called
protocols. That is, a protocol provides a communication service that
higher-level objects (such as application processes, or perhaps higher-
level protocols) use to exchange messages. For example, we could imagine
a network that supports a request/reply protocol and a message stream
protocol, corresponding to the request/reply and message stream chan-
nels discussed above.

Each protocol defines two different interfaces. First, it defines a ser-
vice interface to the other objects on the same computer that want to use
its communication services. This service interface defines the operations
that local objects can perform on the protocol. For example, a request/
reply protocol would support operations by which an application can
send and receive messages. An implementation of the HTTP protocol
could support an operation to fetch a page of hypertext from a remote
server. An application such as a web browser would invoke such an oper-
ation whenever the browser needs to obtain a new page (e.g., when the
user clicks on a link in the currently displayed page).

Second, a protocol defines a peer interface to its counterpart (peer) on
another machine. This second interface defines the form and meaning
of messages exchanged between protocol peers to implement the com-
munication service. This would determine the way in which a request/
reply protocol on one machine communicates with its peer on another
machine. In the case of HTTP, for example, the protocol specification



1.3 Network architecture

Host 1 Host 2
High-level High-level
object object
Service Service
interface interface
Protocol Protocol
Peer-to-peer
interface

M FIGURE 1.10 Service interfaces and peer interfaces.

defines in detail how a GET command is formatted, what arguments can
be used with the command, and how a web server should respond when
it receives such a command. (We will look more closely at this particular
protocol in Section 9.1.2.)

To summarize, a protocol defines a communication service that it
exports locally (the service interface), along with a set of rules governing
the messages that the protocol exchanges with its peer(s) to implement
this service (the peer interface). This situation is illustrated in Figure 1.10.

Except at the hardware level, where peers directly communicate with
each other over a link, peer-to-peer communication is indirect—each
protocol communicates with its peer by passing messages to some lower-
level protocol, which in turn delivers the message to its peer. In addition,
there are potentially multiple protocols at any given level, each provid-
ing a different communication service. We therefore represent the suite
of protocols that make up a network system with a protocol graph. The
nodes of the graph correspond to protocols, and the edges represent
a depends on relation. For example, Figure 1.11 illustrates a protocol
graph for the hypothetical layered system we have been discussing—
protocols RRP (Request/Reply Protocol) and MSP (Message Stream Pro-
tocol) implement two different types of process-to-process channels,
and both depend on the Host-to-Host Protocol (HHP) which provides a
host-to-host connectivity service.

In this example, suppose that the file access program on host 1 wants
to send a message to its peer on host 2 using the communication service

27



28

CHAPTER 1 Foundation

Host 1 Host 2
File Digital Video File Digital Video
application library application application library application
application application
RRP MSP RRP MSP
HHP HHP

M FIGURE 1.11 Example of a protocol graph.

offered by RRP. In this case, the file application asks RRP to send the mes-
sage on its behalf. To communicate with its peer, RRP invokes the services
of HHP, which in turn transmits the message to its peer on the other
machine. Once the message has arrived at the instance of HHP on host 2,
HHP passes the message up to RRP, which in turn delivers the message
to the file application. In this particular case, the application is said to
employ the services of the protocol stack RRP/HHP.

Note that the term protocol is used in two different ways. Sometimes it
refers to the abstract interfaces—that is, the operations defined by the ser-
vice interface and the form and meaning of messages exchanged between
peers, and sometimes it refers to the module that actually implements
these two interfaces. To distinguish between the interfaces and the mod-
ule that implements these interfaces, we generally refer to the former
as a protocol specification. Specifications are generally expressed using a
combination of prose, pseudocode, state transition diagrams, pictures of



1.3 Network architecture 29

packet formats, and other abstract notations. It should be the case that
a given protocol can be implemented in different ways by different pro-
grammers, as long as each adheres to the specification. The challenge
is ensuring that two different implementations of the same specification
can successfully exchange messages. Two or more protocol modules that
do accurately implement a protocol specification are said to interoperate
with each other.

We can imagine many different protocols and protocol graphs that
satisfy the communication requirements of a collection of applications.
Fortunately, there exist standardization bodies, such as the Internet Engi-
neering Task Force (IETF) and the International Standards Organization
(ISO), that establish policies for a particular protocol graph. We call the
set of rules governing the form and content of a protocol graph a network
architecture. Although beyond the scope of this book, standardization
bodies have established well-defined procedures for introducing, validat-
ing, and finally approving protocols in their respective architectures. We
briefly describe the architectures defined by the IETF and ISO shortly,
but first there are two additional things we need to explain about the
mechanics of protocol layering.

Encapsulation

Consider what happens in Figure 1.11 when one of the application pro-
grams sends a message to its peer by passing the message to RRP. From
RRP’s perspective, the message it is given by the application is an unin-
terpreted string of bytes. RRP does not care that these bytes represent
an array of integers, an email message, a digital image, or whatever; it is
simply charged with sending them to its peer. However, RRP must com-
municate control information to its peer, instructing it how to handle the
message when it is received. RRP does this by attaching a header to the
message. Generally speaking, a header is a small data structure—from a
few bytes to a few dozen bytes—that is used among peers to communi-
cate with each other. As the name suggests, headers are usually attached
to the front of a message. In some cases, however, this peer-to-peer con-
trol information is sent at the end of the message, in which case it is called
a trailer. The exact format for the header attached by RRP is defined by its
protocol specification. The rest of the message—that is, the data being
transmitted on behalf of the application—is called the message’s body
or payload. We say that the application’s data is encapsulated in the new
message created by RRP.



30

CHAPTER 1 Foundation

This process of encapsulation is then repeated at each level of the pro-
tocol graph; for example, HHP encapsulates RRP’s message by attaching
a header of its own. If we now assume that HHP sends the message to
its peer over some network, then when the message arrives at the des-
tination host, it is processed in the opposite order: HHP first interprets
the HHP header at the front of the message (i.e., takes whatever action is
appropriate given the contents of the header) and passes the body of the
message (but not the HHP header) up to RRP, which takes whatever action
is indicated by the RRP header that its peer attached and passes the body
of the message (but not the RRP header) up to the application program.
The message passed up from RRP to the application on host 2 is exactly
the same message as the application passed down to RRP on host 1; the
application does not see any of the headers that have been attached to
it to implement the lower-level communication services. This whole pro-
cess is illustrated in Figure 1.12. Note that in this example, nodes in the

Host 1 Host 2
Application Application
program program
RRP RRP
'RRP| Data | 'RRP] Data |
HHP HHP

— | HHP | RRP | Data | —

M FIGURE 1.12 High-level messages are encapsulated inside of low-level messages.



1.3 Network architecture 31

network (e.g., switches and routers) may inspect the HHP header at the
front of the message.

Note that when we say a low-level protocol does not interpret the mes-
sage it is given by some high-level protocol, we mean that it does not
know how to extract any meaning from the data contained in the mes-
sage. It is sometimes the case, however, that the low-level protocol applies
some simple transformation to the data it is given, such as to compress
or encrypt it. In this case, the protocol is transforming the entire body
of the message, including both the original application’s data and all the
headers attached to that data by higher-level protocols.

Multiplexing and Demultiplexing

Recall from Section 1.2.3 that a fundamental idea of packet switching is
to multiplex multiple flows of data over a single physical link. This same
idea applies up and down the protocol graph, not just to switching nodes.
In Figure 1.11, for example, we can think of RRP as implementing a logical
communication channel, with messages from two different applications
multiplexed over this channel at the source host and then demultiplexed
back to the appropriate application at the destination host.

Practically speaking, this simply means that the header that RRP
attaches to its messages contains an identifier that records the application
to which the message belongs. We call this identifier RRP’s demultiplexing
key, or demux key for short. At the source host, RRP includes the appro-
priate demux key in its header. When the message is delivered to RRP on
the destination host, it strips its header, examines the demux key, and
demultiplexes the message to the correct application.

RRP is not unique in its support for multiplexing; nearly every protocol
implements this mechanism. For example, HHP has its own demux key
to determine which messages to pass up to RRP and which to pass up
to MSP. However, there is no uniform agreement among protocols—even
those within a single network architecture—on exactly what constitutes a
demux key. Some protocols use an 8-bit field (meaning they can support
only 256 high-level protocols), and others use 16- or 32-bit fields. Also,
some protocols have a single demultiplexing field in their header, while
others have a pair of demultiplexing fields. In the former case, the same
demux key is used on both sides of the communication, while in the latter
case each side uses a different key to identify the high-level protocol (or
application program) to which the message is to be delivered.



32

CHAPTER 1 Foundation

The 7-Layer Model

The ISO was one of the first organizations to formally define a common
way to connect computers. Their architecture, called the Open Systems
Interconnection (OSI) architecture and illustrated in Figure 1.13, defines a
partitioning of network functionality into seven layers, where one or more
protocols implement the functionality assigned to a given layer. In this
sense, the schematic given in Figure 1.13 is not a protocol graph, per se,
but rather a reference model for a protocol graph. It is often referred to as
the 7-layer model.

Starting at the bottom and working up, the physical layer handles the
transmission of raw bits over a communications link. The data link layer
then collects a stream of bits into a larger aggregate called a frame. Net-
work adaptors, along with device drivers running in the node’s operating

End host End host
Application Application
| |
Presentation Presentation
| |
Session Session
| |
Transport Transport
| |
Net\ivork Network Network Net\ivork
Data link Date! link Date! link Data link
| | | |
Physical Physical Physical Physical

One or more nodes
within the network

M FIGURE 1.13 The 0SI 7-layer model.



J
I
(Rl

1.3 Network architecture

system, typically implement the data link level. This means that frames,
not raw bits, are actually delivered to hosts. The network layer handles
routing among nodes within a packet-switched network. At this layer, the
unit of data exchanged among nodes is typically called a packet rather
than a frame, although they are fundamentally the same thing. The lower
three layers are implemented on all network nodes, including switches
within the network and hosts connected to the exterior of the network.
The transport layer then implements what we have up to this point been
calling a process-to-process channel. Here, the unit of data exchanged is
commonly called a message rather than a packet or a frame. The trans-
port layer and higher layers typically run only on the end hosts and not
on the intermediate switches or routers.

There is less agreement about the definition of the top three layers,
in part because they are not always all present, as we will see below.
Skipping ahead to the top (seventh) layer, we find the application layer.
Application layer protocols include things like the Hypertext Transfer Pro-
tocol (HTTP), which is the basis of the World Wide Web and is what
enables web browsers to request pages from web servers. Below that,
the presentation layer is concerned with the format of data exchanged
between peers—for example, whether an integer is 16, 32, or 64 bits long,
whether the most significant byte is transmitted first or last, or how a
video stream is formatted. Finally, the session layer provides a name space
that is used to tie together the potentially different transport streams that
are part of a single application. For example, it might manage an audio
stream and a video stream that are being combined in a teleconferencing
application.

1.3.2 Internet Architecture

The Internet architecture, which is also sometimes called the TCP/IP
architecture after its two main protocols, is depicted in Figure 1.14. An
alternative representation is given in Figure 1.15. The Internet architec-
ture evolved out of experiences with an earlier packet-switched network
called the ARPANET. Both the Internet and the ARPANET were funded by
the Advanced Research Projects Agency (ARPA), one of the research and
development funding agencies of the U.S. Department of Defense. The
Internet and ARPANET were around before the OSI architecture, and the
experience gained from building them was a major influence on the OSI
reference model.

33



34

CHAPTER 1 Foundation

‘FTPI |HTTP| | NVI |TFTP|

TCP UDP
IP
| NET1| | NET2| | NET,,I
M FIGURE 1.14 Intemet protocol graph.
Application
TCP | UDP
P |
Subnetwork

M FIGURE 1.15 Alternative view of the Internet architecture. The subnetwork layer was historically referred to as the
network layer and is now often referred to as the layer or simply layer 2.

While the 7-layer OSI model can, with some imagination, be applied
to the Internet, a 4-layer model is often used instead. At the lowest level
is a wide variety of network protocols, denoted NET;, NET3, and so
on. In practice, these protocols are implemented by a combination of
hardware (e.g., a network adaptor) and software (e.g., a network device
driver). For example, you might find Ethernet or wireless protocols (such
as the 802.11 Wi-Fi standards) at this layer. (These protocols in turn may
actually involve several sublayers, but the Internet architecture does not
presume anything about them.) The second layer consists of a single
protocol—the Internet Protocol (IP). This is the protocol that supports the
interconnection of multiple networking technologies into a single, logical
internetwork. The third layer contains two main protocols—the Trans-
mission Control Protocol (TCP) and the User Datagram Protocol (UDP).
TCP and UDP provide alternative logical channels to application pro-
grams: TCP provides a reliable byte-stream channel, and UDP provides
an unreliable datagram delivery channel (datagram may be thought of as
a synonym for message). In the language of the Internet, TCP and UDP



1.3 Network architecture

are sometimes called end-to-end protocols, although it is equally correct
to refer to them as transport protocols.

Running above the transport layer is a range of application protocols,
such as HTTP FTP, Telnet (remote login), and the Simple Mail Transfer
Protocol (SMTP), that enable the interoperation of popular applications.
To understand the difference between an application layer protocol and
an application, think of all the different World Wide Web browsers that
are or have been available (e.g., Firefox, Safari, Netscape, Mosaic, Internet
Explorer). There is a similarly large number of different implementations
of web servers. The reason that you can use any one of these application
programs to access a particular site on the Web is that they all conform
to the same application layer protocol: HTTP. Confusingly, the same term
sometimes applies to both an application and the application layer pro-
tocol that it uses (e.g., FTP is often used as the name of an application that
implements the FTP protocol).

Most people who work actively in the networking field are familiar with
both the Internet architecture and the 7-layer OSI architecture, and there
is general agreement on how the layers map between architectures. The
Internet’s application layer is considered to be at layer 7, its transport
layer is layer 4, the IP (internetworking or just network) layer is layer 3,
and the link or subnet layer below IP is layer 2.

The Internet architecture has three features that are worth highlight-
ing. First, as best illustrated by Figure 1.15, the Internet architecture does
not imply strict layering. The application is free to bypass the defined
transport layers and to directly use IP or one of the underlying net-
works. In fact, programmers are free to define new channel abstractions
or applications that run on top of any of the existing protocols.

Second, if you look closely at the protocol graph in Figure 1.14, you will
notice an hourglass shape—wide at the top, narrow in the middle, and
wide at the bottom. This shape actually reflects the central philosophy of
the architecture. That is, IP serves as the focal point for the architecture—
it defines a common method for exchanging packets among a wide
collection of networks. Above IP there can be arbitrarily many transport
protocols, each offering a different channel abstraction to application
programs. Thus, the issue of delivering messages from host to host is com-
pletely separated from the issue of providing a useful process-to-process
communication service. Below IP, the architecture allows for arbitrarily

35



36

CHAPTER 1 Foundation

many different network technologies, ranging from Ethernet to wireless
to single point-to-point links.

A final attribute of the Internet architecture (or more accurately, of the
IETF culture) is that in order for a new protocol to be officially included in
the architecture, there must be both a protocol specification and at least
one (and preferably two) representative implementations of the specifica-
tion. The existence of working implementations is required for standards
to be adopted by the IETE This cultural assumption of the design com-
munity helps to ensure that the architecture’s protocols can be efficiently
implemented. Perhaps the value the Internet culture places on working
software is best exemplified by a quote on T-shirts commonly worn at
IETF meetings:

We reject kings, presidents, and voting. We believe in rough consensus

and running code.
(David Clark)

Of these three attributes of the Internet architecture, the hourglass design phi-
losophy is important enough to bear repeating. The hourglass’s narrow waist
represents a minimal and carefully chosen set of global capabilities that allows
both higher-level applications and lower-level communication technologies to
coexist, share capabilities, and evolve rapidly. The narrow-waisted model is criti-
cal to the Internet’s ability to adapt rapidly to new user demands and changing
technologies.

1.4 IMPLEMENTING NETWORK SOFTWARE

Network architectures and protocol specifications are essential things,
but a good blueprint is not enough to explain the phenomenal success
of the Internet: The number of computers connected to the Internet has
grown exponentially for almost 3 decades (although precise numbers are
now hard to come by). The number of users of the Internet was estimated
to be around 1.8 billion in 2009—an impressive percentage of the world’s
population.

What explains the success of the Internet? There are certainly many
contributing factors (including a good architecture), but one thing that
has made the Internet such a runaway success is the fact that so much of
its functionality is provided by software running in general-purpose com-
puters. The significance of this is that new functionality can be added
readily with “just a small matter of programming.” As a result, new



1.4 Implementing network software 37

applications and services—electronic commerce, videoconferencing, and
IP telephony, to name a few—have been showing up at an incredible pace.

A related factor is the massive increase in computing power available
in commodity machines. Although computer networks have always been
capable in principle of transporting any kind of information, such as dig-
ital voice samples, digitized images, and so on, this potential was not
particularly interesting if the computers sending and receiving that data
were too slow to do anything useful with the information. Virtually all of
today’s computers are capable of playing back digitized voice at full speed
and can display video at a speed and resolution that are useful for some
(but by no means all) applications. Thus, today’s networks are increas-
ingly used to carry multimedia, and their support for it will only improve
as computing hardware becomes faster.

In the years since the first edition of this book appeared, the writing
of networked applications has become a much more mainstream activity
and less a job just for a few specialists. Many factors have played into this,
including better tools to make the job easier for nonspecialists and the
opening up of new markets such as applications for smartphones.

The point to note is that knowing how to implement network software
is an essential part of understanding computer networks, and while the
odds are you will not be tasked to implement a low-level protocol like IP,
there is a good chance you will find reason to implement an application-
level protocol—the elusive “killer app” that will lead to unimaginable
fame and fortune. To get you started, this section introduces some of
the issues involved in implementing a network application on top of
the Internet. Typically, such programs are simultaneously an application
(i.e., designed to interact with users) and a protocol (i.e., communicates
with peers across the network). Chapter 9 concludes the book by return-
ing to the topic of network applications (application-level protocols) by
exploring several popular examples.

14.1 Application Programming Interface (Sockets)

The place to start when implementing a network application is the
interface exported by the network. Since most network protocols are
implemented in software (especially those high in the protocol stack), and
nearly all computer systems implement their network protocols as part
of the operating system, when we refer to the interface “exported by the
network,” we are generally referring to the interface that the OS provides



38

-

CHAPTER 1 Foundation

to its networking subsystem. This interface is often called the network
application programming interface (API).

Although each operating system is free to define its own network API
(and most have), over time certain of these APIs have become widely sup-
ported; that is, they have been ported to operating systems other than
their native system. This is what has happened with the socket interface
originally provided by the Berkeley distribution of Unix, which is now sup-
ported in virtually all popular operating systems, and is the foundation of
language-specific interfaces, such as the Java socket library. The advan-
tages of industry-wide support for a single API are that applications can
be easily ported from one OS to another and developers can easily write
applications for multiple operating systems.

Before describing the socket interface, it is important to keep two
concerns separate in your mind. Each protocol provides a certain set
of services, and the API provides a syntax by which those services can
be invoked on a particular computer system. The implementation is
then responsible for mapping the tangible set of operations and objects
defined by the API onto the abstract set of services defined by the proto-
col. If you have done a good job of defining the interface, then it will be
possible to use the syntax of the interface to invoke the services of many
different protocols. Such generality was certainly a goal of the socket
interface, although it’s far from perfect.

The main abstraction of the socket interface, not surprisingly, is the
socket. A good way to think of a socket is as the point where a local
application process attaches to the network. The interface defines opera-
tions for creating a socket, attaching the socket to the network, sending/
receiving messages through the socket, and closing the socket. To sim-
plify the discussion, we will limit ourselves to showing how sockets are
used with TCP.

The first step is to create a socket, which is done with the following
operation:

int socket(int domain, int type, int protocol)

The reason that this operation takes three arguments is that the socket
interface was designed to be general enough to support any underlying
protocol suite. Specifically, the domain argument specifies the protocol
family that is going to be used: PF_INET denotes the Internet family,
PF_UNIX denotes the Unix pipe facility, and PF_PACKET denotes direct




1.4 Implementing network software 39

access to the network interface (i.e., it bypasses the TCP/IP protocol
stack). The type argument indicates the semantics of the communica-
tion. SOCK_STREAM is used to denote a byte stream. SOCK_DGRAM
is an alternative that denotes a message-oriented service, such as that
provided by UDP. The protocol argument identifies the specific proto-
col that is going to be used. In our case, this argument is UNSPEC
because the combination of PF_INET and SOCK_STREAM implies TCP.
Finally, the return value from socket is a handle for the newly created
socket—that is, an identifier by which we can refer to the socket in
the future. It is given as an argument to subsequent operations on this
socket.

The next step depends on whether you are a client or a server. On a
server machine, the application process performs a passive open—the
server says that it is prepared to accept connections, but it does not actu-
ally establish a connection. The server does this by invoking the following
three operations:

int bind(int socket, struct sockaddr *address, int addr_len)
int listen(int socket, int backlog)
int accept(int socket, struct sockaddr *address, int *addr_len)

The bind operation, as its name suggests, binds the newly created
socket to the specified address. This is the network address of the local
participant—the server. Note that, when used with the Internet protocols,
address is a data structure that includes both the IP address of the server
and a TCP port number. (As we will see in Chapter 5, ports are used to
indirectly identify processes. They are a form of demux keys as defined
in Section 1.3.1.) The port number is usually some well-known number
specific to the service being offered; for example, web servers commonly
accept connections on port 80.

The listen operation then defines how many connections can be pend-
ing on the specified socket. Finally, the accept operation carries out the
passive open. It is a blocking operation that does not return until a remote
participant has established a connection, and when it does complete it
returns a new socket that corresponds to this just-established connec-
tion, and the address argument contains the remote participant’s address.
Note that when accept returns, the original socket that was given as an
argument still exists and still corresponds to the passive open; it is used in
future invocations of accept.



40 CHAPTER 1 Foundation

On the client machine, the application process performs an active
open; that is, it says who it wants to communicate with by invoking the
following single operation:

int connect(int socket, struct sockaddr *address, int addr_len)

This operation does not return until TCP has successfully established a
connection, at which time the application is free to begin sending data. In
this case, address contains the remote participant’s address. In practice,
the client usually specifies only the remote participant’s address and lets
the system fill in the local information. Whereas a server usually listens
for messages on a well-known port, a client typically does not care which
port it uses for itself; the OS simply selects an unused one.

Once a connection is established, the application processes invoke the
following two operations to send and receive data:

int send(int socket, char *message, int msg_len, int flags)
int recv(int socket, char *buffer, int buf_len, int flags)

The first operation sends the given message over the specified socket,
while the second operation receives a message from the specified socket
into the given buffer. Both operations take a set of flags that control certain
details of the operation.

14.2 Example Application

We now show the implementation of a simple client/server program that
uses the socket interface to send messages over a TCP connection. The
program also uses other Unix networking utilities, which we introduce as
we go. Our application allows a user on one machine to type in and send
text to a user on another machine. It is a simplified version of the Unix
talk program, which is similar to the program at the core of an instant
messaging application.

Client

We start with the client side, which takes the name of the remote machine
as an argument. It calls the Unix utility gethostbyname to translate this
name into the remote host’s IP address. The next step is to construct
the address data structure (sin) expected by the socket interface. Notice
that this data structure specifies that we’ll be using the socket to con-
nect to the Internet (AF_INET). In our example, we use TCP port 5432 as
the well-known server port; this happens to be a port that has not been



1.4 Implementing network software 11

assigned to any other Internet service. The final step in setting up the con-
nection is to call socket and connect. Once the connect operation returns,
the connection is established and the client program enters its main loop,
which reads text from standard input and sends it over the socket.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

j#define SERVER_PORT 5432
jtdefine MAX_LINE 256

int
main(int argc, char * argv[])
{
FILE *fp;
struct hostent xhp;
struct sockaddr_in sin;
char xhost;
char buf[MAX_LINE];
int s;
int Ten;

if (argc==2) {
host = argv[1];

}

else {
fprintf(stderr, "usage: simplex-talk host\n");
exit(l);

/* translate host name into peer's IP address =/

hp = gethostbyname(host);

if (rhp) |
fprintf(stderr, "simplex-talk: unknown host: %s\n", host);
exit(l);



42

CHAPTER 1 Foundation

/* build address data structure x/

bzero((char x)&sin, sizeof(sin));

sin.sin_family = AF_INET;

bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
sin.sin_port = htons(SERVER_PORT);

/* active open */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("simplex-talk: socket");
exit(l);
}
if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0)
{
perror("simplex-talk: connect");
close(s);
exit(l);
}
/* main Tloop: get and send Tines of text x/
while (fgets(buf, sizeof(buf), stdin)) {
buf[MAX_LINE-1] = '\0";
len = strlen(buf) + 1;
send(s, buf, Ten, 0);

Server

The server is equally simple. It first constructs the address data structure
by filling in its own port number (SERVER_PORT). By not specifying an IP
address, the application program is willing to accept connections on any
of the local host’s IP addresses. Next, the server performs the preliminary
steps involved in a passive open; it creates the socket, binds it to the local
address, and sets the maximum number of pending connections to be
allowed. Finally, the main loop waits for a remote host to try to connect,
and when one does, it receives and prints out the characters that arrive
on the connection.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>



#include <netinet/in.h>
#include <netdb.h>

jtdefine SERVER_PORT

5432

j#define MAX_PENDING 5
jtdefine MAX_LINE 256

int

main()

{

struct sockaddr_in sin;
char buf[MAX_LINE];

int Ten;

int s, new_s;

/* build address data structure =%/
bzero((char x)&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(SERVER_PORT);

/* setup passive open */

if ((s = socket(PF_INET, SOCK_STREAM,
perror("simplex-talk: socket");
exit(l);

}

if ((bind(s,
perror("simplex-talk: bind");
exit(l);

(struct sockaddr *)&sin,

}
Tisten(s, MAX_PENDING);

1.4 Implementing network software

0)) < 0) {

sizeof(sin))) < 0) {

/* wait for connection, then receive and print text =*/

while(1) {
if ((new_s = accept(s,
perror("simplex-talk: accept");
exit(l);
}

(struct sockaddr *)&sin, &len)) < 0) {

while (len = recv(new_s, buf, sizeof(buf), 0))

43



44 CHAPTER 1 Foundation

fputs(buf, stdout);
close(new_s);

1.5 PERFORMANCE

Up to this point, we have focused primarily on the functional aspects of
network. Like any computer system, however, computer networks are also
expected to perform well. This is because the effectiveness of computa-
tions distributed over the network often depends directly on the efficiency
with which the network delivers the computation’s data. While the old
programming adage “first get it right and then make it fast” is valid in
many settings, in networking it is usually necessary to “design for perfor-
mance.” It is therefore important to understand the various factors that
impact network performance.

1.5.1 Bandwidth and Latency

Network performance is measured in two fundamental ways: bandwidth
(also called throughput) and latency (also called delay). The bandwidth of
a network is given by the number of bits that can be transmitted over the
network in a certain period of time. For example, a network might have
a bandwidth of 10 million bits/second (Mbps), meaning that it is able to
deliver 10 million bits every second. Itis sometimes useful to think of band-
widthintermsofhowlongittakestotransmiteachbitofdata. Ona10-Mbps
network, for example, it takes 0.1 microsecond (s) to transmit each bit.

While you can talkabout the bandwidth of the network asawhole, some-
times youwantto be more precise, focusing, for example, on thebandwidth
of a single physical link or of a logical process-to-process channel. At the
physical level, bandwidth is constantly improving, with no end in sight.
Intuitively, if you think of a second of time as a distance you could mea-
sure with a ruler and bandwidth as how many bits fit in that distance, then
you can think of each bit as a pulse of some width. For example, each bit
on a 1-Mbps link is 1 us wide, while each bit on a 2-Mbps link is 0.5 ps
wide, asillustrated in Figure 1.16. The more sophisticated the transmitting
and receiving technology, the narrower each bit can become and, thus, the
higher the bandwidth. Forlogical process-to-process channels, bandwidth
is also influenced by other factors, including how many times the software
that implements the channel has to handle, and possibly transform, each
bit of data.



Bandwidth and throughput are two of the most confusing terms used in net-
working. While we could try to give you a precise definition of each term,
it is important that you know how other people might use them and for
you to be aware that they are often used interchangeably. First of all, band-
width is literally a measure of the width of a frequency band. For example,
a voice-grade telephone line supports a frequency band ranging from 300
to 3300 Hz; it is said to have a bandwidth of 3300 Hz — 300 Hz = 3000 Hz.
If you see the word bandwidth used in a situation in which it is being mea-
sured in hertz, then it probably refers to the range of signals that can be
accommodated.

When we talk about the bandwidth of a communication link, we nor-
mally refer to the number of bits per second that can be transmitted on
the link. This is also sometimes called the data rate. We might say that the
bandwidth of an Ethernet link is 10 Mbps. A useful distinction can also be
made, however, between the maximum data rate that is available on the link
and the number of bits per second that we can actually transmit over the
link in practice. We tend to use the word throughput to refer to the mea-
sured performance of a system. Thus, because of various inefficiencies of
implementation, a pair of nodes connected by a link with a bandwidth of
10 Mbps might achieve a throughput of only 2 Mbps. This would mean that
an application on one host could send data to the other host at 2 Mbps.

Finally, we often talk about the bandwidth requirements of an applica-
tion. This is the number of bits per second that it needs to transmit over
the network to perform acceptably. For some applications, this might be
“whatever | can get”; for others, it might be some fixed number (preferably
no more than the available link bandwidth); and for others, it might be a
number that varies with time. We will provide more on this topic later in this
section.

1 second

1 second

—

M FIGURE 1.16 Bits transmitted at a particular bandwidth can be regarded as having some width: (a) bits transmitted at
1 Mbps (each bitis T s wide); (b) bits transmitted at 2 Mbps (each bitis 0.5 s wide).

1.5 Performance

45



46

-

CHAPTER 1 Foundation

The second performance metric, latency, corresponds to how long it
takes a message to travel from one end of a network to the other. (As
with bandwidth, we could be focused on the latency of a single link or an
end-to-end channel.) Latency is measured strictly in terms of time. For
example, a transcontinental network might have a latency of 24 millisec-
onds (ms); that is, it takes a message 24 ms to travel from one coast of
North America to the other. There are many situations in which it is more
important to know how long it takes to send a message from one end of
a network to the other and back, rather than the one-way latency. We call
this the round-trip time (RTT) of the network.

We often think of latency as having three components. First, there is
the speed-of-light propagation delay. This delay occurs because nothing,
including a bit on a wire, can travel faster than the speed of light. If you
know the distance between two points, you can calculate the speed-of-
light latency, although you have to be careful because light travels across
different media at different speeds: It travels at 3.0 x 10® m/s in a vacuum,
2.3 x 10® m/s in a copper cable, and 2.0 x 10°> m/s in an optical fiber. Sec-
ond, there is the amount of time it takes to transmit a unit of data. This is
a function of the network bandwidth and the size of the packet in which
the data is carried. Third, there may be queuing delays inside the network,
since packet switches generally need to store packets for some time before
forwarding them on an outbound link, as discussed in Section 1.2.3. So,
we could define the total latency as

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight

Transmit = Size/Bandwidth

where Distance is the length of the wire over which the data will travel,
SpeedOfLight is the effective speed of light over that wire, Size is the size of
the packet, and Bandwidth is the bandwidth at which the packet is trans-
mitted. Note that if the message contains only one bit and we are talking
about a single link (as opposed to a whole network), then the Transmit and
Queue terms are not relevant, and latency corresponds to the propagation
delay only.

Bandwidth and latency combine to define the performance charac-
teristics of a given link or channel. Their relative importance, however,
depends on the application. For some applications, latency dominates




bandwidth. For example, a client that sends a 1-byte message to a server
and receives a 1-byte message in return is latency bound. Assuming
that no serious computation is involved in preparing the response, the
application will perform much differently on a transcontinental chan-
nel with a 100-ms RTT than it will on an across-the-room channel with
a 1-ms RTT. Whether the channel is 1 Mbps or 100 Mbps is relatively
insignificant, however, since the former implies that the time to transmit
a byte (Transmit) is 8 s and the latter implies Transmit = 0.08 ps.

In contrast, consider a digital library program that is being asked to
fetch a 25-megabyte (MB) image—the more bandwidth that is available,
the faster it will be able to return the image to the user. Here, the band-
width of the channel dominates performance. To see this, suppose that
the channel has a bandwidth of 10 Mbps. It will take 20 seconds to trans-
mit the image (25 x 10° x 8 bits +10 x 10° Mbps = 20 seconds), making it
relatively unimportant if the image is on the other side of a 1-ms channel
or a 100-ms channel; the difference between a 20.001-second response
time and a 20.1-second response time is negligible.

Figure 1.17 gives you a sense of how latency or bandwidth can domi-
nate performance in different circumstances. The graph shows how long
it takes to move objects of various sizes (1 byte, 2 KB, 1 MB) across net-
works with RTTs ranging from 1 to 100 ms and link speeds of either 1.5
or 10 Mbps. We use logarithmic scales to show relative performance. For
a 1-byte object (say, a keystroke), latency remains almost exactly equal to
the RTT, so that you cannot distinguish between a 1.5-Mbps network and
a 10-Mbps network. For a 2-KB object (say, an email message), the link
speed makes quite a difference on a 1-ms RTT network but a negligible
difference on a 100-ms RTT network. And for a 1-MB object (say, a digital
image), the RTT makes no difference—it is the link speed that dominates
performance across the full range of RTT.

Note that throughout this book we use the terms latency and delay in a
generic way to denote how long it takes to perform a particular function,
such as delivering a message or moving an object. When we are referring
to the specific amount of time it takes a signal to propagate from one end
of a link to another, we use the term propagation delay. Also, we make
it clear in the context of the discussion whether we are referring to the
one-way latency or the round-trip time.

As an aside, computers are becoming so fast that when we connect
them to networks, it is sometimes useful to think, at least figuratively, in

1.5 Performance

47



48 CHAPTER 1 Foundation

10,000 -
5000 -
2000
1000
_ 500 A
g
- 1-MB object, 1.5-Mbps link ———
3 200 1 ) )

S 1-MB object, 10-Mbps link ——
© 100 ~ P 2-KB object, 1.5-Mbps link — — —
7.

- /,2'// 2-KB object, 10-Mbps link — — —
T Paers 1-byte object, 1.5-Mbps link --- ---

e oo
o Ay _ i i [
e 20 - - ~ ///, 1-byte object, 10-Mbps link
- 7
L - i
10 o
54 -
2 .
1 T 1
10 100
RTT (ms)

B FIGURE 1.17 Perceived latency (response time) versus round-trip time for various object sizes and link speeds.

terms of instructions per mile. Consider what happens when a computer
that is able to execute 1 billion instructions per second sends a message
out on a channel with a 100-ms RTT. (To make the math easier, assume
that the message covers a distance of 5000 miles.) If that computer sits
idle the full 100 ms waiting for a reply message, then it has forfeited
the ability to execute 100 million instructions, or 20,000 instructions per
mile. It had better have been worth going over the network to justify this
waste.

1.5.2 Delay x Bandwidth Product

It is also useful to talk about the product of these two metrics, often
called the delay x bandwidth product. Intuitively, if we think of a channel
between a pair of processes as a hollow pipe (see Figure 1.18), where the
latency corresponds to the length of the pipe and the bandwidth gives the



Delay

Bandwidth‘ . )

M FIGURE 1.18 Network as a pipe.

diameter of the pipe, then the delay x bandwidth product gives the vol-
ume of the pipe—the maximum number of bits that could be in transit
through the pipe at any given instant. Said another way, if latency (mea-
sured in time) corresponds to the length of the pipe, then given the width
of each bit (also measured in time) you can calculate how many bits fit in
the pipe. For example, a transcontinental channel with a one-way latency
of 50 ms and a bandwidth of 45 Mbps is able to hold

50 x 1073 s x 45 x 10° bits/s
=2.25 x 10° bits

or approximately 280 KB of data. In other words, this example channel
(pipe) holds as many bytes as the memory of a personal computer from
the early 1980s could hold.

The delay x bandwidth product is important to know when construct-
ing high-performance networks because it corresponds to how many bits
the sender must transmit before the first bit arrives at the receiver. If the
sender is expecting the receiver to somehow signal that bits are starting
to arrive, and it takes another channel latency for this signal to propagate
back to the sender, then the sender can send up one RTT x bandwidth
worth of data before hearing from the receiver that all is well. The bits in
the pipe are said to be “in flight,” which means that if the receiver tells the
sender to stop transmitting it might receive up to one RTT x bandwidth’s
worth of data before the sender manages to respond. In our example
above, that amount corresponds to 5.5 x 10° bits (671 KB) of data. On
the other hand, if the sender does not fill the pipe—send a whole RTT x
bandwidth product’s worth of data before it stops to wait for a signal—the
sender will not fully utilize the network.

Note that most of the time we are interested in the RTT scenario, which
we simply refer to as the delay x bandwidth product, without explic-
itly saying that “delay” is the RTT (i.e., the one-way delay multiplied

1.5 Performance

49



50

| the path taken by the fiber between two points will not be a straight line.
L}

CHAPTER 1 Foundation

by two). Usually, whether the “delay” in “delay x bandwidth” means
one-way latency or RTT is made clear by the context. Table 1.1 shows
some examples of RTT x bandwidth products for some typical network
links.

There are several pitfalls you need to be aware of when working with the
common units of networking—MB, Mbps, KB, and kbps. The first is to dis-
tinguish carefully between bits and bytes. Throughout this book, we always
use a lowercase b for bits and a capital B for bytes. The second is to be sure
you are using the appropriate definition of mega (M) and kilo (K). Mega, for
example, can mean either 220 or 10°. Similarly, kilo can be either 219 or 103
What is worse, in networking we typically use both definitions. Here’s why:

Network bandwidth, which is often specified in terms of Mbps, is typically
governed by the speed of the clock that paces the transmission of the bits.
A clock that is running at 10 MHz is used to transmit bits at 10 Mbps. Because
the mega in MHz means 105 hertz, Mbps is usually also defined as 10 bits
per second. (Similarly, kbps is 102 bits per second.) On the other hand, when
we talk about a message that we want to transmit, we often give its size
in kilobytes. Because messages are stored in the computer’'s memory, and
memory is typically measured in powers of two, the Kin KB is usually taken to
mean 219, (Similarly, MB usually means 229) When you put the two together,
it is not uncommon to talk about sending a 32-KB message over a 10-Mbps
channel, which should be interpreted to mean 32 x 210 8 bits are being
transmitted at a rate of 10 x 108 bits per second. This is the interpretation
we use throughout the book, unless explicitly stated otherwise.

The good news is that many times we are satisfied with a back-of-the-
envelope calculation, in which case it is perfectly reasonable to make the
approximation that 10% is really equal to 720 (making it easy to convert
between the two definitions of mega). This approximation introduces only
a 5% error. We can even make the approximation in some cases that a
byte has 10 bits, a 20% error but good enough for order-of-magnitude
estimates.

To help you in your quick-and-dirty calculations, 100 ms is a reasonable
number to use for a cross-country round-trip time—at least when the coun-
try in question is the United States—and 1 ms is a good approximation of
an RTT across a local area network. In the case of the former, we increase the
48-ms round-trip time implied by the speed of light over a fiber to 100 ms
because there are, as we have said, other sources of delay, such as the pro-
cessing time in the switches inside the network. You can also be sure that




Table 1.1 Sample Delay X Bandwidth Products

1.5 Performance

Bandwidth | One-way distance | Round-trip
Link type (typical) (typical) delay RTT X Bandwidth
Dial-up 56 kbps 10 km 87 s 5 bits
Wireless LAN 54 Mbps 50 m 0.33 us 18 bits
Satellite 45 Mbps 35,000 km 230 ms 10 Mb
Cross-country fiber 10 Gbps 4,000 km 40 ms 400 Mb

1.5.3 High-Speed Networks

The bandwidths available on today’s networks are increasing at a dra-
matic rate, and there is eternal optimism that network bandwidth will
continue to improve. This causes network designers to start thinking
about what happens in the limit or, stated another way, what is the impact
on network design of having infinite bandwidth available.

Although high-speed networks bring a dramatic change in the band-
width available to applications, in many respects their impact on how we
think about networking comes in what does not change as bandwidth
increases: the speed of light. To quote Scotty from Star Trek, “Ye cannae
change the laws of physics.”* In other words, “high speed” does not mean
that latency improves at the same rate as bandwidth; the transcontinental
RTT of a 1-Gbps link is the same 100 ms as it is for a 1-Mbps link.

To appreciate the significance of ever-increasing bandwidth in the face
of fixed latency, consider what is required to transmit a 1-MB file over a
1-Mbps network versus over a 1-Gbps network, both of which have an
RTT of 100 ms. In the case of the 1-Mbps network, it takes 80 round-trip
times to transmit the file; during each RTT, 1.25% of the file is sent. In con-
trast, the same 1-MB file doesn’t even come close to filling 1 RTT’s worth
of the 1-Gbps link, which has a delay x bandwidth product of 12.5 MB.

Figure 1.19 illustrates the difference between the two networks. In
effect, the 1-MB file looks like a stream of data that needs to be trans-
mitted across a 1-Mbps network, while it looks like a single packet on a
1-Gbps network. To help drive this point home, consider that a 1-MB file
is to a 1-Gbps network what a 1-KB packet is to a 1-Mbps network.

“4Scots dialect for “You cannot change the laws of physics.”

51



52 CHAPTER 1 Foundation

1 MB of data=80 pipes-full

1-Mbps cross-country link
)

1-Gbps cross-country link

1MB of data=1/12 pipe-full

M FIGURE 1.19 Relationship between bandwidth and latency. A 1-MB file would fill the 1-Mbps link 80 times but only
fill the 1-Gbps link 1/12 of one time.

Another way to think about the situation is that more data can be transmitted
during each RTT on a high-speed network, so much so that a single RTT becomes
a significant amount of time. Thus, while you wouldn’t think twice about the
difference between a file transfer taking 101 RTTs rather than 100 RTTs (a rela-
tive difference of only 1%), suddenly the difference between 1 RTT and 2 RTTs
is significant—a 100% increase. In other words, latency, rather than throughput,
starts to dominate our thinking about network design.

J

Perhaps the best way to understand the relationship between through-
put and latency is to return to basics. The effective end-to-end throughput
that can be achieved over a network is given by the simple relationship

Throughput = TransferSize/TransferTime

where TransferTime includes not only the elements of one-way Latency
identified earlier in this section, but also any additional time spent
requesting or setting up the transfer. Generally, we represent this relation-
ship as

TransferTime = RTT + 1/Bandwidth x TransferSize

We use RTT in this calculation to account for a request message being sent
across the network and the data being sent back. For example, consider a



S

1.5 Performance 53

situation where a user wants to fetch a 1-MB file across a 1-Gbps network
with a round-trip time of 100 ms. The TransferTime includes both the
transmit time for 1 MB (1/1 Gbps x 1 MB = 8 ms) and the 100-ms RTT, for
a total transfer time of 108 ms. This means that the effective throughput
will be

1MB/108 ms = 74.1 Mbps

not 1 Gbps. Clearly, transferring a larger amount of data will help improve
the effective throughput, where in the limit an infinitely large transfer size
will cause the effective throughput to approach the network bandwidth.
On the other hand, having to endure more than 1 RTT—for example, to
retransmit missing packets—will hurt the effective throughput for any
transfer of finite size and will be most noticeable for small transfers.

1.54 Application Performance Needs

The discussion in this section has taken a network-centric view of perfor-
mance; that is, we have talked in terms of what a given link or channel
will support. The unstated assumption has been that application pro-
grams have simple needs—they want as much bandwidth as the net-
work can provide. This is certainly true of the aforementioned digital
library program that is retrieving a 25-MB image; the more bandwidth
that is available, the faster the program will be able to return the image
to the user.

However, some applications are able to state an upper limit on how
much bandwidth they need. Video applications are a prime example.
Suppose one wants to stream a video that is one quarter the size of a stan-
dard TV screen; that is, it has a resolution of 352 by 240 pixels. If each pixel
is represented by 24 bits of information, as would be the case for 24-bit
color, then the size of each frame would be

(352 x 240 x 24)/8 = 247.5 KB

If the application needs to support a frame rate of 30 frames per second,
then it might request a throughput rate of 75 Mbps. The ability of the net-
work to provide more bandwidth is of no interest to such an application
because it has only so much data to transmit in a given period of time.

Unfortunately, the situation is not as simple as this example sug-
gests. Because the difference between any two adjacent frames in a video



54

CHAPTER 1 Foundation

stream is often small, it is possible to compress the video by transmit-
ting only the differences between adjacent frames. Each frame can also
be compressed because not all the detail in a picture is readily perceived
by a human eye. The compressed video does not flow at a constant rate,
but varies with time according to factors such as the amount of action and
detail in the picture and the compression algorithm being used. There-
fore, it is possible to say what the average bandwidth requirement will be,
but the instantaneous rate may be more or less.

The key issue is the time interval over which the average is computed.
Suppose that this example video application can be compressed down to
the point that it needs only 2 Mbps, on average. If it transmits 1 megabit
in a 1-second interval and 3 megabits in the following 1-second inter-
val, then over the 2-second interval it is transmitting at an average rate
of 2 Mbps; however, this will be of little consolation to a channel that
was engineered to support no more than 2 megabits in any one second.
Clearly, just knowing the average bandwidth needs of an application will
not always suffice.

Generally, however, it is possible to put an upper bound on how large
a burst an application like this is likely to transmit. A burst might be
described by some peak rate that is maintained for some period of time.
Alternatively, it could be described as the number of bytes that can be sent
at the peak rate before reverting to the average rate or some lower rate.
If this peak rate is higher than the available channel capacity, then the
excess data will have to be buffered somewhere, to be transmitted later.
Knowing how big of a burst might be sent allows the network designer to
allocate sufficient buffer capacity to hold the burst. We will return to the
subject of describing bursty traffic accurately in Chapter 6.

Analogous to the way an application’s bandwidth needs can be some-
thing other than “all it can get,” an application’s delay requirements may
be more complex than simply “as little delay as possible.” In the case of
delay, it sometimes doesn’t matter so much whether the one-way latency
of the network is 100 ms or 500 ms as how much the latency varies from
packet to packet. The variation in latency is called jitter.

Consider the situation in which the source sends a packet once every
33 ms, as would be the case for a video application transmitting frames
30 times a second. If the packets arrive at the destination spaced out
exactly 33 ms apart, then we can deduce that the delay experienced
by each packet in the network was exactly the same. If the spacing




Interpacket gap

Packet

:

1.6 Summary

Packet

Network
source

)

sink

M FIGURE 1.20 Network-induced jtter.

between when packets arrive at the destination—sometimes called the
inter-packet gap—is variable, however, then the delay experienced by the
sequence of packets must have also been variable, and the network is said
to have introduced jitter into the packet stream, as shown in Figure 1.20.
Such variation is generally not introduced in a single physical link, but it
can happen when packets experience different queuing delays in a mul-
tihop packet-switched network. This queuing delay corresponds to the
Queue component of latency defined earlier in this section, which varies
with time.

To understand the relevance of jitter, suppose that the packets being
transmitted over the network contain video frames, and in order to dis-
play these frames on the screen the receiver needs to receive a new one
every 33 ms. If a frame arrives early, then it can simply be saved by the
receiver until it is time to display it. Unfortunately, if a frame arrives late,
then the receiver will not have the frame it needs in time to update the
screen, and the video quality will suffer; it will not be smooth. Note that
it is not necessary to eliminate jitter, only to know how bad it is. The
reason for this is that if the receiver knows the upper and lower bounds
on the latency that a packet can experience, it can delay the time at
which it starts playing back the video (i.e., displays the first frame) long
enough to ensure that in the future it will always have a frame to dis-
play when it needs it. The receiver delays the frame, effectively smoothing
out the jitter, by storing it in a buffer. We return to the topic of jitter in
Chapter 9.

1.6 SUMMARY

Computer networks, and in particular the Internet, have experienced
enormous growth over the past 30 years and are now able to provide a



56 CHAPTER 1 Foundation

wide range of services, from conducting business to providing access to
entertainment to enabling social networks. Much of this growth can be
attributed to the general-purpose nature of computer networks, and in
particular to the ability to add new functionality to the network by writing
software that runs on affordable, high-performance computers. With this
in mind, the overriding goal of this book is to describe computer networks
in such a way that when you finish reading it you should feel that, if you
had an army of programmers at your disposal, you could actually build a
fully functional computer network from the ground up. This chapter lays
the foundation for realizing this goal.

The first step we have taken toward this goal is to carefully identify
exactly what we expect from a network. For example, a network must
first provide cost-effective and scalable connectivity among a set of com-
puters. This is accomplished through a nested interconnection of nodes
and links and by sharing this hardware base through the use of statis-
tical multiplexing. This results in a packet-switched network, on top of
which we then define a collection of process-to-process communication
services.

The second step is to define a layered architecture that will serve as
a blueprint for our design. The central objects of this architecture are
network protocols. Protocols both provide a communication service to
higher-level protocols and define the form and meaning of messages
exchanged with their peers running on other machines. We have briefly
surveyed two of the most widely used architectures: the 7-layer OSI archi-
tecture and the Internet architecture. This book most closely follows
the Internet architecture, both in its organization and as a source of
examples.

The third step is to implement the network’s protocols and application
programs, usually in software. Both protocols and applications need an
interface by which they invoke the services of other protocols in the net-
work subsystem. The socket interface is the most widely used interface
between application programs and the network subsystem, but a slightly
different interface is typically used within the network subsystem.

Finally, the network as a whole must offer high performance, where
the two performance metrics we are most interested in are latency and
throughput. As we will see in later chapters, it is the product of these
two metrics—the so-called delay x bandwidth product—that often plays
a critical role in protocol design.



t's apparent that computer networks have become an integral part
Iof the everyday lives of vast numbers of people. What began over
40 years ago as experimental systems like the ARPANET—connecting
mainframe computers over long-distance telephone lines—has
turned into a pervasive part of our lives. It has also become

big business, and where there is big business there are lots

of players. In this case, we have the computing industry,

which has become increasingly involved in integrating
computation and communication; the telephone and

cable operators, which recognize the market for carrying

all sorts of data, not just voice and television; and, per-

haps most importantly, the many entrepreneurs creat-

ing new Internet-based applications and services such

as voice over IP (VOIP), online games, virtual worlds,

WHAT’S NEXT: CLOUD COMPUTING

search services, content hosting, electronic com-
merce, and so on. It's noteworthy that one of today’s
biggest names in “cloud computing,” Amazon.com,
achieved that position by first adopting Internet tech-
nologies to sell consumer products such as books and
then making their computing infrastructure available to
others as a service over the network.

A few years ago, a reasonable goal for networking might

have been to provide network access to every home, but in

developed countries at least that process is now far along. Ubig-

uitous networking now includes getting access from anywhere,

including on planes and trains, and on an increasingly wide range

of devices. Whereas the Internet largely evolved in an era of fixed main-

frame and then personal computers, today the set of devices to be con-

nected together includes mobile phones and even smaller devices such as

sensors (which might also be mobile). Thus, it seems clear that the Internet will

have to continue to scale to support several orders of magnitude more devices than

today and that many of these devices will be mobile, perhaps intermittently con-

nected over wireless links of highly variable quality. At the same time, these devices

will be connected to large data centers—filled with tens of thousands of processors

and many petabytes of storage—that will store and analyze the data being gener-

ated, all with the hope of enabling even more powerful applications that help us

navigate our daily lives. And, the devices that we carry are often just a means of

accessing “the cloud”—the amorphous set of machines that store and process our

documents, photos, data, social networks, etc., which we expect to be able to access
from anywhere.

1.6 Summary

57



58

CHAPTER 1 Foundation

Predictions about the future of networking have a tendency to look silly a few
years down the road (many high-profile predictions about an imminent meltdown
of the Internet, for example, have failed to come true). What we can say with con-
fidence is that there remain plenty of technical challenges—issues of connectivity,
manageability, scalability, usability, performance, reliability, security, fairness, cost-
effectiveness, etc.—that stand between the current state of the art and the sort of
global, ubiquitous, heterogeneous network that many believe is iminent. In other
words, networking as a field is very much alive with interesting problems still to be
solved, and it is these problems and the tools for solving them that are the focus of
this book.

B FURTHER READING

Computer networks are not the first communication-oriented technol-
ogy to have found their way into the everyday fabric of our society. For
example, the early part of this century saw the introduction of the tele-
phone, and then during the 1950s television became widespread. When
considering the future of networking—how widely it will spread and how
we will use it—it is instructive to study this history. Our first reference is
a good starting point for doing this (the entire issue is devoted to the first
100 years of telecommunications).

The second reference is considered one of the seminal papers on the
Internet architecture. The final two papers are not specific to networking
but present viewpoints that capture the “systems approach” of this book.
The Saltzer et al. paper motivates and describes one of the most widely
applied rules of network architecture—the end-to-end argument—which
continues to be highly cited today. The paper by Mashey describes the
thinking behind RISC (Reduced Instruction Set Computer) architectures;
as we will soon discover, making good judgments about where to place
functionality in a complex system is what system design is all about.

m Pierce, J. Telephony—A personal view. IEEE Communications
22(5):116-120, May 1984.

m Clark, D. The design philosophy of the DARPA Internet protocols.
Proceedings of the SIGCOMM '88 Symposium, pages 106-114,
August 1988.

m Saltzer, J., D. Reed, and D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems 2(4):277-288,
November 1984.




)
I
i

= Mashey, J. RISC, MIPS, and the motion of complexity. UniForum
1986 Conference Proceedings, pages 116-124, February 1986.

Several texts offer an introduction to computer networking: Stallings
gives an encyclopedic treatment of the subject, with an emphasis on the
lower levels of the OSI hierarchy [Sta07]; Comer gives a good introduction
to the Internet architecture [Com05].

To put computer networking into a larger context, two books—one
dealing with the past and the other looking toward the future—are must
reading. The first is Holzmann and Pehrson’s The Early History of Data
Networks [HP95]. Surprisingly, many of the ideas covered in the book you
are now reading were invented during the 1700s. The second is Realiz-
ing the Information Future: The Internet and Beyond, a book prepared
by the Computer Science and Telecommunications Board of the National
Research Council [NRC94].

In this book we try to bring a systems approach to the field of computer
networking. We recommend Saltzer and Kaashoek’s general treatment of
computer systems [SK09], which teaches many important principles that
apply to networking as well as other systems. Operating systems in par-
ticular are important to many aspects of networking; Tanenbaum [Tan07]
provides an introduction to OS concepts.

To follow the history of the Internet from its beginning, the reader is
encouraged to peruse the Internet’s Request for Comments (RFC) series of
documents. These documents, which include everything from the TCP
specification to April Fools’ jokes, are retrievable at http://www.ietf.org/
rfc.html. For example, the protocol specifications for TCP, UDP, and IP are
available in RFC 793, 768, and 791, respectively.

To gain a better appreciation for the Internet philosophy and cul-
ture, two references are recommended; both are also quite entertaining.
Padlipsky gives a good description of the early days, including a pointed
comparison of the Internet and OSI architectures [Pad85]. For an account
of what really happens behind the scenes at the Internet Engineering Task
Force, we recommend Boorsook’s article [Boo95].

There is a wealth of articles discussing various aspects of protocol
implementations. A good starting point is to understand two complete
protocol implementation environments: the Stream mechanism from
System V Unix [Rit84] and the z-kernel [HP91]. In addition, [LMKQ89]
and [SW95] describe the widely used Berkeley Unix implementation of
TCP/IP.

Further reading

59



60

CHAPTER 1 Foundation

More generally, a large body of work addresses the issue of struc-
turing and optimizing protocol implementations. Clark was one of the
first to discuss the relationship between modular design and protocol
performance [Cla82]. Later papers then introduce the use of upcalls in
structuring protocol code [Cla85] and study the processing overheads in
TCP [CJRS89]. Finally, [WM87] describes how to gain efficiency through
appropriate design and implementation choices.

Several papers have introduced specific techniques and mecha-
nisms that can be used to improve protocol performance. For example,
[HMPT89] describes some of the mechanisms used in the z-kernel envi-
ronment, while [MD93], [VL87], and [DP93] present a variety of tech-
niques for improving protocol performance. Also, the performance of
protocols running on parallel processors—locking is a key issue in such
environments—is discussed in [BG93] and [NYKT94].

Finally, we conclude the Further Reading section of each chapter with
a set of live references, URLs for locations on the World Wide Web where
you can learn more about the topics discussed in that chapter. Since these
references are live, it is possible that they will not remain active for an
indefinite period of time. For this reason, we limit the set of live references
at the end of each chapter to sites that export software, provide a service,
or report on the activities of an ongoing working group or standardiza-
tion body. In other words, we only give URLSs for the kinds of material that
cannot easily be referenced using standard citations. For this chapter, we
include three live references:

m http://mkp.com/computer-networks: information about this book,
including supplements, addenda, and so on

m http://www.ietf.org/: information about the IETE its working groups,
standards, etc.

m http://dblp.uni-trier.de/db/index.html: a searchable bibliography of
computer science research papers

( Exercises )

1. Use anonymous FTP to connect to ftp.rfc-editor.org (directory
in-notes), and retrieve the RFC index. Also, retrieve the protocol
specifications for TCP, IB, and UDP.



S

Exercises 61

2. The Unix utility whois can be used to find the domain name
corresponding to an organization, or vice versa. Read the man
page documentation for whois and experiment with it. Try whois
princeton.edu and whois princeton, for starters. As an alternative,
explore the whois interface at http://www.internic.net/whois.html.

3. Calculate the total time required to transfer a 1000-KB file in the
following cases, assuming an RTT of 50 ms, a packet size of 1 KB
data, and an initial 2 x RTT of “handshaking” before data is sent:
(a) The bandwidth is 1.5 Mbps, and data packets can be sent
continuously.

(b) The bandwidth is 1.5 Mbps, but after we finish sending each
data packet we must wait one RTT before sending the next.

(c) The bandwidth is “infinite,” meaning that we take transmit
time to be zero, and up to 20 packets can be sent per RTT.

(d) The bandwidth is infinite, and during the first RTT we can
send one packet (', during the second RTT we can send
two packets (2271), during the third we can send four (237 1),
and so on. (A justification for such an exponential increase
will be given in Chapter 6.)

\/ 4. Calculate the total time required to transfer a 1.5-MB file in the
following cases, assuming an RTT of 80 ms, a packet size of 1 KB
data, and an initial 2 x RTT of “handshaking” before data is sent:
(a) The bandwidth is 10 Mbps, and data packets can be sent

continuously.

(b) The bandwidth is 10 Mbps, but after we finish sending each
data packet we must wait one RTT before sending the next.

(c) The link allows infinitely fast transmit, but limits bandwidth
such that only 20 packets can be sent per RTT.

(d) Zero transmit time as in (c), but during the first RTT we can
send one packet, during the second RTT we can send two
packets, during the third we can send four (2371), etc.

(A justification for such an exponential increase will be given
in Chapter 6.)

5. Consider a point-to-point link 4 km in length. At what bandwidth
would propagation delay (at a speed of 2 x 10%m/s) equal



62

CHAPTER 1 Foundation

10.

11.

12.

13.

transmit delay for 100-byte packets? What about 512-byte
packets?

. Consider a point-to-point link 50 km in length. At what

bandwidth would propagation delay (at a speed of 2 x 10°m/s)
equal transmit delay for 100-byte packets? What about 512-byte
packets?

. What properties of postal addresses would be likely to be shared

by a network addressing scheme? What differences might you
expect to find? What properties of telephone numbering might
be shared by a network addressing scheme?

. One property of addresses is that they are unique; if two nodes

had the same address, it would be impossible to distinguish
between them. What other properties might be useful for network
addresses to have? Can you think of any situations in which
network (or postal or telephone) addresses might not be unique?

. Give an example of a situation in which multicast addresses

might be beneficial.

What differences in traffic patterns account for the fact that
STDM is a cost-effective form of multiplexing for a voice
telephone network and FDM is a cost-effective form of
multiplexing for television and radio networks, yet we reject both
as not being cost effective for a general-purpose computer
network?

How “wide” is a bit on a 10-Gbps link? How long is a bit in copper
wire, where the speed of propagation is 2.3 x 10® m/s?

How long does it take to transmit = KB over a y-Mbps link? Give
your answer as a ratio of x and y.

Suppose a 1-Gbps point-to-point link is being set up between the

Earth and a new lunar colony. The distance from the moon to the

Earth is approximately 385,000 km, and data travels over the link

at the speed of light—3 x 10® m/s.

(a) Calculate the minimum RTT for the link.

(b) Using the RTT as the delay, calculate the delay x bandwidth
product for the link.




v 1a.

15.

16.

Exercises 63

(c) What is the significance of the delay x bandwidth product
computed in (b)?

(d) A camera on the lunar base takes pictures of the Earth and
saves them in digital format to disk. Suppose Mission Control
on Earth wishes to download the most current image, which
is 25 MB. What is the minimum amount of time that will
elapse between when the request for the data goes out and
the transfer is finished?

Suppose a 128-kbps point-to-point link is set up between the
Earth and a rover on Mars. The distance from the Earth to Mars
(when they are closest together) is approximately 55 Gm, and
data travels over the link at the speed of light—3 x 108 m/s.

(a) Calculate the minimum RTT for the link.

(b) Calculate the delay x bandwidth product for the link.

(c) A camera on the rover takes pictures of its surroundings and
sends these to Earth. How quickly after a picture is taken can
it reach Mission Control on Earth? Assume that each image is
5Mb in size.

For each of the following operations on a remote file server,
discuss whether they are more likely to be delay sensitive or
bandwidth sensitive:

(a) Open afile.

(b) Read the contents of a file.

(c) List the contents of a directory.

(d) Display the attributes of a file.

Calculate the latency (from first bit sent to last bit received) for

the following:

(a) 100-Mbps Ethernet with a single store-and-forward switch in
the path and a packet size of 12,000 bits. Assume that each
link introduces a propagation delay of 10 us and that the
switch begins retransmitting immediately after it has finished
receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (a), but assume the switch implements “cut-
through” switching; it is able to begin retransmitting the
packet after the first 200 bits have been received.



64 CHAPTER 1 Foundation

v 17

18.

19.

20.

Calculate the latency (from first bit sent to last bit received) for:

(a) 1-Gbps Ethernet with a single store-and-forward switch in
the path and a packet size of 5000 bits. Assume that each link
introduces a propagation delay of 10 p.s and that the switch
begins retransmitting immediately after it has finished
receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (b), but assume the switch implements “cut-
through” switching; it is able to begin retransmitting the
packet after the first 128 bits have been received.

Calculate the effective bandwidth for the following cases. For
(a) and (b) assume there is a steady supply of data to send; for
(c) simply calculate the average over 12 hours.

(a) 100-Mbps Ethernet through three store-and-forward
switches as in Exercise 16(b). Switches can send on one link
while receiving on the other.

(b) Same as (a) but with the sender having to wait for a 50-byte
acknowledgment packet after sending each 12,000-bit data
packet.

(c) Overnight (12-hour) shipment of 100 DVDs that hold 4.7 GB
each.

Calculate the delay x bandwidth product for the following links.
Use one-way delay, measured from first bit sent to first bit
received.

(a) 100-Mbps Ethernet with a delay of 10 ps.

(b) 100-Mbps Ethernet with a single store-and-forward switch
like that of Exercise 16(b), packet size of 12,000 bits, and 10 s
per link propagation delay.

(c) 1.5-Mbps T1 link, with a transcontinental one-way delay of
50 ms.

(d) 1.5-Mbps T1 link between two groundstations
communicating via a satellite in geosynchronous orbit,
35,900 km high. The only delay is speed-of-light propagation
delay from Earth to the satellite and back.

Hosts A and B are each connected to a switch S via 100-Mbps
links as in Figure 1.21. The propagation delay on each link is



Exercises 65

B FIGURE 1.21 Diagram for Exercise 20.

20 ps. S is a store-and-forward device; it begins retransmitting a
received packet 35 ps after it has finished receiving it. Calculate
the total time required to transmit 10,000 bits from A to B

(a) Asasingle packet.

(b) As two 5000-bit packets sent one right after the other.

21. Suppose a host has a 1-MB file that is to be sent to another host.
The file takes 1 second of CPU time to compress 50% or 2 seconds
to compress 60%.
(a) Calculate the bandwidth at which each compression option
takes the same total compression + transmission time.
(a) Explain why latency does not affect your answer.

22. Suppose that a certain communications protocol involves a
per-packet overhead of 50 bytes for headers and framing. We
send 1 million bytes of data using this protocol; however, one
data byte is corrupted and the entire packet containing it is thus
lost. Give the total number of overhead + loss bytes for packet
data sizes of 1000, 10,000, and 20,000 bytes. Which size is optimal?

23. Assume you wish to transfer an n B file along a path composed of
the source, destination, 7 point-to-point links, and 5 switches.
Suppose each link has a propagation delay of 2 ms and a
bandwidth of 4 Mbps, and that the switches support both circuit
and packet switching. Thus, you can either break the file up into
1-KB packets or set up a circuit through the switches and send
the file as one contiguous bitstream. Suppose that packets have
24 B of packet header information and 1000 B of payload,
store-and-forward packet processing at each switch incurs a
1-ms delay after the packet had been completely received,
packets may be sent continuously without waiting for
acknowledgments, and circuit setup requires a 1-KB message to
make one round trip on the path, incurring a 1-ms delay at each
switch after the message has been completely received. Assume



:

66 CHAPTER 1 Foundation

switches introduce no delay to data traversing a circuit. You may

also assume that filesize is a multiple of 1000 B.

(a) For what filesize n B is the total number of bytes sent across
the network less for circuits than for packets?

(b) For what filesize n B is the total latency incurred before the
entire file arrives at the destination less for circuits than for
packets?

(c) How sensitive are these results to the number of switches
along the path? To the bandwidth of the links? To the ratio of
packet size to packet header size?

(d) How accurate do you think this model of the relative merits
of circuits and packets is? Does it ignore important
considerations that discredit one or the other approach? If so,
what are they?

24. Consider a network with a ring topology, link bandwidths of
100 Mbps, and propagation speed 2 x 10® m/s. What would the
circumference of the loop be to exactly contain one 1500-byte
packet, assuming nodes do not introduce delay? What would the
circumference be if there was a node every 100 m, and each node
introduced 10 bits of delay?

25. Compare the channel requirements for voice traffic with the
requirements for the real-time transmission of music, in terms of
bandwidth, delay, and jitter. What would have to improve? By
approximately how much? Could any channel requirements be
relaxed?

26. For the following, assume that no data compression is done,
although in practice this would almost never be the case. For
(a) to (c), calculate the bandwidth necessary for transmitting in
real time:
(a) Video at a resolution of 640 x 480, 3 bytes/pixel,
30 frames/second.
(b) Video at a resolution of 160 x 120, 1 byte/pixel,
5 frames/second.
(c) CD-ROM music, assuming one CD holds 75 minutes’ worth
and takes 650 MB.



v 2.

28.

29.

Exercises

(d) Assume a fax transmits an 8 x 10-inch black-and-white
image at a resolution of 72 pixels per inch. How long would
this take over a 14.4-kbps modem?

For the following, as in the previous problem, assume that no
data compression is done. Calculate the bandwidth necessary for
transmitting in real time:
(a) High-definition video at a resolution of 1920 x 1080,
24 bits/pixel, 30 frames/second.
(b) POTS (plain old telephone service) voice audio of 8-bit
samples at 8 KHz.
(c) GSM mobile voice audio of 260-bit samples at 50 Hz.
(d) HDCD high-definition audio of 24-bit samples at 88.2 kHz.

Discuss the relative performance needs of the following
applications in terms of average bandwidth, peak bandwidth,
latency, jitter, and loss tolerance:

(a) File server.

(b) Print server.

(c) Digital library.

(d) Routine monitoring of remote weather instruments.

(e) Voice.

(f) Video monitoring of a waiting room.

(g) Television broadcasting.

Suppose a shared medium M offers to hosts A1, Ag,..., Ay in
round-robin fashion an opportunity to transmit one packet;
hosts that have nothing to send immediately relinquish M. How
does this differ from STDM? How does network utilization of this
scheme compare with STDM?

. Consider a simple protocol for transferring files over a link. After

some initial negotiation, A sends data packets of size 1 KB to B; B
then replies with an acknowledgment. A always waits for each
ACK before sending the next data packet; this is known as
stop-and-wait. Packets that are overdue are presumed lost and
are retransmitted.



68 CHAPTER 1 Foundation

f{ 31.

32.

33.

(a) Inthe absence of any packet losses or duplications, explain
why it is not necessary to include any “sequence number”
data in the packet headers.

(b) Suppose that the link can lose occasional packets, but that
packets that do arrive always arrive in the order sent. Is a
2-bit sequence number (that is, N mod 4) enough for A and B
to detect and resend any lost packets? Is a 1-bit sequence
number enough?

(c) Now suppose that the link can deliver out of order and that
sometimes a packet can be delivered as much as 1 minute
after subsequent packets. How does this change the
sequence number requirements?

Suppose hosts A and B are connected by a link. Host A
continuously transmits the current time from a high-precision
clock, at a regular rate, fast enough to consume all the available
bandwidth. Host B reads these time values and writes them each
paired with its own time from a local clock synchronized with A’s.
Give qualitative examples of B’s output assuming the link has

(a) High bandwidth, high latency, low jitter.

(b) Low bandwidth, high latency, high jitter.

(c) High bandwidth, low latency, low jitter, occasional lost data.

For example, a link with zero jitter, a bandwidth high enough to
write on every other clock tick, and a latency of 1 tick might yield
something like (0000, 0001), (0002,0003), (0004, 0005).

Obtain and build the simplex-talk sample socket program shown
in the text. Start one server and one client, in separate windows.
While the first client is running, start 10 other clients that connect
to the same server; these other clients should most likely be
started in the background with their input redirected from a file.
What happens to these 10 clients? Do their connect()s fail, or time
out, or succeed? Do any other calls block? Now let the first client
exit. What happens? Try this with the server value MAX_PENDING
set to 1 as well.

Modify the simplex-talk socket program so that each time the
client sends a line to the server, the server sends the line back to
the client. The client (and server) will now have to make
alternating calls to recv() and send().



34.

35.

36.

37.

38.

Modify the simplex-talk socket program so that it uses UDP as the
transport protocol, rather than TCP. You will have to change
SOCK_STREAM to SOCK_DGRAM in both the client and the
server. Then, in the server, remove the calls to listen() and
accept(), and replace the two nested loops at the end with a single
loop that calls recv() with socket s. Finally, see what happens
when two such UDP clients simultaneously connect to the same
UDP server, and compare this to the TCP behavior.

Investigate the different options and parameters one can set for a
TCP connection. (Do “man tcp” on Unix.) Experiment with
various parameter settings to see how they affect TCP
performance.

The Unix utility ping can be used to find the RTT to various
Internet hosts. Read the man page for ping, and use it to find the
RTT to www.cs.princeton.edu in New Jersey and www.cisco.com in
California. Measure the RTT values at different times of day, and
compare the results. What do you think accounts for the
differences?

The Unix utility traceroute, or its Windows equivalent tracert, can
be used to find the sequence of routers through which a message
is routed. Use this to find the path from your site to some others.
How well does the number of hops correlate with the RTT times
from ping? How well does the number of hops correlate with
geographical distance?

Use traceroute, above, to map out some of the routers within your
organization (or to verify none is used).

Exercises






Getting Connected

It is a mistake to look too far ahead. Only one link in the chain of destiny can be
handled at a time.
-Winston Churchill

In Chapter 1 we saw that networks consist of links interconnecting
nodes. One of the fundamental problems we face is how to connect
two nodes together. We also introduced the “cloud” abstraction to
represent a network without revealing all of its internal complex-
ities. So we also need to address the similar problem of connect-
ing a host to a cloud. This, in effect, is the problem every
Internet Service Provider faces when it wants to connect a
new customer to the network: how to connect one more

nodes to the ISP’s cloud?

PROBLEM: CONNECTING TO A NETWORK

Whether we want to construct a trivial two-node network

with one link or connect the one-billionth host to an existing
network like the Internet, we need to address a common set

of issues. First, we need some physical medium over which to
make the connection. The medium may be a length of wire,

a piece of optical fiber, or some less tangible medium (such as
air) through which electromagnetic radiation (e.g., radio waves)
can be transmitted. It may cover a small area (e.g., an office

Computer Networks: A Systems Approach. DOI: 10.1016/B978-0-12-385059-1.00002-8
Copyright © 2012 Elsevier, Inc. All rights reserved.




72 CHAPTER 2 Getting connected

building) or a wide area (e.g., transcontinental). Connecting two nodes with a suit-
able medium is only the first step, however. Five additional problems must be
addressed before the nodes can successfully exchange packets.

Thefirst is encoding bits onto the transmission medium so that they can be under-
stood by a receiving node. Second is the matter of delineating the sequence of bits
transmitted over the link into complete messages that can be delivered to the end
node. This is the framing problem, and the messages delivered to the end hosts are
often called frames (or sometimes packets). Third, because frames are sometimes
corrupted during transmission, it is necessary to detect these errors and take the
appropriate action; this is the error detection problem. The fourth issue is making
a link appear reliable in spite of the fact that it corrupts frames from time to time.
Finally, in those cases where the link is shared by multiple hosts—as is often the
case with wireless links, for example—it is necessary to mediate access to this link.
This is the media access control problem.

Although these five issues—encoding, framing, error detection, reliable delivery,
and access mediation—can be discussed in the abstract, they are very real prob-
lems that are addressed in different ways by different networking technologies. This
chapter considers these issues in the context of three specific network technolo-
gies: point-to-point links, Carrier Sense Multiple Access (CSMA) networks (of which
Ethernet is the most famous example), and wireless networks (for which 802.11 is
the most widespread standard'). The goal of this chapter is simultaneously to sur-
vey the available network technology and to explore these five fundamental issues.
We will examine what it takes to make a wide variety of different physical media and
link technologies useful as building blocks for the construction of robust, scalable
networks.

R . J— e ———————

2.1 PERSPECTIVES ON CONNECTING

As we saw in Chapter 1, networks are constructed from two classes of
hardware building blocks: nodes and links. In this chapter, we focus
on what it takes to make a useful link, so that large, reliable networks
containing millions of links can be built.

While the operators of large networks deal with links that span hun-
dreds or thousands of kilometers connecting refrigerator-sized routers,
the typical user of a network encounters links mostly as a way to connect
a computer to the global Internet. Sometimes this link will be a wireless

!Strictly speaking, 802.11 is a set of standards.



2.1 Perspectives on connecting

(Wi-Fi) link in a coffee shop; sometimes it is an Ethernet link in a office
building or university; for an increasingly large (and fortunate) slice of
the population, it is a fiber optic link provided by a telecommunications
company or ISP; and many others use some sort of copper wire or cable
to connect. Fortunately, there are many common strategies used on these
seemingly disparate types of links so that they can all be made reliable
and useful to higher layers in the protocol stack. This chapter will examine
those strategies.

Figure 2.1 illustrates various types of links as seen by a typical end-user
of today’s Internet. On the left, we see a variety of end-user devices rang-
ing from mobile phones to PDAs to full-fledged computers connected by
various means to an Internet Service Provider. While those links might
be of any type mentioned above, or some other type, they all look the
same in this picture—a straight line connecting a device to a router. Also,
there are some links that connect routers together inside the ISP and a
link that connects the ISP to the “rest of the Internet,” which consists of
lots of other ISPs and the hosts to which they connect. These links all look
alike not just because we’re not very good artists but because part of the
role of a network architecture (as discussed in Section 1.3) is to provide a
common abstraction of something as complex and diverse as a link. The
idea is that your laptop or smartphone doesn’t have to care what sort of
link it is connected to—the only thing that matters is that it has a link

Internet service
Hosts provider (ISP)

Rest of the
Internet

Peering
point
Router

Access technology (e.g., Fiber, Cable, Wi-Fi, Cellular...)

M FIGURE 2.1 An end-user's view of the Internet.

73



74

CHAPTER 2 Getting connected

to the Internet. Similarly, a router doesn’t have to care what sort of link
connects it to other routers—it can send a packet on the link with a pretty
good expectation that the packet will reach the other end of the link.

How do we make all these different types of link look sufficiently alike
to end users and routers? Essentially, we have to deal with all the phys-
ical limitations and shortcomings of links that exist in the real world.
We sketched out some of these issues in the opening problem statement
for this chapter. The first issue is that links are made of some physical
material that can propagate signals (such as radio waves or other sorts of
electromagnetic radiation), but what we really want to do is send bits. In
later sections of this chapter, we’ll look at how to encode bits for trans-
mission on a physical medium, followed by the other issues mentioned
above. By the end of this chapter, we’ll understand how to send complete
packets over just about any sort of link, no matter what physical medium
is involved.

Wk Capacity and the Shannon-arfey Theorem

There has been an enormous body of work done in the related areas of
signal processing and information theory, studying everything from how
signals degrade over distance to how much data a given signal can effec-
tively carry. The most notable piece of work in this area is a formula known
as the Shannon-Hartley theorem.? Simply stated, this theorem gives an upper
bound to the capacity of a link, in terms of bits per second (bps); as a func-
tion of the signal-to-noise ratio of the link, measured in decibels (dB); and
the bandwidth of the channel, measured in Hertz (Hz). (As noted previously,
bandwidth is a bit of an overloaded term in communications; here we use it
to refer to the range of frequencies available for communication.)

As an example, we can apply the Shannon-Hartley theorem to determine
the rate at which a dial-up modem can be expected to transmit binary data
over a voice-grade phone line without suffering from too high an error rate.
A standard voice-grade phone line typically supports a frequency range of
300 Hz to 3300 Hz, a channel bandwidth of 3 kHz.

The theorem is typically given by the following formula:

C = Blogy(1+ S/N)

where C'is the achievable channel capacity measured in bits per second, B
is the bandwidth of the channel in Hz (3300 Hz — 300 Hz = 3000 Hz), S is the

2Sometimes called simply Shannon’s theorem, but Shannon actually had quite a few
theorems.



2.1 Perspectives on connecting

average signal power, and N is the average noise power. The signal-to-noise
ratio (S/IN, or SNR) is usually expressed in decibels, related as follows:

Thus, a typical signal-to-noise ratio of 30 dB would imply that S/N = 1000.
Thus, we have

C = 3000 x log,(1001)

which equals approximately 30 kbps.

When dial-up modems were the main way to connect to the Internet
in the 1990s, 56 kbps was a common advertised capacity for a modem
(and continues to be about the upper limit for dial-up). However, the
modems often achieved lower speeds in practice, because they didn't
always encounter a signal-to-noise ratio high enough to achieve 56 kbps.

The Shannon-Hartley theorem is equally applicable to all sorts of links
ranging from wireless to coaxial cable to optical fiber. It should be apparent
that there are really only two ways to build a high-capacity link: start with a
high-bandwidth channel or achieve a high signal-to-noise ratio, or, prefer-
ably, both. Also, even those conditions won’t guarantee a high-capacity
link—it often takes quite a bit of ingenuity on the part of people who design
channel coding schemes to achieve the theoretical limits of a channel. This
ingenuity is particularly apparent today in wireless links, where there is a
great incentive to get the most bits per second from a given amount of
wireless spectrum (the channel bandwidth) and signal power level (and
hence SNR).

2.1.17 Classes of Links

While most readers of this book have probably encountered at least a
few different types of links, it will help to understand some of the broad
classes of links that exist and their general properties. For a start, all
practical links rely on some sort of electromagnetic radiation propagating
through a medium or, in some cases, through free space. One way to
characterize links, then, is by the medium they use—typically copper
wire in some form, as in Digital Subscriber Line (DSL) and coaxial cable;
optical fiber, as in both commercial fiber-to-the-home services and
many long-distance links in the Internet’s backbone; or air/free space for
wireless links.

Another important link characteristic is the frequency, measured in

hertz, with which the electromagnetic waves oscillate. The distance
between a pair of adjacent maxima or minima of a wave, typically

75



76

CHAPTER 2 Getting connected

measured in meters, is called the wave’s wavelength. Since all electro-
magnetic waves travel at the speed of light (which in turn depends on
the medium), that speed divided by the wave’s frequency is equal to its
wavelength. We have already seen the example of a voice-grade telephone
line, which carries continuous electromagnetic signals ranging between
300 Hz and 3300 Hz; a 300-Hz wave traveling through copper would have

a wavelength of

Generally, electromagnetic waves span a much wider range of frequen-
cies, ranging from radio waves, to infrared light, to visible light, to x-rays
and gamma rays. Figure 2.2 depicts the electromagnetic spectrum and
shows which media are commonly used to carry which frequency

bands.

So far we understand a link to be a physical medium carrying signals
in the form of electromagnetic waves. Such links provide the foundation
for transmitting all sorts of information, including the kind of data we are
interested in transmitting—binary data (1s and 0s). We say that the binary
data is encoded in the signal. The problem of encoding binary data onto
electromagnetic signals is a complex topic. To help make the topic more
manageable, we can think of it as being divided into two layers. The lower

SpeedOfLightinCopper -+ Frequency

=2/3x3x10% =300

= 667 x 10° meters

f(Hz) 10° 102 10* 10® 108 10" 10" 10 10" 10 1020 1022 102
Radio Microwave Infrared uv X-ray Gamma ray
104 10° 108 107

108 102 10" 10"t 102
1 1 1

103 10™ 10
1 1

107
Il

Satellite

-

FM Terrestrial microwave

TV

T T T
Fiber optics

-

M FIGURE 2.2 Electromagnetic spectrum.



2.1 Perspectives on connecting

layer is concerned with modulation—varying the frequency, amplitude,
or phase of the signal to effect the transmission of information. A simple
example of modulation is to vary the power (amplitude) of a single wave-
length. Intuitively, this is equivalent to turning a light on and off. Because
the issue of modulation is secondary to our discussion of links as a build-
ing block for computer networks, we simply assume that it is possible to
transmit a pair of distinguishable signals—think of them as a “high” sig-
nal and a “low” signal—and we consider only the upper layer, which is
concerned with the much simpler problem of encoding binary data onto
these two signals. Section 2.2 discusses such encodings.

Another way to classify links is in terms of how they are used. Various
economic and deployment issues tend to influence where different link
types are found. Most consumers interact with the Internet either through
wireless networks (which they encounter in coffee shops, airports, uni-
versities, etc.) or through so-called “last mile” links provided by Internet
Service Providers, as illustrated in Figure 2.1. These link types are sum-
marized in Table 2.1. They typically are chosen because they are cost-
effective ways of reaching millions of consumers; DSL, for example, was
deployed over the existing twisted pair copper wires that already existed
for plain old telephone services. Most of these technologies are not suffi-
cient for building a complete network from scratch—for example, you’ll
likely need some long-distance, very high-speed links to interconnect
cities in a large network.

Modern long-distance links are almost exclusively fiber today, with
coaxial cables having been largely replaced over the last couple of
decades. These links typically use a technology called SONET (Syn-
chronous Optical Network), which was developed to meet the demanding

Table 2.1 Common Services Available t

Connect Your Home

Service Bandwidth (typical)
Dial-up 28-56 kbps

ISDN 64-128 kbps

DSL 128 kbps-100 Mbps
CATV (cable TV) 1-40 Mbps

FTTH (fibre to the home) | 50 Mbps—1 Gbps

77



TR R

78 CHAPTER 2 Getting connected

management requirements of telephone carriers. We'll take a closer look
at SONET in Section 2.3.3.

Finally, in addition to last-mile and backbone links, there are the links
that you find inside a building or a campus—generally referred to as local
area networks (LANs). Ethernet, described in Section 2.6, has for some
time been the dominant technology in this space, having displaced token
ring technologies after many years. While Ethernet continues to be pop-
ular, it is now mostly seen alongside wireless technologies based around
the 802.11 standards, which we will discuss in Section 2.7.

This survey of link types is by no means exhaustive but should have
given you a taste of the diversity of link types that exist and some of
the reasons for that diversity. In the coming sections, we will see how
networking protocols can take advantage of that diversity and present a
consistent view of the network to higher layers in spite of all the low-level
complexity.

2.2 ENCODING (NRZ, NRZI, MANCHESTER, 4B/5B)

The first step in turning nodes and links into usable building blocks is to
understand how to connect them in such a way that bits can be transmit-
ted from one node to the other. As mentioned in the preceding section,
signals propagate over physical links. The task, therefore, is to encode the
binary data that the source node wants to send into the signals that the
links are able to carry and then to decode the signal back into the corre-
sponding binary data at the receiving node. We ignore the details of mod-
ulation and assume we are working with two discrete signals: high and
low. In practice, these signals might correspond to two different voltages
on a copper-based link or two different power levels on an optical link.

Most of the functions discussed in this chapter are performed by a net-
work adaptor—a piece of hardware that connects a node to a link. The
network adaptor contains a signalling component that actually encodes
bits into signals at the sending node and decodes signals into bits at the
receiving node. Thus, as illustrated in Figure 2.3, signals travel over a
link between two signalling components, and bits flow between network
adaptors.

Let’s return to the problem of encoding bits onto signals. The obvi-
ous thing to do is to map the data value 1 onto the high signal and the
data value 0 onto the low signal. This is exactly the mapping used by an
encoding scheme called, cryptically enough, non-return to zero (NRZ).



2.2 Encoding (NRZ, NRZI, manchester, 4B/5B)

Signalling component

-~
PR
- ~

~

;’// Signal - N
Node Adaptor [J Tl Adaptor Node
I

Bits ,

M FIGURE 2.3 Signals travel between signalling components; bits flow between adaptors.

Bt,s 0 0 1 0111101000010
[ N [ T T B
T T T S Ay I T O B
[
I I

o o I
NRz !

M FIGURE 2.4 NRZ encoding of a bit stream.

For example, Figure 2.4 schematically depicts the NRZ-encoded signal
(bottom) that corresponds to the transmission of a particular sequence
of bits (top).

The problem with NRZ is that a sequence of several consecutive 1s
means that the signal stays high on the link for an extended period of
time; similarly, several consecutive Os means that the signal stays low for a
long time. There are two fundamental problems caused by long strings of
1s or Os. The first is that it leads to a situation known as baseline wander.
Specifically, the receiver keeps an average of the signal it has seen so far
and then uses this average to distinguish between low and high signals.
Whenever the signal is significantly lower than this average, the receiver
concludes that it has just seen a 0; likewise, a signal that is significantly
higher than the average is interpreted to be a 1. The problem, of course, is
that too many consecutive 1s or 0s cause this average to change, making
it more difficult to detect a significant change in the signal.

The second problem is that frequent transitions from high to low and
vice versa are necessary to enable clock recovery. Intuitively, the clock
recovery problem is that both the encoding and the decoding processes
are driven by a clock—every clock cycle the sender transmits a bit and the
receiver recovers a bit. The sender’s and the receiver’s clocks have to be
precisely synchronized in order for the receiver to recover the same bits
the sender transmits. If the receiver’s clock is even slightly faster or slower
than the sender’s clock, then it does not correctly decode the signal. You
could imagine sending the clock to the receiver over a separate wire, but

79



:

80 CHAPTER 2 Getting connected

this is typically avoided because it makes the cost of cabling twice as high.
So, instead, the receiver derives the clock from the received signal—the
clock recovery process. Whenever the signal changes, such as on a tran-
sition from 1 to 0 or from 0 to 1, then the receiver knows it is at a clock
cycle boundary, and it can resynchronize itself. However, a long period of
time without such a transition leads to clock drift. Thus, clock recovery
depends on having lots of transitions in the signal, no matter what data is
being sent.

One approach that addresses this problem, called non-return to zero
inverted (NRZI), has the sender make a transition from the current sig-
nal to encode a 1 and stay at the current signal to encode a 0. This solves
the problem of consecutive 1s, but obviously does nothing for consecu-
tive 0s. NRZI is illustrated in Figure 2.5. An alternative, called Manchester
encoding, does a more explicit job of merging the clock with the signal
by transmitting the exclusive OR of the NRZ-encoded data and the clock.
(Think of the local clock as an internal signal that alternates from low
to high; a low/high pair is considered one clock cycle.) The Manchester
encoding is also illustrated in Figure 2.5. Observe that the Manchester
encoding results in 0 being encoded as a low-to-high transition and 1
being encoded as a high-to-low transition. Because both 0s and 1s result
in a transition to the signal, the clock can be effectively recovered at the
receiver. (There is also a variant of the Manchester encoding, called Differ-
ential Manchester, in which a 1 is encoded with the first half of the signal
equal to the last half of the previous bit’s signal and a 0 is encoded with the
first half of the signal opposite to the last half of the previous bit’s signal.)

| | |
| | |
| | | | | | | | |
NRZI—O—I I—I [ I—I I_._._._I |_¢
| |
ARERERRRERNRERERARARARARAREREREY
Clock

Manchester | : | |
|

M FIGURE 2.5 Different encoding strategies.



)
I
i

The problem with the Manchester encoding scheme is that it doubles
the rate at which signal transitions are made on the link, which means
that the receiver has half the time to detect each pulse of the signal. The
rate at which the signal changes is called the link’s baud rate. In the case of
the Manchester encoding, the bit rate is half the baud rate, so the encod-
ing is considered only 50% efficient. Keep in mind that if the receiver had
been able to keep up with the faster baud rate required by the Manchester
encoding in Figure 2.5, then both NRZ and NRZI could have been able to
transmit twice as many bits in the same time period.

A final encoding that we consider, called 4B/5B, attempts to address the
inefficiency of the Manchester encoding without suffering from the prob-
lem of having extended durations of high or low signals. The idea of 4B/5B
is to insert extra bits into the bit stream so as to break up long sequences
of Os or 1s. Specifically, every 4 bits of actual data are encoded in a 5-bit
code that is then transmitted to the receiver; hence, the name 4B/5B. The
5-bit codes are selected in such a way that each one has no more than
one leading 0 and no more than two trailing 0s. Thus, when sent back-
to-back, no pair of 5-bit codes results in more than three consecutive 0s
being transmitted. The resulting 5-bit codes are then transmitted using
the NRZI encoding, which explains why the code is only concerned about
consecutive 0s—NRZI already solves the problem of consecutive 1s. Note
that the 4B/5B encoding results in 80% efficiency.

Table 2.2 gives the 5-bit codes that correspond to each of the 16 possi-
ble 4-bit data symbols. Notice that since 5 bits are enough to encode 32
different codes, and we are using only 16 of these for data, there are 16
codes left over that we can use for other purposes. Of these, code 11111
is used when the line is idle, code 00000 corresponds to when the line is
dead, and 00100 is interpreted to mean halt. Of the remaining 13 codes,
7 of them are not valid because they violate the “one leading 0, two trail-
ing 0s,” rule, and the other 6 represent various control symbols. As we will
see later in this chapter, some framing protocols make use of these control
symbols.

2.3 FRAMING

Now that we have seen how to transmit a sequence of bits over a
point-to-point link—from adaptor to adaptor—let’s consider the sce-
nario illustrated in Figure 2.6. Recall from Chapter 1 that we are focusing

2.3 Framing

81



82

CHAPTER 2 Getting connected

Table 2.2 4B/5B Encoding

4-Bit Data Symbol | 5-Bit Code
0000 11110
0001 01001
0010 10100
0011 10101
0100 01010
0101 01011
0110 01110
0111 01111
1000 10010
1001 10011
1010 10110
1011 10111
1100 11010
1101 11011
1110 11100
1111 11101

on packet-switched networks, which means that blocks of data (called
frames at this level), not bit streams, are exchanged between nodes. It is
the network adaptor that enables the nodes to exchange frames. When
node A wishes to transmit a frame to node B, it tells its adaptor to trans-
mit a frame from the node’s memory. This results in a sequence of bits
being sent over the link. The adaptor on node B then collects together
the sequence of bits arriving on the link and deposits the correspond-
ing frame in B’s memory. Recognizing exactly what set of bits constitutes
a frame—that is, determining where the frame begins and ends—is the
central challenge faced by the adaptor.

There are several ways to address the framing problem. This section
uses several different protocols to illustrate the various points in the
design space. Note that while we discuss framing in the context of
point-to-point links, the problem is a fundamental one that must also be
addressed in multiple-access networks like Ethernet and token rings.



Bits
Node A | Adaptor | | Adaptor | Node B

Frames

B FIGURE 2.6 Bits flow between adaptors, frames between hosts.

2.3.1 Byte-Oriented Protocols (BISYNC, PPP, DDCMP)

One of the oldest approaches to framing—it has its roots in connecting
terminals to mainframes—is to view each frame as a collection of bytes
(characters) rather than a collection of bits. Such a byte-oriented approach
is exemplified by older protocols such as the Binary Synchronous Com-
munication (BISYNC) protocol developed by IBM in the late 1960s, and
the Digital Data Communication Message Protocol (DDCMP) used in
Digital Equipment Corporation’s DECNET. The more recent and widely
used Point-to-Point Protocol (PPP) provides another example of this
approach.

Sentinel-Based Approaches

Figure 2.7 illustrates the BISYNC protocol’s frame format. This figure is
the first of many that you will see in this book that are used to illustrate
frame or packet formats, so a few words of explanation are in order. We
show a packet as a sequence of labeled fields. Above each field is a num-
ber indicating the length of that field in bits. Note that the packets are
transmitted beginning with the leftmost field.

BISYNC uses special characters known as sentinel characters to indi-
cate where frames start and end. The beginning of a frame is denoted by
sending a special SYN (synchronization) character. The data portion of
the frame is then contained between two more special characters: STX
(start of text) and ETX (end of text). The SOH (start of header) field serves
much the same purpose as the STX field. The problem with the sentinel
approach, of course, is that the ETX character might appear in the data
portion of the frame. BISYNC overcomes this problem by “escaping” the
ETX character by preceding it with a DLE (data-link-escape) character
whenever it appears in the body of a frame; the DLE character is also

2.3 Framing

83



84

CHAPTER 2 Getting connected

8 8 8 8 8 16
z2|z |z x x
5 5 8 Header 5 Body % 5 CRC

M FIGURE 2.7 BISYNC frame format.

escaped (by preceding it with an extra DLE) in the frame body. (C pro-
grammers may notice that this is analogous to the way a quotation mark
is escaped by the backslash when it occurs inside a string.) This approach
is often called character stuffing because extra characters are inserted in
the data portion of the frame.

The frame format also includes a field labeled CRC (cyclic redundancy
check), which is used to detect transmission errors; various algorithms for
error detection are presented in Section 2.4. Finally, the frame contains
additional header fields that are used for, among other things, the link-
level reliable delivery algorithm. Examples of these algorithms are given
in Section 2.5.

The more recent Point-to-Point Protocol (PPP), which is commonly
used to carry Internet Protocol packets over various sorts of point-to-
point links, is similar to BISYNC in that it also uses sentinels and character
stuffing. The format for a PPP frame is given in Figure 2.8. The special
start-of-text character, denoted as the Flag field in Figure 2.8,is01111110.
The Address and Control fields usually contain default values and so are
uninteresting. The Protocol field is used for demultiplexing; it identifies
the high-level protocol such as IP or IPX (an IP-like protocol developed by
Novell). The frame payload size can be negotiated, but it is 1500 bytes by
default. The Checksum field is either 2 (by default) or 4 bytes long.

The PPP frame format is unusual in that several of the field sizes are
negotiated rather than fixed. This negotiation is conducted by a protocol
called the Link Control Protocol (LCP). PPP and LCP work in tandem: LCP
sends control messages encapsulated in PPP frames—such messages are
denoted by an LCP identifier in the PPP Protocol field—and then turns
around and changes PPP’s frame format based on the information con-
tained in those control messages. LCP is also involved in establishing a
link between two peers when both sides detect that communication over
the link is possible (e.g., when each optical receiver detects an incoming
signal from the fiber to which it connects).



8 8 8 16 16 8

Flag | Address | Control | Protocol Payload% Checksum | Flag

M FIGURE 2.8 PPP frame format.

8 8 8 14 42 16
z|lz| 3

> | > | © | Count Header Body CRC
[0} %] )

M FIGURE 2.9 DDCMP frame format.

Byte-Counting Approach

As every Computer Science 101 student knows, the alternative to detect-
ing the end of a file with a sentinel value is to include the number of items
in the file at the beginning of the file. The same is true in framing—the
number of bytes contained in a frame can be included as a field in the
frame header. The DECNET’s DDCMP uses this approach, as illustrated
in Figure 2.9. In this example, the COUNT field specifies how many bytes
are contained in the frame’s body.

One danger with this approach is that a transmission error could
corrupt the count field, in which case the end of the frame would not
be correctly detected. (A similar problem exists with the sentinel-based
approach if the ETX field becomes corrupted.) Should this happen, the
receiver will accumulate as many bytes as the bad COUNT field indicates
and then use the error detection field to determine that the frame is bad.
This is sometimes called a framing error. The receiver will then wait until
it sees the next SYN character to start collecting the bytes that make up
the next frame. It is therefore possible that a framing error will cause
back-to-back frames to be incorrectly received.

2.3.2 Bit-Oriented Protocols (HDLC)

Unlike these byte-oriented protocols, a bit-oriented protocol is not con-
cerned with byte boundaries—it simply views the frame as a collection
of bits. These bits might come from some character set, such as ASCII;
they might be pixel values in an image; or they could be instructions and
operands from an executable file. The Synchronous Data Link Control

2.3 Framing



86

CHAPTER 2 Getting connected

(SDLC) protocol developed by IBM is an example of a bit-oriented proto-
col; SDLC was later standardized by the ISO as the High-Level Data Link
Control (HDLC) protocol. In the following discussion, we use HDLC as an
example; its frame format is given in Figure 2.10.

HDLC denotes both the beginning and the end of a frame with the
distinguished bit sequence 01111110. This sequence is also transmitted
during any times that the link is idle so that the sender and receiver can
keep their clocks synchronized. In this way, both protocols essentially use
the sentinel approach. Because this sequence might appear anywhere
in the body of the frame—in fact, the bits 01111110 might cross byte
boundaries—bit-oriented protocols use the analog of the DLE character,
a technique known as bit stuffing.

Bit stuffing in the HDLC protocol works as follows. On the sending side,
any time five consecutive 1s have been transmitted from the body of the
message (i.e., excluding when the sender is trying to transmit the distin-
guished 01111110 sequence), the sender inserts a 0 before transmitting
the next bit. On the receiving side, should five consecutive 1s arrive, the
receiver makes its decision based on the next bit it sees (i.e., the bit fol-
lowing the five 1s). If the next bit is a 0, it must have been stuffed, and so
the receiver removes it. If the next bit is a 1, then one of two things is true:
Either this is the end-of-frame marker or an error has been introduced
into the bit stream. By looking at the next bit, the receiver can distinguish
between these two cases. If it sees a 0 (i.e., the last 8 bits it has looked at
are 01111110), then it is the end-of-frame marker; if it sees a 1 (i.e., the
last 8 bits it has looked at are 01111111), then there must have been an
error and the whole frame is discarded. In the latter case, the receiver has
to wait for the next 01111110 before it can start receiving again, and, as a
consequence, there is the potential that the receiver will fail to receive two
consecutive frames. Obviously, there are still ways that framing errors can
go undetected, such as when an entire spurious end-of-frame pattern is
generated by errors, but these failures are relatively unlikely. Robust ways
of detecting errors are discussed in Section 2.4.

8 16 16 8
Beginning | 10 der Body % cRrc| Ending
sequence sequence

M FIGURE 2.10 HDLC frame format.




S

An interesting characteristic of bit stuffing, as well as character stuff-
ing, is that the size of a frame is dependent on the data that is being sent
in the payload of the frame. It is in fact not possible to make all frames
exactly the same size, given that the data that might be carried in any
frame is arbitrary. (To convince yourself of this, consider what happens
if the last byte of a frame’s body is the ETX character.) A form of fram-
ing that ensures that all frames are the same size is described in the next
subsection.

One of the important contributions of the OSI reference model presented in
Chapter 1 was providing some vocabulary for talking about protocols and,
in particular, protocol layers. This vocabulary has provided fuel for plenty of
arguments along the lines of “Your protocol does function X at layer Y, and
the OSI reference model says it should be done at layer Z—that's a layer
violation.” In fact, figuring out the right layer at which to perform a given
function can be very difficult, and the reasoning is usually a lot more subtle
than “What does the OSI model say?” It is partly for this reason that this book
avoids arigidly layerist approach. Instead, it shows you a lot of functions that
need to be performed by protocols and looks at some ways that they have
been successfully implemented.

In spite of our nonlayerist approach, sometimes we need convenient
ways to talk about classes of protocols, and the name of the layer at which
they operate is often the best choice. Thus, for example, this chapter focuses
primarily on link-layer protocols. (Bit encoding, described in Section 2.2, is
the exception, being considered a physical-layer function.) Link-layer proto-
cols can be identified by the fact that they run over single links—the type
of network discussed in this chapter. Network-layer protocols, by contrast,
run over switched networks that contain lots of links interconnected by
switches or routers. Topics related to network-layer protocols are discussed
in Chapters 3 and 4.

Note that protocol layers are supposed to be helpful—they provide help-
ful ways to talk about classes of protocols, and they help us divide the
problem of building networks into manageable subtasks. However, they
are not meant to be overly restrictive—the mere fact that something is a
layer violation does not end the argument about whether it is a worthwhile
thing to do. In other words, layering makes a good slave, but a poor master.
A particularly interesting argument about the best layer in which to place
a certain function comes up when we look at congestion control in

Chapter 6.
W g

2.3 Framing

87



88

-

CHAPTER 2 Getting connected

2.3.3 Clock-Based Framing (SONET)

A third approach to framing is exemplified by the Synchronous Optical
Network (SONET) standard. For lack of a widely accepted generic term,
we refer to this approach simply as clock-based framing. SONET was first
proposed by Bell Communications Research (Bellcore), and then devel-
oped under the American National Standards Institute (ANSI) for digital
transmission over optical fiber; it has since been adopted by the ITU-T.
SONET has been for many years the dominant standard for long-distance
transmission of data over optical networks.

An important point to make about SONET before we go any further
is that the full specification is substantially larger than this book. Thus,
the following discussion will necessarily cover only the high points of
the standard. Also, SONET addresses both the framing problem and the
encoding problem. It also addresses a problem that is very important for
phone companies—the multiplexing of several low-speed links onto one
high-speed link. (In fact, much of SONET’s design reflects the fact that
phone companies have to be concerned with multiplexing large numbers
of the 64-kbps channels that traditionally are used for telephone calls.)
We begin with SONET’s approach to framing and discuss the other issues
following.

As with the previously discussed framing schemes, a SONET frame has
some special information that tells the receiver where the frame starts
and ends; however, that is about as far as the similarities go. Notably, no
bit stuffing is used, so that a frame’s length does not depend on the data
being sent. So the question to ask is “How does the receiver know where
each frame starts and ends?” We consider this question for the lowest-
speed SONET link, which is known as STS-1 and runs at 51.84 Mbps. An
STS-1 frame is shown in Figure 2.11. It is arranged as 9 rows of 90 bytes
each, and the first 3 bytes of each row are overhead, with the rest being
available for data that is being transmitted over the link. The first 2 bytes of
the frame contain a special bit pattern, and it is these bytes that enable the
receiver to determine where the frame starts. However, since bit stuffing
is not used, there is no reason why this pattern will not occasionally turn
up in the payload portion of the frame. To guard against this, the receiver
looks for the special bit pattern consistently, hoping to see it appearing
once every 810 bytes, since each frame is 9 x 90 = 810 bytes long. When




—!:H@ﬂL

2.3 Framing 89

Overhead [«——  — Payload !

9 rows

90 columns

M FIGURE 2.11 A SONET STS-1 frame.

the special pattern turns up in the right place enough times, the receiver
concludes that it is in sync and can then interpret the frame correctly.

One of the things we are not describing due to the complexity of SONET
is the detailed use of all the other overhead bytes. Part of this complexity
can be attributed to the fact that SONET runs across the carrier’s optical
network, not just over a single link. (Recall that we are glossing over the
fact that the carriers implement a network, and we are instead focusing on
the fact that we can lease a SONET link from them and then use this link
to build our own packet-switched network.) Additional complexity comes
from the fact that SONET provides a considerably richer set of services
than just data transfer. For example, 64 kbps of a SONET link’s capacity is
set aside for a voice channel that is used for maintenance.

The overhead bytes of a SONET frame are encoded using NRZ, the sim-
ple encoding described in the previous section where 1s are high and 0s
are low. However, to ensure that there are plenty of transitions to allow the
receiver to recover the sender’s clock, the payload bytes are scrambled.
This is done by calculating the exclusive OR (XOR) of the data to be trans-
mitted and by the use of a well-known bit pattern. The bit pattern, which
is 127 bits long, has plenty of transitions from 1 to 0, so that XORing it with
the transmitted data is likely to yield a signal with enough transitions to
enable clock recovery.

SONET supports the multiplexing of multiple low-speed links in the
following way. A given SONET link runs at one of a finite set of possible
rates, ranging from 51.84 Mbps (STS-1) to 2488.32 Mbps (STS-48), and
beyond. Note that all of these rates are integer multiples of STS-1. The



20

CHAPTER 2 Getting connected

significance for framing is that a single SONET frame can contain sub-
frames for multiple lower-rate channels. A second related feature is that
each frame is 125 ps long. This means that at STS-1 rates, a SONET frame
is 810 bytes long, while at STS-3 rates, each SONET frame is 2430 bytes
long. Notice the synergy between these two features: 3 x 810 = 2430,
meaning that three STS-1 frames fit exactly in a single STS-3 frame.

Intuitively, the STS- N frame can be thought of as consisting of N STS-1
frames, where the bytes from these frames are interleaved; that is, a byte
from the first frame is transmitted, then a byte from the second frame is
transmitted, and so on. The reason for interleaving the bytes from each
STS-N frame is to ensure that the bytes in each STS-1 frame are evenly
paced; that is, bytes show up at the receiver at a smooth 51 Mbps, rather
than all bunched up during one particular 1/Nth of the 125-.s interval.

Although it is accurate to view an STS- N signal as being used to multi-
plex N STS-1 frames, the payload from these STS-1 frames can be linked
together to form a larger STS-N payload; such a link is denoted STS-Nc
(for concatenated). One of the fields in the overhead is used for this pur-
pose. Figure 2.12 schematically depicts concatenation in the case of three
STS-1 frames being concatenated into a single STS-3c frame. The signif-
icance of a SONET link being designated as STS-3c rather than STS-3 is
that, in the former case, the user of the link can view it as a single 155.25-
Mbps pipe, whereas an STS-3 should really be viewed as three 51.84-Mbps
links that happen to share a fiber.

Finally, the preceding description of SONET is overly simplistic in that
it assumes that the payload for each frame is completely contained within
the frame. (Why wouldn't it be?) In fact, we should view the STS-1 frame
just described as simply a placeholder for the frame, where the actual
payload may float across frame boundaries. This situation is illustrated

S STS-1 S STS-1 S STS-1

Hdr STS-3c

M FIGURE 2.12 Three STS-1 frames multiplexed onto one STS-3¢ frame.



-«— 87 columns ———»

Frame 0

9 rows

Frame 1 \\—/

M FIGURE 2.13 SONET frames out of phase.

in Figure 2.13. Here we see both the STS-1 payload floating across two
STS-1 frames and the payload shifted some number of bytes to the right
and, therefore, wrapped around. One of the fields in the frame overhead
points to the beginning of the payload. The value of this capability is that
it simplifies the task of synchronizing the clocks used throughout the car-
riers’ networks, which is something that carriers spend a lot of their time
worrying about.

24 ERROR DETECTION

As discussed in Chapter 1, bit errors are sometimes introduced into
frames. This happens, for example, because of electrical interference or
thermal noise. Although errors are rare, especially on optical links, some
mechanism is needed to detect these errors so that corrective action can
be taken. Otherwise, the end user is left wondering why the C program
that successfully compiled just a moment ago now suddenly has a syn-
tax error in it, when all that happened in the interim is that it was copied
across a network file system.

There is a long history of techniques for dealing with bit errors in
computer systems, dating back to at least the 1940s. Hamming and Reed-
Solomon codes are two notable examples that were developed for use
in punch card readers, when storing data on magnetic disks, and in
early core memories. This section describes some of the error detection
techniques most commonly used in networking.

Detecting errors is only one part of the problem. The other part is cor-

recting errors once detected. Two basic approaches can be taken when
the recipient of a message detects an error. One is to notify the sender

2.4 Error detection

91



92

T

et
i

CHAPTER 2 Getting connected

that the message was corrupted so that the sender can retransmit a copy
of the message. If bit errors are rare, then in all probability the retrans-
mitted copy will be error free. Alternatively, some types of error detection
algorithms allow the recipient to reconstruct the correct message even
after it has been corrupted; such algorithms rely on error-correcting codes,
discussed below.

One of the most common techniques for detecting transmission errors
is a technique known as the cyclic redundancy check (CRC). It is used in
nearly all the link-level protocols discussed in the previous section (e.g.,
HDLC, DDCMP), as well as in the CSMA and wireless protocols described
later in this chapter. Section 2.4.3 outlines the basic CRC algorithm.
Before discussing that approach, we consider two simpler schemes: fwo-
dimensional parity and checksums. The former is used by the BISYNC
protocol when it is transmitting ASCII characters (CRC is used as the
error-detecting code when BISYNC is used to transmit EBCDIC?), and the
latter is used by several Internet protocols.

The basic idea behind any error detection scheme is to add redun-
dant information to a frame that can be used to determine if errors have
been introduced. In the extreme, we could imagine transmitting two com-
plete copies of the data. If the two copies are identical at the receiver,
then it is probably the case that both are correct. If they differ, then an
error was introduced into one (or both) of them, and they must be dis-
carded. This is a rather poor error detection scheme for two reasons.
First, it sends n redundant bits for an n-bit message. Second, many errors
will go undetected—any error that happens to corrupt the same bit posi-
tions in the first and second copies of the message. In general, the goal of
error detecting codes is to provide a high probability of detecting errors
combined with a relatively low number of redundant bits.

Fortunately, we can do a lot better than this simple scheme. In general,
we can provide quite strong error detection capability while sending only
k redundant bits for an n-bit message, where k£ < n. On an Ethernet, for
example, a frame carrying up to 12,000 bits (1500 bytes) of data requires
only a 32-bit CRC code, or as it is commonly expressed, uses CRC-32.
Such a code will catch the overwhelming majority of errors, as we will see
below.

3An alternative character encoding scheme used in the 1960s.




We say that the extra bits we send are redundant because they add no
new information to the message. Instead, they are derived directly from
the original message using some well-defined algorithm. Both the sender
and the receiver know exactly what that algorithm is. The sender applies
the algorithm to the message to generate the redundant bits. It then trans-
mits both the message and those few extra bits. When the receiver applies
the same algorithm to the received message, it should (in the absence of
errors) come up with the same result as the sender. It compares the result
with the one sent to it by the sender. If they match, it can conclude (with
high likelihood) that no errors were introduced in the message during
transmission. If they do not match, it can be sure that either the mes-
sage or the redundant bits were corrupted, and it must take appropriate
action—that is, discarding the message or correcting it if that is possible.

One note on the terminology for these extra bits. In general, they are
referred to as error-detecting codes. In specific cases, when the algorithm
to create the code is based on addition, they may be called a checksum. We
will see that the Internet checksum is appropriately named: It is an error
check that uses a summing algorithm. Unfortunately, the word check-
sum is often used imprecisely to mean any form of error-detecting code,
including CRCs. This can be confusing, so we urge you to use the word
checksum only to apply to codes that actually do use addition and to use
error-detecting code to refer to the general class of codes described in this
section.

24.1 Two-Dimensional Parity

Two-dimensional parity is exactly what the name suggests. It is based
on “simple” (one-dimensional) parity, which usually involves adding one
extra bit to a 7-bit code to balance the number of 1s in the byte. For exam-
ple, odd parity sets the eighth bit to 1 if needed to give an odd number
of 1s in the byte, and even parity sets the eighth bit to 1 if needed to give
an even number of 1s in the byte. Two-dimensional parity does a similar
calculation for each bit position across each of the bytes contained in the
frame. This results in an extra parity byte for the entire frame, in addition
to a parity bit for each byte. Figure 2.14 illustrates how two-dimensional
even parity works for an example frame containing 6 bytes of data. Notice
that the third bit of the parity byte is 1 since there is an odd number of
1s in the third bit across the 6 bytes in the frame. It can be shown that
two-dimensional parity catches all 1-, 2-, and 3-bit errors, and most 4-bit

2.4 Error detection

923



94

CHAPTER 2 Getting connected

Parity

=)
=
»

0101001 |1

1101001

1011110 |1
Data
0001110 (1

0110100 |1

1011111

Parity

byte 1111011

M FIGURE 2.14 Two-dimensional parity.

errors. In this case, we have added 14 bits of redundant information to
a 42-bit message, and yet we have stronger protection against common
errors than the “repetition code” described above.

24.2 Internet Checksum Algorithm

A second approach to error detection is exemplified by the Internet
checksum. Although it is not used at the link level, it nevertheless pro-
vides the same sort of functionality as CRCs and parity, so we discuss it
here. We will see examples of its use in Sections 3.2, 5.1, and 5.2.

The idea behind the Internet checksum is very simple—you add up all
the words that are transmitted and then transmit the result of that sum.
The result is the checksum. The receiver performs the same calculation
on the received data and compares the result with the received checksum.
If any transmitted data, including the checksum itself, is corrupted, then
the results will not match, so the receiver knows that an error occurred.

You can imagine many different variations on the basic idea of a check-
sum. The exact scheme used by the Internet protocols works as follows.
Consider the data being checksummed as a sequence of 16-bit integers.
Add them together using 16-bit ones complement arithmetic (explained
below) and then take the ones complement of the result. That 16-bit
number is the checksum.

In ones complement arithmetic, a negative integer (—x) is represented
as the complement of z; that is, each bit of z is inverted. When adding



numbers in ones complement arithmetic, a carryout from the most
significant bit needs to be added to the result. Consider, for example, the
addition of —5 and —3 in ones complement arithmetic on 4-bit integers:
+51is 0101, so —5 is 1010; 43 is 0011, so —3 is 1100. If we add 1010 and
1100, ignoring the carry, we get 0110. In ones complement arithmetic, the
fact that this operation caused a carry from the most significant bit causes
us to increment the result, giving 0111, which is the ones complement
representation of —8 (obtained by inverting the bits in 1000), as we would
expect.

The following routine gives a straightforward implementation of the
Internet’s checksum algorithm. The count argument gives the length of
buf measured in 16-bit units. The routine assumes that buf has already
been padded with Os to a 16-bit boundary.

u_short
cksum(u_short xbuf, int count)

{

register u_long sum = 0;

while (count--)
{
sum += *xbuf++;
if (sum & OxFFFFO000)
{
/% carry occurred,
SO0 wrap around */
sum &= OxFFFF;
sum++;

}
return ~(sum & OxFFFF);

This code ensures that the calculation uses ones complement arith-
metic rather than the twos complement that is used in most machines.
Note the if statement inside the while loop. If there is a carry into the
top 16 bits of sum, then we increment sum just as in the previous
example.

2.4 Error detection

95



926

CHAPTER 2 Getting connected

Compared to our repetition code, this algorithm scores well for using
a small number of redundant bits—only 16 for a message of any length—
but it does not score extremely well for strength of error detection. For
example, a pair of single-bit errors, one of which increments a word and
one of which decrements another word by the same amount, will go
undetected. The reason for using an algorithm like this in spite of its
relatively weak protection against errors (compared to a CRC, for exam-
ple) is simple: This algorithm is much easier to implement in software.
Experience in the ARPANET suggested that a checksum of this form was
adequate. One reason it is adequate is that this checksum is the last line
of defense in an end-to-end protocol; the majority of errors are picked up
by stronger error detection algorithms, such as CRCs, at the link level.

When dealing with network errors and other unlikely (we hope) events,
we often have use for simple back-of-the-envelope probability estimates.
A useful approximation here is that if two independent events have small
probabilities p and ¢, then the probability of either event is p + ¢; the exact
answer is 1 — (1 —p)(1 — q) =p+ q— pq. For p = ¢ = .01, this estimate is
.02, while the exact value is .0199.

For a simple application of this, suppose that the per-bit error rate on a
link is 1 in 107. Now suppose we are interested in estimating the probabil-
ity of at least one bit in a 10,000-bit packet being errored. Using the above
approximation repeatedly over all the bits, we can say that we are inter-
ested in the probability of the first bit being errored, or the second bit, or
the third, etc. Assuming bit errors are all independent (which they aren’t), we
can therefore estimate that the probability of at least one error in a 10,000-
bit (10* bit) packet is 10* x 10~7 = 10~3. The exact answer, computed as
1 — P(no errors), would be 1 — (1 — 10~7)1%:000 — 00099950.

For a slightly more complex application, we compute the probability
of exactly two errors in such a packet; this is the probability of an error
that would sneak past a 1-parity-bit checksum. If we consider two particu-
lar bits in the packet, say bit 7 and bit j, the probability of those exact bits
being errored is 10~7 x 10~". Now the total number of possible bit pairs in

: 10* 4 4 7 ; :
the packet is ) =10 x (10* —1)/2~ 5 x 10". So again using the

approximation of repeatedly adding the probabilities of many rare events
(in this case, of any possible bit pair being errored), our total probability of
at least two errored bitsis 5 x 107 x 10714 =5 x 107".




S

2.4 Error detection 97

24.3 Cyclic Redundancy Check

It should be clear by now that a major goal in designing error detec-
tion algorithms is to maximize the probability of detecting errors using
only a small number of redundant bits. Cyclic redundancy checks use
some fairly powerful mathematics to achieve this goal. For example, a 32-
bit CRC gives strong protection against common bit errors in messages
that are thousands of bytes long. The theoretical foundation of the cyclic
redundancy check is rooted in a branch of mathematics called finite fields.
While this may sound daunting, the basic ideas can be easily understood.

To start, think of an (n + 1)-bit message as being represented by an n
degree polynomial, that is, a polynomial whose highest-order term is z".
The message is represented by a polynomial by using the value of each bit
in the message as the coefficient for each term in the polynomial, start-
ing with the most significant bit to represent the highest-order term. For
example, an 8-bit message consisting of the bits 10011010 corresponds to
the polynomial

Mz)=1xz" +0x2°+0x2°+1xa*
+ixa®+0xz®+1xa!
+0xa’

:x7+x4+x3+x1

We can thus think of a sender and a receiver as exchanging polynomials
with each other.

For the purposes of calculating a CRC, a sender and receiver have to
agree on a divisor polynomial, C(x). C(z) is a polynomial of degree .
For example, suppose C(x) = z3 4+ x2 4 1. In this case, k = 3. The answer
to the question “Where did C(z) come from?” is, in most practical cases,
“You look it up in a book.” In fact, the choice of C(x) has a significant
impact on what types of errors can be reliably detected, as we discuss
below. There are a handful of divisor polynomials that are very good
choices for various environments, and the exact choice is normally made
as part of the protocol design. For example, the Ethernet standard uses a
well-known polynomial of degree 32.

When a sender wishes to transmit a message M (x) that is n + 1 bits

long, what is actually sent is the (n + 1)-bit message plus k bits. We call the
complete transmitted message, including the redundant bits, P(z). What



928

CHAPTER 2 Getting connected

we are going to do is contrive to make the polynomial representing P(z)
exactly divisible by C'(z); we explain how this is achieved below. If P(x) is
transmitted over a link and there are no errors introduced during trans-
mission, then the receiver should be able to divide P(x) by C(z) exactly,
leaving a remainder of zero. On the other hand, if some error is introduced
into P(x) during transmission, then in all likelihood the received polyno-
mial will no longer be exactly divisible by C(z), and thus the receiver will
obtain a nonzero remainder implying that an error has occurred.

It will help to understand the following if you know a little about
polynomial arithmetic; it is just slightly different from normal integer
arithmetic. We are dealing with a special class of polynomial arithmetic
here, where coefficients may be only one or zero, and operations on the
coefficients are performed using modulo 2 arithmetic. This is referred to
as “polynomial arithmetic modulo 2.” Since this is a networking book,
not a mathematics text, let’s focus on the key properties of this type of
arithmetic for our purposes (which we ask you to accept on faith):

= Any polynomial B(z) can be divided by a divisor polynomial C(x)
if B(z) is of higher degree than C'(x).

= Any polynomial B(z) can be divided once by a divisor polynomial
C(x) if B(x) is of the same degree as C(x).

m The remainder obtained when B(z) is divided by C'(x) is obtained

by performing the exclusive OR (XOR) operation on each pair of
matching coefficients.

For example, the polynomial x4 1 can be divided by z* + 2% +1
(because they are both of degree 3) and the remainder would be 0 x 2+
1 x 2240 x z' +0 x 2° = 22 (obtained by XORing the coefficients of each
term). In terms of messages, we could say that 1001 can be divided by
1101 and leaves a remainder of 0100. You should be able to see that the
remainder is just the bitwise exclusive OR of the two messages.

Now that we know the basic rules for dividing polynomials, we are able
to do long division, which is necessary to deal with longer messages. An
example appears below.

Recall that we wanted to create a polynomial for transmission that is
derived from the original message M (x), is k bits longer than M (), and
is exactly divisible by C(z). We can do this in the following way:




)
I
i

1. Multiply M (z) by =*; that is, add k zeros at the end of the message.
Call this zero-extended message T'(x).

2. Divide T'(x) by C'(z) and find the remainder.

3. Subtract the remainder from T'(z).

It should be obvious that what is left at this point is a message that
is exactly divisible by C'(z). We may also note that the resulting message
consists of M (x) followed by the remainder obtained in step 2, because
when we subtracted the remainder (which can be no more than % bits
long), we were just XORing it with the k zeros added in step 1. This part
will become clearer with an example.

Consider the message z” +z* 4+ 2° + 2!, or 10011010. We begin by
multiplying by 23, since our divisor polynomial is of degree 3. This gives
10011010000. We divide this by C'(z), which corresponds to 1101 in this
case. Figure 2.15 shows the polynomial long-division operation. Given the
rules of polynomial arithmetic described above, the long-division opera-
tion proceeds much as it would if we were dividing integers. Thus, in the
first step of our example, we see that the divisor 1101 divides once into the
first four bits of the message (1001), since they are of the same degree, and
leaves a remainder of 100 (1101 XOR 1001). The next step is to bring down
a digit from the message polynomial until we get another polynomial with
the same degree as C(z), in this case 1001. We calculate the remainder
again (100) and continue until the calculation is complete. Note that the
“result” of the long division, which appears at the top of the calculation,
is not really of much interest—it is the remainder at the end that matters.

You can see from the very bottom of Figure 2.15 that the remainder of
the example calculation is 101. So we know that 10011010000 minus 101
would be exactly divisible by C(z), and this is what we send. The minus
operation in polynomial arithmetic is the logical XOR operation, so we
actually send 10011010101. As noted above, this turns out to be just the
original message with the remainder from the long division calculation
appended to it. The recipient divides the received polynomial by C(x)
and, if the result is 0, concludes that there were no errors. If the result
is nonzero, it may be necessary to discard the corrupted message; with
some codes, it may be possible to correct a small error (e.g., if the error
affected only one bit). A code that enables error correction is called an
error-correcting code (ECC).

2.4 Error detection

29



100

CHAPTER 2 Getting connected

11111001
Generator —» 1101 51 (1)81 1010000 <«— Message

1001
1101

1000
1101

1011
1101

1100
1101

~ 1000
1101

101 -«— Remainder

M FIGURE 2.15 (RC calculation using polynomial long division.

Now we will consider the question of where the polynomial C(z)
comes from. Intuitively, the idea is to select this polynomial so that it is
very unlikely to divide evenly into a message that has errors introduced
into it. If the transmitted message is P(x), we may think of the introduc-
tion of errors as the addition of another polynomial E(x), so the recipient
sees P(x)+ E(x). The only way that an error could slip by undetected
would be if the received message could be evenly divided by C(z), and
since we know that P(z) can be evenly divided by C(z), this could only
happen if E(z) can be divided evenly by C'(x). The trick is to pick C(x) so
that this is very unlikely for common types of errors.

One common type of error is a single-bit error, which can be expressed
as E(x) = ' when it affects bit position 7. If we select C'(z) such that the
first and the last term (that is, the =¥ and z° terms) are nonzero, then we
already have a two-term polynomial that cannot divide evenly into the
one term F(z). Such a C(z) can, therefore, detect all single-bit errors. In
general, it is possible to prove that the following types of errors can be
detected by a C'(x) with the stated properties:

= All single-bit errors, as long as the 2* and z° terms have nonzero
coefficients

m All double-bit errors, as long as C'(x) has a factor with at least three
terms

= Any odd number of errors, as long as C'(z) contains the factor
(z+1)



3 - -

We have mentioned that it is possible to use codes that not only detect the
presence of errors but also enable errors to be corrected. Since the details
of such codes require yet more complex mathematics than that required
to understand CRCs, we will not dwell on them here. However, it is worth
considering the merits of correction versus detection.

At first glance, it would seem that correction is always better, since with
detection we are forced to throw away the message and, in general, ask for
another copy to be transmitted. This uses up bandwidth and may introduce
latency while waiting for the retransmission. However, there is a downside
to correction, as it generally requires a greater number of redundant bits to
send an error-correcting code that is as strong (that is, able to cope with the
same range of errors) as a code that only detects errors. Thus, while error
detection requires more bits to be sent when errors occur, error correction
requires more bits to be sent all the time. As a result, error correction tends
to be most useful when (1) errors are quite probable, as they may be, for
example, in a wireless environment, or (2) the cost of retransmission is too
high, for example, because of the latency involved retransmitting a packet
over a satellite link.

The use of error-correcting codes in networking is sometimes referred to
as forward error correction (FEC) because the correction of errors is handled
“in advance” by sending extra information, rather than waiting for errors to
happen and dealing with them later by retransmission. FEC is commonly

used in wireless networks such as 802.11.
L\ % 4

= Any “burst” error (i.e., sequence of consecutive errored bits) for
which the length of the burst is less than k& bits (Most burst errors of
length greater than & bits can also be detected.)

Six versions of C(z) are widely used in link-level protocols (shown in
Table 2.3). For example, Ethernet uses CRC-32, while HDLC uses CRC-
CCITT. ATM, as described in Chapter 3, uses CRC-8, CRC-10, and CRC-32.

Finally, we note that the CRC algorithm, while seemingly complex, is
easily implemented in hardware using a k-bit shift register and XOR gates.
The number of bits in the shift register equals the degree of the generator
polynomial (k). Figure 2.16 shows the hardware that would be used for the
generator z° + 22 + 1 from our previous example. The message is shifted

2.4 Error detection

101



102

CHAPTER 2 Getting connected

Table 2.3 Common CRC Polynomials

CRC C(x)
CRC-8 8+ 2+l +1

CRC-10 By A |
CRC-12 G FR R CE AR, T |
CRC-16 216 4215 122 41
CRC-CCITT | 16 + 212 + 25+ 1

CRC-32 232 4 26 4 23 4 222 4 216 4 412 4 g1

B e L |

Message
x° x" XoR gate X
JahY JahY
% N>

M FIGURE 2.16 (RC calculation using shift register.

in from the left, beginning with the most significant bit and ending with
the string of k zeros that is attached to the message, just as in the long
division example. When all the bits have been shifted in and appropri-
ately XORed, the register contains the remainder—that is, the CRC (most
significant bit on the right). The position of the XOR gates is determined
as follows: If the bits in the shift register are labeled 0 through & — 1, left to
right, then put an XOR gate in front of bit n if there is a term 2" in the gen-
erator polynomial. Thus, we see an XOR gate in front of positions 0 and 2
for the generator > + 22 + 2°.

2.5 RELIABLE TRANSMISSION

As we saw in the previous section, frames are sometimes corrupted while
in transit, with an error code like CRC used to detect such errors. While
some error codes are strong enough also to correct errors, in practice the
overhead is typically too large to handle the range of bit and burst errors



)
I
i

2.5 Reliable transmission

that can be introduced on a network link. Even when error-correcting
codes are used (e.g., on wireless links) some errors will be too severe to
be corrected. As a result, some corrupt frames must be discarded. A link-
level protocol that wants to deliver frames reliably must somehow recover
from these discarded (lost) frames.

It’s worth noting that reliability is a function that may be provided
at the link level, but many modern link technologies omit this function.
Furthermore, reliable delivery is frequently provided at higher levels,
including both transport (as described in Section 5.2) and, sometimes,
the application layer (Chapter 9). Exactly where it should be provided
is a matter of some debate and depends on many factors. We describe
the basics of reliable delivery here, since the principles are common
across layers, but you should be aware that we’re not just talking about
a link-layer function (see the “What’s in a Layer?” sidebar above for more
on this).

This is usually accomplished using a combination of two fundamen-
tal mechanisms—acknowledgments and timeouts. An acknowledgment
(ACK for short) is a small control frame that a protocol sends back to its
peer saying that it has received an earlier frame. By control frame we mean
a header without any data, although a protocol can piggyback an ACK
on a data frame it just happens to be sending in the opposite direction.
The receipt of an acknowledgment indicates to the sender of the origi-
nal frame that its frame was successfully delivered. If the sender does not
receive an acknowledgment after a reasonable amount of time, then it
retransmits the original frame. This action of waiting a reasonable amount
of time is called a timeout.

The general strategy of using acknowledgments and timeouts to imple-
ment reliable delivery is sometimes called automatic repeat request
(normally abbreviated ARQ). This section describes three different ARQ
algorithms using generic language; that is, we do not give detailed infor-
mation about a particular protocol’s header fields.

2.5.1 Stop-and-Wait

The simplest ARQ scheme is the stop-and-wait algorithm. The idea of
stop-and-wait is straightforward: After transmitting one frame, the sender
waits for an acknowledgment before transmitting the next frame. If the
acknowledgment does not arrive after a certain period of time, the sender
times out and retransmits the original frame.

103



104 CHAPTER 2 Getting connected

(a) Sender Receiver (c) Sender Receiver
N _%
= =
2l g K 2 cK
SIS AC = A
_%\
=
8
£ cK
= N
(b) Sender Receiver (d) Sender Receiver
B Fra B Fra
) m § Me
=}
£ = pC
|_ .
L <[ Frame
B Frame §
5 S
3 = ACK
€ cK —
S /

M FIGURE 2.17 Timeline showing four different scenarios for the stop-and-wait algorithm. (a) The ACK is received before
the timer expires; (b) the original frame is lost; () the ACK is lost; (d) the timeout fires too soon.

Figure 2.17 illustrates four different scenarios that result from this basic
algorithm. This figure is a timeline, a common way to depict a protocol’s
behavior (see also the sidebar on this sort of diagram). The sending side
is represented on the left, the receiving side is depicted on the right, and
time flows from top to bottom. Figure 2.17(a) shows the situation in which
the ACK is received before the timer expires; (b) and (c) show the situation
in which the original frame and the ACK, respectively, are lost; and (d)
shows the situation in which the timeout fires too soon. Recall that by
“lost” we mean that the frame was corrupted while in transit, that this
corruption was detected by an error code on the receiver, and that the
frame was subsequently discarded.



2.5 Reliable transmission 105

Figures 2.17 and 2.18 are two examples of a frequently used tool in teaching,
explaining, and designing protocols: the timeline or packet exchange dia-
gram. You are going to see many more of them in this book—see Figure 9.9
for a more complex example. They are very useful because they capture
visually the behavior over time of a distributed system—something that
can be quite hard to analyze. When designing a protocol, you often have
to be prepared for the unexpected—a system crashes, a message gets lost,
or something that you expected to happen quickly turns out to take a long ||
time. These sorts of diagrams can often help us understand what might go
wrong in such cases and thus help a protocol designer be prepared for every
eventuality.

There is one important subtlety in the stop-and-wait algorithm. Sup-
pose the sender sends a frame and the receiver acknowledges it, but the
acknowledgment is either lost or delayed in arriving. This situation is
illustrated in timelines (c) and (d) of Figure 2.17. In both cases, the sender
times out and retransmits the original frame, but the receiver will think
that it is the next frame, since it correctly received and acknowledged the
first frame. This has the potential to cause duplicate copies of a frame
to be delivered. To address this problem, the header for a stop-and-wait
protocol usually includes a 1-bit sequence number—that is, the sequence
number can take on the values 0 and 1—and the sequence numbers used
for each frame alternate, as illustrated in Figure 2.18. Thus, when the
sender retransmits frame 0, the receiver can determine that it is seeing
a second copy of frame 0 rather than the first copy of frame 1 and there-
fore can ignore it (the receiver still acknowledges it, in case the first ACK
was lost).

The main shortcoming of the stop-and-wait algorithm is that it allows
the sender to have only one outstanding frame on the link at a time,
and this may be far below the link’s capacity. Consider, for example,
a 1.5-Mbps link with a 45-ms round-trip time. This link has a delay x
bandwidth product of 67.5 Kb, or approximately 8 KB. Since the sender
can send only one frame per RTT, and assuming a frame size of 1 KB, this



106

CHAPTER 2 Getting connected

Sender Receiver
F’ame 0
pck 0

Frame |

Time

pok !

Frame

ack 0

M FIGURE 2.18 Timeline for stop-and-wait with 1-bit sequence number.

implies a maximum sending rate of

Bits Per Frame - Time Per Frame
= 1024 x 8 +-0.045
= 182 kbps
or about one-eighth of the link’s capacity. To use the link fully, then, we’d

like the sender to be able to transmit up to eight frames before having to
wait for an acknowledgment.

The significance of the delay x bandwidth product is that it represents the
amount of data that could be in transit. We would like to be able to send this
much data without waiting for the first acknowledgment. The principle at work
here is often referred to as keeping the pipe full. The algorithms presented in the
following two subsections do exactly this.

2.5.2 Sliding Window

Consider again the scenario in which the link has a delay x bandwidth
product of 8 KB and frames are 1 KB in size. We would like the sender to
be ready to transmit the ninth frame at pretty much the same moment
that the ACK for the first frame arrives. The algorithm that allows us to




2.5 Reliable transmission 107

Sender Receiver

\

Time

M FIGURE 2.19 Timeline for the sliding window algorithm.

do this is called sliding window, and an illustrative timeline is given in
Figure 2.19.

The Sliding Window Algorithm

The sliding window algorithm works as follows. First, the sender assigns a
sequence number, denoted SeqNum, to each frame. For now, let’s ignore
the fact that SeqNum is implemented by a finite-size header field and
instead assume that it can grow infinitely large. The sender maintains
three variables: The send window size, denoted SWS, gives the upper
bound on the number of outstanding (unacknowledged) frames that
the sender can transmit; LAR denotes the sequence number of the last
acknowledgment received; and LFS denotes the sequence number of the
last frame sent. The sender also maintains the following invariant:

LFS — LAR < SWS

This situation is illustrated in Figure 2.20.

When an acknowledgment arrives, the sender moves LAR to the right,
thereby allowing the sender to transmit another frame. Also, the sender
associates a timer with each frame it transmits, and it retransmits the
frame should the timer expire before an ACK is received. Notice that the
sender has to be willing to buffer up to SWS frames since it must be
prepared to retransmit them until they are acknowledged.

The receiver maintains the following three variables: The receive win-
dow size, denoted RWS, gives the upper bound on the number of out-
of-order frames that the receiver is willing to accept; LAF denotes the
sequence number of the largest acceptable frame; and LFR denotes the



108

CHAPTER 2 Getting connected

LFR LAF

M FIGURE 2.21 Sliding window on receiver.

sequence number of the last frame received. The receiver also maintains
the following invariant:

LAF —LFR < RWS

This situation is illustrated in Figure 2.21.

When a frame with sequence number SeqNum arrives, the receiver
takes the following action. If SeqNum < LFR or SegNum > LAF, then
the frame is outside the receiver’s window and it is discarded. If LFR <
SegNum < LAF, then the frame is within the receiver’s window and it
is accepted. Now the receiver needs to decide whether or not to send
an ACK. Let SeqNumToAck denote the largest sequence number not yet
acknowledged, such that all frames with sequence numbers less than
or equal to SeqNumToAck have been received. The receiver acknowl-
edges the receipt of SeqNumToAck, even if higher numbered packets have
been received. This acknowledgment is said to be cumulative. It then sets
LFR = SeqNumToAck and adjusts LAF = LFR + RWS.

For example, suppose LFR =5 (i.e., the last ACK the receiver sent was
for sequence number 5), and RWS = 4. This implies that LAF = 9. Should
frames 7 and 8 arrive, they will be buffered because they are within the
receiver’s window. However, no ACK needs to be sent since frame 6 has yet
to arrive. Frames 7 and 8 are said to have arrived out of order. (Technically,
the receiver could resend an ACK for frame 5 when frames 7 and 8 arrive.)



)
I
i

2.5 Reliable transmission 109

Should frame 6 then arrive—perhaps it is late because it was lost the first
time and had to be retransmitted, or perhaps it was simply delayed*—the
receiver acknowledges frame 8, bumps LFR to 8, and sets LAF to 12. If
frame 6 was in fact lost, then a timeout will have occurred at the sender,
causing it to retransmit frame 6.

We observe that when a timeout occurs, the amount of data in transit
decreases, since the sender is unable to advance its window until frame 6
is acknowledged. This means that when packet losses occur, this scheme
is no longer keeping the pipe full. The longer it takes to notice that a
packet loss has occurred, the more severe this problem becomes.

Notice that, in this example, the receiver could have sent a negative
acknowledgment (NAK) for frame 6 as soon as frame 7 arrived. However,
this is unnecessary since the sender’s timeout mechanism is sufficient to
catch this situation, and sending NAKs adds additional complexity to the
receiver. Also, as we mentioned, it would have been legitimate to send
additional acknowledgments of frame 5 when frames 7 and 8 arrived;
in some cases, a sender can use duplicate ACKs as a clue that a frame
was lost. Both approaches help to improve performance by allowing early
detection of packet losses.

Yet another variation on this scheme would be to use selective acknowl-
edgments. That is, the receiver could acknowledge exactly those frames
it has received rather than just the highest numbered frame received
in order. So, in the above example, the receiver could acknowledge the
receipt of frames 7 and 8. Giving more information to the sender makes it
potentially easier for the sender to keep the pipe full but adds complexity
to the implementation.

The sending window size is selected according to how many frames
we want to have outstanding on the link at a given time; SWS is easy
to compute for a given delay x bandwidth product.® On the other hand,
the receiver can set RWS to whatever it wants. Two common settings are
RWS = 1, which implies that the receiver will not buffer any frames that
arrive out of order, and RWS = SWS, which implies that the receiver can

“It’s unlikely that a packet could be delayed in this way on a point-to-point link, but
later on we will see this same algorithm used on more complex networks where such
delays are possible.

°Easy, that is, if we know the delay and the bandwidth. Sometimes we do not, and
estimating them well is a challenge to protocol designers. We discuss this further in
Chapter 5.



TR R

110 CHAPTER 2 Getting connected

buffer any of the frames the sender transmits. It makes no sense to set
RWS > SWS since it’s impossible for more than SWS frames to arrive
out of order.

Finite Sequence Numbers and Sliding Window

We now return to the one simplification we introduced into the
algorithm—our assumption that sequence numbers can grow infinitely
large. In practice, of course, a frame’s sequence number is specified in a
header field of some finite size. For example, a 3-bit field means that there
are eight possible sequence numbers, 0---7. This makes it necessary to
reuse sequence numbers or, stated another way, sequence numbers wrap
around. This introduces the problem of being able to distinguish between
different incarnations of the same sequence numbers, which implies that
the number of possible sequence numbers must be larger than the num-
ber of outstanding frames allowed. For example, stop-and-wait allowed
one outstanding frame at a time and had two distinct sequence numbers.

Suppose we have one more number in our space of sequence num-
bers than we have potentially outstanding frames; that is, SWS <
MaxSeqgNum — 1, where MaxSeqNum is the number of available sequence
numbers. Is this sufficient? The answer depends on RWS. If RWS =1,
then MaxSegNum > SWS + 1 is sufficient. If RWS is equal to SWS, then
having a MaxSeqNum just one greater than the sending window size is
not good enough. To see this, consider the situation in which we have
the eight sequence numbers 0 through 7, and SWS = RWS = 7. Suppose
the sender transmits frames 0. . .6, they are successfully received, but the
ACKs are lost. The receiver is now expecting frames 7,0. .. 5, but the sender
times out and sends frames 0. .. 6. Unfortunately, the receiver is expecting
the second incarnation of frames 0...5 but gets the first incarnation of
these frames. This is exactly the situation we wanted to avoid.

It turns out that the sending window size can be no more than half as
big as the number of available sequence numbers when RWS = SWS, or
stated more precisely,

SWS < (MaxSegNum+1)/2
Intuitively, what this is saying is that the sliding window protocol alter-

nates between the two halves of the sequence number space, just as
stop-and-wait alternates between sequence numbers 0 and 1. The only



S

2.5 Reliable transmission 111

difference is that it continually slides between the two halves rather than
discretely alternating between them.

Note that this rule is specific to the situation where RWS = SWS. We
leave it as an exercise to determine the more general rule that works for
arbitrary values of RWS and SWS. Also note that the relationship between
the window size and the sequence number space depends on an assump-
tion that is so obvious that it is easy to overlook, namely that frames are
not reordered in transit. This cannot happen on a direct point-to-point
link since there is no way for one frame to overtake another during trans-
mission. However, we will see the sliding window algorithm used in a dif-
ferent environment in Chapter 5, and we will need to devise another rule.

Implementation of Sliding Window

The following routines illustrate how we might implement the sending
and receiving sides of the sliding window algorithm. The routines are
taken from a working protocol named, appropriately enough, Sliding
Window Protocol (SWP). So as not to concern ourselves with the adjacent
protocols in the protocol graph, we denote the protocol sitting above SWP
as the high-level protocol (HLP) and the protocol sitting below SWP as the
link-level protocol (LLP).

We start by defining a pair of data structures. First, the frame header is
very simple: It contains a sequence number (SegNum) and an acknowl-
edgment number (AckNum). It also contains a Flags field that indicates
whether the frame is an ACK or carries data.

typedef u_char SwpSeqno;

typedef struct {

SwpSeqgno SeqNum; /* sequence number of this frame %/
SwpSeqgno AckNum; /* ack of received frame x/
u_char Flags; /* up to 8 bits worth of flags =/

} SwpHdr;

Next, the state of the sliding window algorithm has the following struc-
ture. For the sending side of the protocol, this state includes variables
LAR and LFS, as described earlier in this section, as well as a queue
that holds frames that have been transmitted but not yet acknowledged
(sendQ). The sending state also includes a counting semaphore called
sendWindowNotFull. We will see how this is used below, but generally



112

CHAPTER 2 Getting connected

a semaphore is a synchronization primitive that supports semWait and
semSignal operations. Every invocation of semSignal increments the
semaphore by 1, and every invocation of semWait decrements s by 1,
with the calling process blocked (suspended) should decrementing the
semaphore cause its value to become less than 0. A process that is blocked
during its call to semWait will be allowed to resume as soon as enough
semSignal operations have been performed to raise the value of the

semaphore above 0.

For the receiving side of the protocol, the state includes the variable
NFE. This is the next frame expected, the frame with a sequence num-
ber one more that the last frame received (LFR), described earlier in
this section. There is also a queue that holds frames that have been
received out of order (recvQ). Finally, although not shown, the sender and
receiver sliding window sizes are defined by constants SWS and RWS,

respectively.

typedef struct ({
/* sender side state:

*/

/* segno of Tast ACK
received =%/
/* Tast frame sent =*/

/* pre-initialized header =/

/% event associated with send
-timeout =/

SwpSeqno LAR;
SwpSegno LFS;
Semaphore sendWindowNotFull;
SwpHdr hdr;
struct sendQ_slot ({
Event timeout;
Msg msg;
} sendQ[SWST;

/* receiver side state:
SwpSeagno NFE;

struct recvQ_slot {

int received;
Msg msg;
} recvQ[RWST;
} SwpState;

*/

/* segno of next frame

expected =/

/* is msg valid? =/

The sending side of SWP is implemented by procedure sendSWP. This
routine is rather simple. First, semWait causes this process to block on a



2.5 Reliable transmission 113

semaphore until it is OK to send another frame. Once allowed to proceed,
sendSWP sets the sequence number in the frame’s header, saves a copy
of the frame in the transmit queue (sendQ), schedules a timeout event to
handle the case in which the frame is not acknowledged, and sends the
frame to the next-lower-level protocol, which we denote as LINK.

One detail worth noting is the call to store_swp_hdr just before the
call to msgAddHdr. This routine translates the C structure that holds the
SWP header (state-> hdr) into a byte string that can be safely attached to
the front of the message (hbuf). This routine (not shown) must translate
each integer field in the header into network byte order and remove any
padding that the compiler has added to the C structure. The issue of byte
order is discussed more fully in Section 7.1, but for now it is enough to
assume that this routine places the most significant bit of a multiword
integer in the byte with the highest address.

Another piece of complexity in this routine is the use of semWait and
the sendWindowNotFull semaphore. sendWindowNotFull is initialized to
the size of the sender’s sliding window, SWS (this initialization is not
shown). Each time the sender transmits a frame, the semWait opera-
tion decrements this count and blocks the sender should the count go
to 0. Each time an ACK is received, the semSignal operation invoked in
deliverSWP (see below) increments this count, thus unblocking any wait-
ing sender.

static int
sendSWP(SwpState =*state, Msg *frame)
{
struct sendQ_slot =slot;
hbuf[HLENT;

/* wait for send window to open x/

semWait(&state->sendWindowNotFull);

state->hdr.SegNum = ++state->LFS;

slot = &state->sendQ[state->hdr.SeqNum % SWST;

store_swp_hdr(state->hdr, hbuf);

msgAddHdr (frame, hbuf, HLEN);

msgSaveCopy(&slot->msg, frame);

slot->timeout = evSchedule(swpTimeout, slot,
SWP_SEND_TIMEQUT);

return send(LINK, frame);



‘_

114 CHAPTER 2 Getting connected

Before continuing to the receive side of SWP, we need to reconcile a
seeming inconsistency. On the one hand, we have been saying that a high-
level protocol invokes the services of a low-level protocol by calling the
send operation, so we would expect that a protocol that wants to send
a message via SWP would call send(SWP, packet). On the other hand, the
procedure that implements SWP’s send operation is called sendSWP, and
its first argument is a state variable (SwpState). What gives? The answer is
that the operating system provides glue code that translates the generic
call to send into a protocol-specific call to sendSWP. This glue code maps
the first argument to send (the magic protocol variable SWP) into both a
function pointer to sendSWP and a pointer to the protocol state that SWP
needs to do its job. The reason we have the high-level protocol indirectly
invoke the protocol-specific function through the generic function call is
that we want to limit how much information the high-level protocol has
coded in it about the low-level protocol. This makes it easier to change
the protocol graph configuration at some time in the future.

Now we move on to SWP’s protocol-specific implementation of the
deliver operation, which is given in procedure deliverSWP. This routine
actually handles two different kinds of incoming messages: ACKs for
frames sent earlier from this node and data frames arriving at this node. In
a sense, the ACK half of this routine is the counterpart to the sender side
of the algorithm given in sendSWP. A decision as to whether the incom-
ing message is an ACK or a data frame is made by checking the Flags field
in the header. Note that this particular implementation does not support
piggybacking ACKs on data frames.

When the incoming frame is an ACK, deliverSWP simply finds the slot
in the transmit queue (sendQ) that corresponds to the ACK, cancels the
timeout event, and frees the frame saved in that slot. This work is actually
done in a loop since the ACK may be cumulative. The only other thing to
notice about this case is the call to subroutine swplnWindow. This sub-
routine, which is given below, ensures that the sequence number for the
frame being acknowledged is within the range of ACKs that the sender
currently expects to receive.

When the incoming frame contains data, deliverSWP first calls
msgStripHdr and load_swp_hdr to extract the header from the frame. Rou-
tine load_swp_hdr is the counterpart to store_swp_hdr discussed earlier;
it translates a byte string into the C data structure that holds the SWP
header. deliverSWP then calls swpInWindow to make sure the sequence



2.5 Reliable transmission 115

number of the frame is within the range of sequence numbers that it
expects. If it is, the routine loops over the set of consecutive frames it
has received and passes them up to the higher-level protocol by invok-
ing the deliverHLP routine. It also sends a cumulative ACK back to the
sender, but does so by looping over the receive queue (it does not use the
SeqNumToAck variable used in the prose description given earlier in this
section).

static int
deliverSWP(SwpState state, Msg *frame)
{

SwpHdr hdr;

char *hbuf;

hbuf = msgStripHdr(frame, HLEN);
load_swp_hdr(&hdr, hbuf)
if (hdr->Flags & FLAG_ACK_VALID)
{
/* received an acknowledgment---do SENDER side =/
if (swpInWindow(hdr.AckNum, state->LAR + 1,
state->LFS))

do

{
struct sendQ_slot *slot;

slot = &state->sendQ[++state->LAR % SWS];
evCancel(slot->timeout);
msgDestroy(&slot->msg);
semSignal (&state->sendWindowNotFull);

} while (state->LAR != hdr.AckNum);

if (hdr.Flags & FLAG_HAS_DATA)
{
struct recvQ_slot *slot;

/* received data packet---do RECEIVER side x/



116

CHAPTER 2 Getting connected

slot = &state->recvQlhdr.SegNum % RWS];
if (!swpInWindow(hdr.SegNum, state->NFE,
state->NFE + RWS - 1))

/* drop the message */
return SUCCESS;
}
msgSaveCopy(&slot->msg, frame);
slot->received = TRUE;
if (hdr.SeqNum == state->NFE)
{
Msg m;

while (slot->received)
{
deliver(HLP, &slot->msg);
msgDestroy(&slot->msg);
slot->received = FALSE;
slot = &state->recvQ[++state->NFE % RWST;
}
/* send ACK: =%/
prepare_ack(&m, state->NFE - 1);
send(LINK, &m);
msgDestroy(&m);

}
return SUCCESS;

Finally, swpInWindow is a simple subroutine that checks to see if a given
sequence number falls between some minimum and maximum sequence
number.

static bool
swpInWindow(SwpSegno segno, SwpSegno min, SwpSegno max)
{

SwpSegno pos, maxpos;




ﬂ:

=< = [l
2.5 Reliable transmission 117
pos = segno - min; /* pos xshould* be in range [0..MAX) %/
maxpos = max - min + 1; /* maxpos is in range [0..MAX] x/

return pos < maxpos;

Frame Order and Flow Control

The sliding window protocol is perhaps the best known algorithm in com-
puter networking. What is easily confusing about the algorithm, however,
is that it can be used to serve three different roles. The first role is the one
we have been concentrating on in this section—to reliably deliver frames
across an unreliable link. (In general, the algorithm can be used to reliably
deliver messages across an unreliable network.) This is the core function
of the algorithm.

The second role that the sliding window algorithm can serve is to pre-
serve the order in which frames are transmitted. This is easy to do at
the receiver—since each frame has a sequence number, the receiver just
makes sure that it does not pass a frame up to the next-higher-level pro-
tocol until it has already passed up all frames with a smaller sequence
number. That is, the receiver buffers (i.e., does not pass along) out-of-
order frames. The version of the sliding window algorithm described in
this section does preserve frame order, although we could imagine a vari-
ation in which the receiver passes frames to the next protocol without
waiting for all earlier frames to be delivered. A question we should ask
ourselves is whether we really need the sliding window protocol to keep
the frames in order, or whether, instead, this is unnecessary functional-
ity at the link level. Unfortunately, we have not yet seen enough of the
network architecture to answer this question; we first need to understand
how a sequence of point-to-point links is connected by switches to form
an end-to-end path.

The third role that the sliding window algorithm sometimes plays is
to support flow control—a feedback mechanism by which the receiver
is able to throttle the sender. Such a mechanism is used to keep the
sender from over-running the receiver—that is, from transmitting more
data than the receiver is able to process. This is usually accomplished
by augmenting the sliding window protocol so that the receiver not only
acknowledges frames it has received but also informs the sender of how
many frames it has room to receive. The number of frames that the
receiver is capable of receiving corresponds to how much free buffer



118 CHAPTER 2 Getting connected

space it has. As in the case of ordered delivery, we need to make sure that
flow control is necessary at the link level before incorporating it into the
sliding window protocol.

~\
One important concept to take away from this discussion is the system design

principle we call separation of concerns. That is, you must be careful to distin-
guish between different functions that are sometimes rolled together in one
mechanism, and you must make sure that each function is necessary and being
supported in the most effective way. In this particular case, reliable delivery,
ordered delivery, and flow control are sometimes combined in a single sliding
window protocol, and we should ask ourselves if this is the right thing to do at
the link level. With this question in mind, we revisit the sliding window algorithm
in Chapter 3 (we show how X.25 networks use it to implement hop-by-hop flow
control) and in Chapter 5 (we describe how TCP uses it to implement a reliable
byte-stream channel).

2.5.3 Concurrent Logical Channels

The data link protocol used in the ARPANET provides an interesting alter-
native to the sliding window protocol, in that it is able to keep the pipe
full while still using the simple stop-and-wait algorithm. One important
consequence of this approach is that the frames sent over a given link are
not kept in any particular order. The protocol also implies nothing about
flow control.

The idea underlying the ARPANET protocol, which we refer to as con-
current logical channels, is to multiplex several logical channels onto a
single point-to-point link and to run the stop-and-wait algorithm on each
of these logical channels. There is no relationship maintained among the
frames sent on any of the logical channels, yet because a different frame
can be outstanding on each of the several logical channels the sender can
keep the link full.

More precisely, the sender keeps 3 bits of state for each channel: a
boolean, saying whether the channel is currently busy; the 1-bit sequence
number to use the next time a frame is sent on this logical channel; and
the next sequence number to expect on a frame that arrives on this chan-
nel. When the node has a frame to send, it uses the lowest idle channel,
and otherwise it behaves just like stop-and-wait.

In practice, the ARPANET supported 8 logical channels over each
ground link and 16 over each satellite link. In the ground-link case, the



ﬂ:

I

"
o
| 1

2.6 Ethernet and multiple access networks (802.3) 119

header for each frame included a 3-bit channel number and a 1-bit
sequence number, for a total of 4 bits. This is exactly the number of
bits the sliding window protocol requires to support up to 8 outstanding
frames on the link when RWS = SWS.

2.6 ETHERNET AND MULTIPLE ACCESS
NETWORKS (802.3) &
CSMA

Developed in the mid-1970s by researchers at the Xerox Palo Alto
Research Center (PARC), the Ethernet eventually became the dominant
local area networking technology, emerging from a pack of competing
technologies. Today, it competes mainly with 802.11 wireless networks
but remains extremely popular in campus networks and data centers.
The more general name for the technology behind the Ethernet is Carrier
Sense, Multiple Access with Collision Detect (CSMA/CD).

As indicated by the CSMA name, the Ethernet is a multiple-access net-
work, meaning that a set of nodes sends and receives frames over a shared
link. You can, therefore, think of an Ethernet as being like a bus that has
multiple stations plugged into it. The “carrier sense” in CSMA/CD means
that all the nodes can distinguish between an idle and a busy link, and
“collision detect” means that a node listens as it transmits and can there-
fore detect when a frame it is transmitting has interfered (collided) with a
frame transmitted by another node.

The Ethernet has its roots in an early packet radio network, called
Aloha, developed at the University of Hawaii to support computer com-
munication across the Hawaiian Islands. Like the Aloha network, the
fundamental problem faced by the Ethernet is how to mediate access to a
shared medium fairly and efficiently (in Aloha, the medium was the atmo-
sphere, while in the Ethernet the medium is a coax cable). The core idea
in both Aloha and the Ethernet is an algorithm that controls when each
node can transmit.

Interestingly, modern Ethernet links are now largely point to point;
that is, they connect one host to an Ethernet switch, or they intercon-
nect switches. Hence, “multiple access” techniques are not used much in
today’s Ethernets. At the same time, wireless networks have become enor-
mously popular, so the multiple access technologies that started in Aloha
are today again mostly used in wireless networks such as 802.11 (Wi-Fi)
networks. These networks will be discussed in Section 2.7.



120 CHAPTER 2 Getting connected

We will discuss Ethernet switches in the next chapter. For now, we’ll
focus on how a single Ethernet link works. And even though multi-access
Ethernet is becoming a bit of a historical curiosity, the principles of
multi-access networks continue to be important enough to warrant some
further discussion, which we provide below.

Digital Equipment Corporation and Intel Corporation joined Xerox to
define a 10-Mbps Ethernet standard in 1978. This standard then formed
the basis for IEEE standard 802.3, which additionally defines a much
wider collection of physical media over which an Ethernet can operate,
including 100-Mbps, 1-Gbps, and 10-Gbps versions.

2.6.1 Physical Properties

Ethernet segments were originally implemented using coaxial cable of
length up to 500 m. (Modern Ethernets use twisted copper pairs, usually
a particular type known as “Category 5,” or optical fibers, and in some
cases can be quite a lot longer than 500 m.) This cable was similar to
the type used for cable TV. Hosts connected to an Ethernet segment by
tapping into it. A transceiver, a small device directly attached to the tap,
detected when the line was idle and drove the signal when the host was
transmitting. It also received incoming signals. The transceiver, in turn,
connected to an Ethernet adaptor, which was plugged into the host. This
configuration is shown in Figure 2.22.

Multiple Ethernet segments can be joined together by repeaters. A
repeater is a device that forwards digital signals, much like an amplifier

/ Transceiver

~
1

/ Adaptor

Ethernet cable

Host

M FIGURE 2.22 Ethemet transceiver and adaptor.



2.6 Ethernet and multiple access networks (802.3)

forwards analog signals. Repeaters understand only bits, not frames; how-
ever, no more than four repeaters could be positioned between any pair of
hosts, meaning that a classical Ethernet had a total reach of only 2500 m.
For example, using just two repeaters between any pair of hosts supports
a configuration similar to the one illustrated in Figure 2.23—that is, a
segment running down the spine of a building with a segment on each
floor.

It’s also possible to create a multiway repeater, sometimes called a hub,
as illustrated in Figure 2.24. A hub just repeats whatever it hears on one
port out all its other ports.

Any signal placed on the Ethernet by a host is broadcast over the
entire network; that is, the signal is propagated in both directions, and
repeaters and hubs forward the signal on all outgoing segments. Termi-
nators attached to the end of each segment absorb the signal and keep it
from bouncing back and interfering with trailing signals. The original Eth-
ernet specifications used the Manchester encoding scheme described in
Section 2.2, while 4B/5B encoding or the similar 8B/10B scheme is used
today on higher speed Ethernets.

1000

M FIGURE 2.23 Ethemet repeater.

121



122

CHAPTER 2 Getting connected

M FIGURE 2.24 Ethernet hub.

It is important to understand that whether a given Ethernet spans a
single segment, a linear sequence of segments connected by repeaters, or
multiple segments connected in a star configuration by a hub, data trans-
mitted by any one host on that Ethernet reaches all the other hosts. This
is the good news. The bad news is that all these hosts are competing for
access to the same link, and, as a consequence, they are said to be in the
same collision domain. The multi-access part of the Ethernet is all about
dealing with the competition for the link that arises in a collision domain.

2.6.2 Access Protocol

We now turn our attention to the algorithm that controls access to a
shared Ethernet link. This algorithm is commonly called the Ethernet’s
media access control (MAC). It is typically implemented in hardware on
the network adaptor. We will not describe the hardware per se, but instead
focus on the algorithm it implements. First, however, we describe the
Ethernet’s frame format and addresses.

Frame Format

Each Ethernet frame is defined by the format given in Figure 2.25.° The
64-bit preamble allows the receiver to synchronize with the signal; it is
a sequence of alternating Os and 1s. Both the source and destination
hosts are identified with a 48-bit address. The packet type field serves
as the demultiplexing key; it identifies to which of possibly many higher-
level protocols this frame should be delivered. Each frame contains up to
1500 bytes of data. Minimally, a frame must contain at least 46 bytes of
data, even if this means the host has to pad the frame before transmit-
ting it. The reason for this minimum frame size is that the frame must

This frame format is from the Digital-Intel-Xerox standard; the 802.3 version differs
slightly.




S

2.6 Ethernet and multiple access networks (802.3) 123

64 48 48 16 32
Dest Src
Preamble addr addr Type Body % CRC

M FIGURE 2.25 Ethernet frame format.

be long enough to detect a collision; we discuss this more below. Finally,
each frame includes a 32-bit CRC. Like the HDLC protocol described in
Section 2.3.2, the Ethernet is a bit-oriented framing protocol. Note that
from the host’s perspective, an Ethernet frame has a 14-byte header: two
6-byte addresses and a 2-byte type field. The sending adaptor attaches
the preamble and CRC before transmitting, and the receiving adaptor
removes them.

Addresses

Each host on an Ethernet—in fact, every Ethernet host in the world—
has a unique Ethernet address. Technically, the address belongs to the
adaptor, not the host; it is usually burned into ROM. Ethernet addresses
are typically printed in a form humans can read as a sequence of six
numbers separated by colons. Each number corresponds to 1 byte of the
6-byte address and is given by a pair of hexadecimal digits, one for each
of the 4-bit nibbles in the byte; leading 0s are dropped. For example,
8:0:2b:e4:b1:2 is the human-readable representation of Ethernet address

00001000 00000000 00101011 11100100 10110001 00000010

To ensure that every adaptor gets a unique address, each manufacturer
of Ethernet devices is allocated a different prefix that must be prepended
to the address on every adaptor they build. For example, Advanced
Micro Devices has been assigned the 24-bit prefix x080020 (or 8:0:20).
A given manufacturer then makes sure the address suffixes it produces
are unique.

Each frame transmitted on an Ethernet is received by every adap-
tor connected to that Ethernet. Each adaptor recognizes those frames
addressed to its address and passes only those frames on to the host. (An
adaptor can also be programmed to run in promiscuous mode, in which
case it delivers all received frames to the host, but this is not the normal
mode.) In addition to these unicast addresses, an Ethernet address con-
sisting of all 1s is treated as a broadcast address; all adaptors pass frames
addressed to the broadcast address up to the host. Similarly, an address



124

CHAPTER 2 Getting connected

that has the first bit set to 1 but is not the broadcast address is called a
multicast address. A given host can program its adaptor to accept some
set of multicast addresses. Multicast addresses are used to send mes-
sages to some subset of the hosts on an Ethernet (e.g., all file servers). To
summarize, an Ethernet adaptor receives all frames and accepts

m Frames addressed to its own address
m Frames addressed to the broadcast address

m Frames addressed to a multicast address, if it has been instructed
to listen to that address

= All frames, if it has been placed in promiscuous mode

It passes to the host only the frames that it accepts.

Transmitter Algorithm

As we have just seen, the receiver side of the Ethernet protocol is sim-
ple; the real smarts are implemented at the sender’s side. The transmitter
algorithm is defined as follows.

When the adaptor has a frame to send and the line is idle, it transmits
the frame immediately; there is no negotiation with the other adaptors.
The upper bound of 1500 bytes in the message means that the adaptor
can occupy the line for only a fixed length of time.

When an adaptor has a frame to send and the line is busy, it waits for
the line to go idle and then transmits immediately.” The Ethernet is said
to be a I-persistent protocol because an adaptor with a frame to send
transmits with probability 1 whenever a busy line goes idle. In general,
a p-persistent algorithm transmits with probability 0 < p <1 after a line
becomes idle and defers with probability ¢ = 1 — p. The reasoning behind
choosing a p < 1 is that there might be multiple adaptors waiting for the
busy line to become idle, and we don’t want all of them to begin trans-
mitting at the same time. If each adaptor transmits immediately with a
probability of, say, 33%, then up to three adaptors can be waiting to trans-
mit and the odds are that only one will begin transmitting when the line
becomes idle. Despite this reasoning, an Ethernet adaptor always trans-
mits immediately after noticing that the network has become idle and has
been very effective in doing so.

"To be more precise, all adaptors wait 9.6 us after the end of one frame before beginning
to transmit the next frame. This is true for both the sender of the first frame as well as
those nodes listening for the line to become idle.




2.6 Ethernet and multiple access networks (802.3) 125

To complete the story about p-persistent protocols for the case when
p < 1, you might wonder how long a sender that loses the coin flip (i.e.,
decides to defer) has to wait before it can transmit. The answer for the
Aloha network, which originally developed this style of protocol, was to
divide time into discrete slots, with each slot corresponding to the length
of time it takes to transmit a full frame. Whenever a node has a frame
to send and it senses an empty (idle) slot, it transmits with probability p
and defers until the next slot with probability g = 1 — p. If that next slot is
also empty, the node again decides to transmit or defer, with probabilities
p and ¢, respectively. If that next slot is not empty—that is, some other
station has decided to transmit—then the node simply waits for the next
idle slot and the algorithm repeats.

Returning to our discussion of the Ethernet, because there is no cen-
tralized control it is possible for two (or more) adaptors to begin trans-
mitting at the same time, either because both found the line to be idle or
because both had been waiting for a busy line to become idle. When this
happens, the two (or more) frames are said to collide on the network. Each
sender, because the Ethernet supports collision detection, is able to deter-
mine that a collision is in progress. At the moment an adaptor detects that
its frame is colliding with another, it first makes sure to transmit a 32-bit
jamming sequence and then stops the transmission. Thus, a transmitter
will minimally send 96 bits in the case of a collision: 64-bit preamble plus
32-bit jamming sequence.

One way that an adaptor will send only 96 bits—which is sometimes
called a runt frame—is if the two hosts are close to each other. Had the
two hosts been farther apart, they would have had to transmit longer, and
thus send more bits, before detecting the collision. In fact, the worst-case
scenario happens when the two hosts are at opposite ends of the Ethernet.
To know for sure that the frame it just sent did not collide with another
frame, the transmitter may need to send as many as 512 bits. Not coin-
cidentally, every Ethernet frame must be at least 512 bits (64 bytes) long:
14 bytes of header plus 46 bytes of data plus 4 bytes of CRC.

Why 512 bits? The answer is related to another question you might ask
about an Ethernet: Why is its length limited to only 2500 m? Why not
10 or 1000 km? The answer to both questions has to do with the fact that
the farther apart two nodes are, the longer it takes for a frame sent by
one to reach the other, and the network is vulnerable to a collision during
this time.



126

CHAPTER 2 Getting connected

(a)

'w

v

(b)

(o)

(d) A

M FIGURE 2.26 Worst-case scenario: (a) A sends a frame at time ¢; (b) A's frame arrives at B at time ¢ 4 d; (c) B begins
transmitting at time ¢ + d and collides with A’s frame; (d) B's runt (32-bit) frame arrives at A at time ¢ + 2d.

Figure 2.26 illustrates the worst-case scenario, where hosts A and B are
at opposite ends of the network. Suppose host A begins transmitting a
frame at time ¢, as shown in (a). It takes it one link latency (let’s denote
the latency as d) for the frame to reach host B. Thus, the first bit of A’s
frame arrives at B at time ¢ + d, as shown in (b). Suppose an instant before
host A’s frame arrives (i.e., B still sees an idle line), host B begins to trans-
mit its own frame. B’s frame will immediately collide with A’s frame, and
this collision will be detected by host B (c). Host B will send the 32-bit
jamming sequence, as described above. (B’s frame will be a runt.) Unfor-
tunately, host A will not know that the collision occurred until B’s frame
reaches it, which will happen one link latency later, at time ¢ + 2 x d, as
shown in (d). Host A must continue to transmit until this time in order
to detect the collision. In other words, host A must transmit for 2 x d



)
I
i

2.6 Ethernet and multiple access networks (802.3)

to be sure that it detects all possible collisions. Considering that a max-
imally configured Ethernet is 2500 m long, and that there may be up
to four repeaters between any two hosts, the round-trip delay has been
determined to be 51.2 ps, which on a 10-Mbps Ethernet corresponds to
512 bits. The other way to look at this situation is that we need to limit the
Ethernet’s maximum latency to a fairly small value (e.g., 51.2 us) for the
access algorithm to work; hence, an Ethernet’s maximum length must be
something on the order of 2500 m.

Once an adaptor has detected a collision and stopped its transmission,
it waits a certain amount of time and tries again. Each time it tries to trans-
mit but fails, the adaptor doubles the amount of time it waits before trying
again. This strategy of doubling the delay interval between each retrans-
mission attempt is a general technique known as exponential backolff.
More precisely, the adaptor first delays either 0 or 51.2 s, selected at ran-
dom. If this effort fails, it then waits 0, 51.2, 102.4, or 153.6 us (selected
randomly) before trying again; thisis £ x 51.2 for k = 0... 3. After the third
collision, it waits k x 51.2 fork=0...23 -1, again selected at random. In
general, the algorithm randomly selects a k& between 0 and 2" — 1 and
waits k x 51.2 pus, where n is the number of collisions experienced so far.
The adaptor gives up after a given number of tries and reports a trans-
mit error to the host. Adaptors typically retry up to 16 times, although the
backoff algorithm caps » in the above formula at 10.

2.6.3 Experience with Ethernet

Because Ethernets have been around for so many years and are so pop-
ular, we have a great deal of experience in using them. One of the most
important observations people have made about multi-access Ethernets
is that they work best under lightly loaded conditions. This is because
under heavy loads (typically, a utilization of over 30% is considered
heavy on an Ethernet) too much of the network’s capacity is wasted by
collisions.

To mitigate these concerns, multi-access Ethernets were typically used
in a far more conservative way than the standard allows. For example,
most Ethernets had fewer than 200 hosts connected to them, which is
far fewer than the maximum of 1024. Similarly, most Ethernets were far
shorter than 2500 m, with a round-trip delay of closer to 5 s than 51.2 ps.
Another factor that made Ethernets practical is that, even though Ether-
net adaptors do not implement link-level flow control, the hosts typically

127



128

TR R

CHAPTER 2 Getting connected

LAB 02:
WLAN

provide an end-to-end flow-control mechanism, as we will see later. As a
result, it is rare to find situations in which any one host is continuously
pumping frames onto the network.

Finally, it is worth saying a few words about why Ethernets have been
so successful, so that we can understand the properties we should emu-
late with any LAN technology that tries to replace it. First, an Ethernet
is extremely easy to administer and maintain: There were no switches
in the original Ethernets, no routing or configuration tables to be kept
up-to-date, and it is easy to add a new host to the network. It is hard to
imagine a simpler network to administer. Second, it is inexpensive: Cable
is cheap, and the only other cost is the network adaptor on each host.
Ethernet became deeply entrenched for these reasons, and any switch-
based approach that aspired to displace it required additional investment
in infrastructure (the switches), on top of the cost of each adaptor. As
we will see in the next chapter, a switch-based technology did eventually
succeed in replacing multi-access Ethernet: switched Ethernet. Retaining
the simplicity of administration (and familiarity) was a key reason for this
success.

2.7 WIRELESS

Wireless technologies differ from wired links in some important ways,
while at the same time sharing many common properties. Like wired
links, issues of bit errors are of great concern—typically even more so due
to the unpredictable noise environment of most wireless links. Framing
and reliability also have to be addressed. Unlike wired links, power is a
big issue for wireless, especially because wireless links are often used by
small mobile devices (like phones and sensors) that have limited access to
power (e.g., a small battery). Furthermore, you can’t go blasting away at
arbitrarily high power with a radio transmitter—there are concerns about
interference with other devices and usually regulations about how much
power a device may emit at any given frequency.

Wireless media are also inherently multi-access; it’s difficult to direct
your radio transmission to just a single receiver or to avoid receiving radio
signals from any transmitter with enough power in your neighborhood.
Hence, media access control is a central issue for wireless links. And,
because it’s hard to control who receives your signal when you transmit
over the air, issues of eavesdropping may also have to be addressed.




Where Are They Now?

TOKEN RINGS

For many years, there were two main ways to build a LAN: Ethernet or token
ring. The most prevalent form of token ring was invented by IBM, and stan-
dardized as IEEE 802.5. Token rings have a number of things in common with
Ethernet: The ring behaves like a single shared medium and employs a dis-
tributed algorithm to decide which station can transmit onto that medium
at any given time, and every node on a given ring can see all the packets
transmitted by other nodes.

The most obvious difference between token ring and Ethernet is the topol-
ogy; whereas an Ethernet is a bus, the nodes in a token ring form a loop. That is,
each node is connected to a pair of neighbors, one upstream and one down-
stream. The “token” is just a special sequence of bits that circulates around
the ring; each node receives and then forwards the token. When a node that
has a frame to transmit sees the token, it takes the token off the ring (i.e., it
does not forward the special bit pattern) and instead inserts its frame into the
ring. Each node along the way simply forwards the frame, with the destina-
tion node saving a copy and forwarding the message onto the next node on
the ring. When the frame makes its way back around to the sender, this node
strips its frame off the ring (rather than continuing to forward it) and reinserts
the token. In this way, some node downstream will have the opportunity to
transmit a frame. The media access algorithm is fair in the sense that as the
token circulates around the ring, each node gets a chance to transmit. Nodes
are serviced in a round-robin fashion.

Many different variants of token rings appeared over the decades, with the
Fiber Distributed Data Interface (FDDI) being one of the last to see significant
deployment. In the end, token rings lost out to the Ethernet, especially with
the advent of Ethernet switching and high-speed Ethernet variants (100-Mbit
and gigabit Ethernet).

There is a baffling assortment of different wireless technologies, each
of which makes different tradeoffs in various dimensions. One simple
way to categorize the different technologies is by the data rates they pro-
vide and how far apart communicating nodes can be. Other important
differences include which part of the electromagnetic spectrum they use
(including whether it requires a license) and how much power they con-
sume. In this section, we discuss three prominent wireless technologies:

2.7 Wireless

LAB APPENDIX A:
Token Ring

129



130

CHAPTER 2 Getting connected

Table 2.4 Overview of Leading Wireless Technologies

Bluetooth (802.15.1) | Wi-Fi(802.11) 3G Cellular

Typical link length | 10 m 100 m Tens of kilometers
Typical data rate 2 Mbps (shared) 54 Mbps (shared) | Hundreds of kbps
(per connection)
Typical use Link a peripheral Link a computer | Link a mobile phone
to a computer to a wired base to a wired tower
Wired technology | USB Ethernet DSL
analogy

Wi-Fi (more formally known as 802.11), Bluetooth®, and the
third-generation or “3G” family of cellular wireless standards. Table 2.4
gives an overview of these technologies and how they compare to each
other.

You may recall from Section 1.5 that bandwidth sometimes means the
width of a frequency band in hertz and sometimes the data rate of a
link. Because both these concepts come up in discussions of wireless net-
works, we're going to use bandwidth here in its stricter sense—width of
a frequency band—and use the term data rate to describe the number of
bits per second that can be sent over the link, as in Table 2.4.

Because wireless links all share the same medium, the challenge is to
share that medium efficiently, without unduly interfering with each other.
Most of this sharing is accomplished by dividing it up along the dimen-
sions of frequency and space. Exclusive use of a particular frequency in a
particular geographic area may be allocated to an individual entity such
as a corporation. It is feasible to limit the area covered by an electromag-
netic signal because such signals weaken, or attenuate, with the distance
from their origin. To reduce the area covered by your signal, reduce the
power of your transmitter.

These allocations are typically determined by government agencies,
such as the Federal Communications Commission (FCC) in the United
States. Specific bands (frequency ranges) are allocated to certain uses.
Some bands are reserved for government use. Other bands are reserved
for uses such as AM radio, FM radio, television, satellite communication,
and cellular phones. Specific frequencies within these bands are then



licensed to individual organizations for use within certain geographical
areas. Finally, several frequency bands are set aside for license-exempt
usage—bands in which a license is not needed.

Devices that use license-exempt frequencies are still subject to certain
restrictions to make that otherwise unconstrained sharing work. Most
important of these is a limit on transmission power. This limits the range
of a signal, making it less likely to interfere with another signal. For exam-
ple, a cordless phone (a common unlicensed device) might have a range
of about 100 feet.

One idea that shows up a lot when spectrum is shared among many
devices and applications is spread spectrum. The idea behind spread
spectrum is to spread the signal over a wider frequency band, so as to
minimize the impact of interference from other devices. (Spread spec-
trum was originally designed for military use, so these “other devices”
were often attempting to jam the signal.) For example, frequency hopping
is a spread spectrum technique that involves transmitting the signal
over a random sequence of frequencies; that is, first transmitting at
one frequency, then a second, then a third, and so on. The sequence of
frequencies is not truly random but is instead computed algorithmically
by a pseudorandom number generator. The receiver uses the same algo-
rithm as the sender and initializes it with the same seed; hence, it is able
to hop frequencies in sync with the transmitter to correctly receive the
frame. This scheme reduces interference by making it unlikely that two
signals would be using the same frequency for more than the infrequent
isolated bit.

A second spread spectrum technique, called direct sequence, adds
redundancy for greater tolerance of interference. Each bit of data is repre-
sented by multiple bits in the transmitted signal so that, if some of the
transmitted bits are damaged by interference, there is usually enough
redundancy to recover the original bit. For each bit the sender wants to
transmit, it actually sends the exclusive-OR of that bit and » random bits.
As with frequency hopping, the sequence of random bits is generated by
a pseudorandom number generator known to both the sender and the
receiver. The transmitted values, known as an n-bit chipping code, spread
the signal across a frequency band that is n times wider than the frame
would have otherwise required. Figure 2.27 gives an example of a 4-bit
chipping sequence.

2.7 Wireless

131



132

CHAPTER 2 Getting connected

1
0

1
0

Data stream: 1010

m Random sequence: 0100101101011001

XOR of the two: 1011101110101001

M FIGURE 2.27 Example 4-bit chipping sequence.

Different parts of the electromagnetic spectrum have different prop-
erties, making some better suited to communication, and some less
so. For example, some can penetrate buildings and some cannot. Gov-
ernments regulate only the prime communication portion: the radio
and microwave ranges. As demand for prime spectrum increases, there
is great interest in the spectrum that is becoming available as analog
television is phased out in favor of digital.?

In many wireless networks today we observe that there are two dif-
ferent classes of endpoints. One endpoint, sometimes described as the
base station, usually has no mobility but has a wired (or at least high-
bandwidth) connection to the Internet or other networks, as shown in
Figure 2.28. The node at the other end of the link—shown here as a client
node—is often mobile and relies on its link to the base station for all of its
communication with other nodes.

Observe that in Figure 2.28 we have used a wavy pair of lines to rep-
resent the wireless “link” abstraction provided between two devices (e.g.,
between a base station and one of its client nodes). One of the interesting
aspects of wireless communication is that it naturally supports point-to-
multipoint communication, because radio waves sent by one device can
be simultaneously received by many devices. However, it is often useful to
create a point-to-point link abstraction for higher layer protocols, and we
will see examples of how this works later in this section.

Note that in Figure 2.28, communication between non-base (client)
nodes is routed via the base station. This is in spite of the fact that
radio waves emitted by one client node may well be received by other

8Thanks to advances in video coding and modulation, digital video broadcasts require
less spectrum to be allocated for each TV channel.




Wired

network

2.7 Wireless

Client node

Wireless “link”
between 2 nodes

B FIGURE 2.28 A wireless network using a base station.

client nodes—the common base station model does not permit direct
communication between the client nodes.

This topology implies three qualitatively different levels of mobility.
The first level is no mobility, such as when a receiver must be in a fixed
location to receive a directional transmission from the base station. The
second level is mobility within the range of a base, as is the case with Blue-
tooth. The third level is mobility between bases, as is the case with cell
phones and Wi-Fi.

An alternative topology that is seeing increasing interest is the mesh
or ad hoc network. In a wireless mesh, nodes are peers; that is, there is
no special base station node. Messages may be forwarded via a chain of
peer nodes as long as each node is within range of the preceding node.
This is illustrated in Figure 2.29. This allows the wireless portion of a
network to extend beyond the limited range of a single radio. From the
point of view of competition between technologies, this allows a shorter-
range technology to extend its range and potentially compete with a
longer-range technology. Meshes also offer fault tolerance by providing

133



134

CHAPTER 2 Getting connected

Wireless
transmission

Mobile node

Mobile node

Mobile node

M FIGURE 2.29 A wireless ad hoc or mesh network.

multiple routes for a message to get from point A to point B. A mesh net-
work can be extended incrementally, with incremental costs. On the other

hand, a mesh network requires non-base nodes to have a certain level of

sophistication in their hardware and software, potentially increasing per-
unit costs and power consumption, a critical consideration for battery-
powered devices. Wireless mesh networks are of considerable research
interest (see the further reading section for some references), but they
are still in their relative infancy compared to networks with base stations.
Wireless sensor networks, another hot emerging technology, often form
wireless meshes.

Now that we have covered some of the common wireless issues, let’s

take a look at the details of a few common wireless technologies.



ﬂ:

I

"
o
| 1

2.7 Wireless 135

2.7.1 802.11/Wi-Fi

Most readers will have used a wireless network based on the IEEE 802.11
standards, often referred to as Wi-Fi.? Wi-Fi is technically a trademark,
owned by a trade group called the Wi-Fi Alliance, which certifies prod-
uct compliance with 802.11. Like Ethernet, 802.11 is designed for use
in a limited geographical area (homes, office buildings, campuses), and
its primary challenge is to mediate access to a shared communication
medium—in this case, signals propagating through space.

Physical Properties

802.11 defines a number of different physical layers that operate in var-
ious frequency bands and provide a range of different data rates. At the
time of writing, 802.11n provides the highest maximum data rate, topping
out at 600 Mbps.

The original 802.11 standard defined two radio-based physical layers
standards, one using frequency hopping (over 79 1-MHz-wide frequency
bandwidths) and the other using direct sequence spread spectrum (with
an 11-bit chipping sequence). Both provided data rates in the 2 Mbps
range. The physical layer standard 802.11b was added subsequently.
Using a variant of direct sequence, 802.11b provides up to 11 Mbps. These
three standards all operated in the license-exempt 2.4-GHz frequency
band of the electromagnetic spectrum. Then came 802.11a, which deliv-
ers up to 54 Mbps using a variant of FDM called orthogonal frequency
division multiplexing (OFDM); 802.11a runs in the license-exempt 5-GHz
band. On one hand, this band is less used, so there is less interference. On
the other hand, there is more absorption of the signal and it is limited to
almost line of sight. 802.11g followed; 802.11g also uses OFDM, delivers
up to 54 Mbps, and is backward compatible with 802.11b (and returns to
the 2.4-GHz band).

Most recently 802.11n has appeared on the scene, with a standard
that was approved in 2009 (although pre-standard products also existed).
802.11n achieves considerable advances in maximum possible data rate
using multiple antennas and allowing greater wireless channel band-
widths. The use of multiple antennas is often called MIMO for multiple-
input, multiple-output.

9There is some debate over whether Wi-Fi stands for “wireless fidelity,” by analogy to
Hi-Fi, or whether it is just a catchy name that doesn’t stand for anything other than
802.11.



136 CHAPTER 2 Getting connected

It is common for commercial products to support more than one flavor
of 802.11; some base stations support all four variants (a,b, g, and n). This
not only ensures compatibility with any device that supports any one of
the standards but also makes it possible for two such products to choose
the highest bandwidth option for a particular environment.

It is worth noting that while all the 802.11 standards define a maxi-
mum bit rate that can be supported, they mostly support lower bit rates
as well; for example, 802.11a allows for bit rates of 6, 9, 12, 18, 24, 36, 48,
and 54 Mbps. At lower bit rates, it is easier to decode transmitted signals in
the presence of noise. Different modulation schemes are used to achieve
the various bit rates; in addition, the amount of redundant information
in the form of error-correcting codes is varied. (See Section 2.4 for
an introduction to error-detecting codes.) More redundant information
means higher resilience to bit errors at the cost of lowering the effective
data rate (since more of the transmitted bits are redundant).

The systems try to pick an optimal bit rate based on the noise environ-
ment in which they find themselves; the algorithms for bit rate selection
can be quite complex (see the Further Reading section for an example).
Interestingly, the 802.11 standards do not specify a particular approach
but leave the algorithms to the various vendors. The basic approach to
picking a bit rate is to estimate the bit error rate either by directly measur-
ing the signal-to-noise ratio (SNR) at the physical layer or by estimating
the SNR by measuring how often packets are successfully transmitted and
acknowledged. In some approaches, a sender will occasionally probe a
higher bit rate by sending one or more packets at that rate to see if it
succeeds.

Collision Avoidance

At first glance, it might seem that a wireless protocol would follow the
same algorithm as the Ethernet—wait until the link becomes idle before
transmitting and back off should a collision occur—and, to a first approxi-
mation, this is what 802.11 does. The additional complication for wireless
is that, while a node on an Ethernet receives every other node’s trans-
missions and can transmit and receive at the same time, neither of these
conditions holds for wireless nodes. This makes detection of collisions
rather more complex. The reason why wireless nodes cannot usually
transmit and receive at the same time (on the same frequency) is that
the power generated by the transmitter is much higher than any received



M FIGURE 2.30 The hidden node problem. Although A and Care hidden from each other, their signals can collide at B.
(B's reach is not shown.)

signal is likely to be and so swamps the receiving circuitry. The reason
why a node may not receive transmissions from another node is because
that node may be too far away or blocked by an obstacle. This situation is
a bit more complex than it first appears, as the following discussion will
illustrate.

Consider the situation depicted in Figure 2.30, where A and C are both
within range of B but not each other. Suppose both A and C want to com-
municate with B and so they each send it a frame. A and C are unaware of
each other since their signals do not carry that far. These two frames col-
lide with each other at B, but unlike an Ethernet, neither A nor C is aware
of this collision. A and C are said to be hidden nodes with respect to each
other.

A related problem, called the exposed node problem, occurs under the
circumstances illustrated in Figure 2.31, where each of the four nodes is
able to send and receive signals that reach just the nodes to its immedi-
ate left and right. For example, B can exchange frames with A and C but it
cannot reach D, while C can reach B and D but not A. Suppose B is sending
to A. Node C is aware of this communication because it hears B’s trans-
mission. It would be a mistake, however, for C to conclude that it cannot
transmit to anyone just because it can hear B’s transmission. For exam-
ple, suppose C wants to transmit to node D. This is not a problem since
C’s transmission to D will not interfere with A’s ability to receive from B. (It
would interfere with A sending to B, but B is transmitting in our example.)

2.7 Wireless

137



138 CHAPTER 2 Getting connected

M FIGURE 2.31 The exposed node problem. Although B and Care exposed to each other’s signals, there is no
interference if B transmits to A while Ctransmits to D. (A and D's reaches are not shown.)

802.11 addresses these problems by using CSMA/CA, where the CA
stands for collision avoidance, in contrast to the collision detection of
CSMA/CD used on Ethernets. There are a few pieces to make this work.

The Carrier Sense part seems simple enough: Before sending a packet,
the transmitter checks if it can hear any other transmissions; if not, it
sends. However, because of the hidden terminal problem, just waiting for
the absence of signals from other transmitters does not guarantee that
a collision will not occur from the perspective of the receiver. For this
reason, one part of CSMA/CA is an explicit ACK from the receiver to the
sender. If the packet was successfully decoded and passed its CRC at the
receiver, the receiver sends an ACK back to the sender.

Note that if a collision does occur, it will render the entire packet
useless.!® For this reason, 802.11 adds an optional mechanism called
RTS-CTS (Ready to Send-Clear to Send). This goes some way toward
addressing the hidden terminal problem. The sender sends an RTS—
a short packet—to the intended receiver, and if that packet is received
successfully the receiver responds with another short packet, the CTS.
Even though the RTS may not have been heard by a hidden terminal, the
CTS probably will be. This effectively tells the nodes within range of the
receiver that they should not send anything for a while—the amount of

Current research tries to recover partial packets, but that is not yet part of 802.11.



time of the intended transmission is included in the RTS and CTS pack-
ets. After that time plus a small interval has passed, the carrier can be
assumed to be available again, and another node is free to try to send.

Of course, two nodes might detect an idle link and try to transmit an
RTS frame at the same time, causing their RTS frames to collide with each
other. The senders realize the collision has happened when they do not
receive the CTS frame after a period of time, in which case they each wait
arandom amount of time before trying again. The amount of time a given
node delays is defined by an exponential backoff algorithm very much like
that used on the Ethernet (see Section 2.6.2).

After a successful RTS-CTS exchange, the sender sends its data packet
and, if all goes well, receives an ACK for that packet. In the absence of
a timely ACK, the sender will try again to request usage of the channel
again, using the same process described above. By this time, of course,
other nodes may again be trying to get access to the channel as well.

Distribution System

As described so far, 802.11 would be suitable for a network with a mesh
(ad hoc) topology, and development of an 802.11s standard for mesh
networks is nearing completion. At the current time, however, nearly all
802.11 networks use a base-station-oriented topology.

Instead of all nodes being created equal, some nodes are allowed to
roam (e.g., your laptop) and some are connected to a wired network
infrastructure. 802.11 calls these base stations access points (APs), and
they are connected to each other by a so-called distribution system.
Figure 2.32 illustrates a distribution system that connects three access
points, each of which services the nodes in some region. Each access
point operates on some channel in the appropriate frequency range, and
each AP will typically be on a different channel than its neighbors.

The details of the distribution system are not important to this
discussion—it could be an Ethernet, for example. The only important
point is that the distribution network operates at the link layer, the same
protocol layer as the wireless links. In other words, it does not depend on
any higher-level protocols (such as the network layer).

Although two nodes can communicate directly with each other if they
are within reach of each other, the idea behind this configuration is that
each node associates itself with one access point. For node A to com-
municate with node E, for example, A first sends a frame to its access

2.7 Wireless

139



140

CHAPTER 2 Getting connected

Distribution system

M FIGURE 2.32 Access points connected to a distribution system.

point (AP-1), which forwards the frame across the distribution system to
AP-3, which finally transmits the frame to E. How AP-1 knew to forward
the message to AP-3 is beyond the scope of 802.11; it may have used
the bridging protocol described in the next chapter (Section 3.1.4). What
802.11 does specify is how nodes select their access points and, more
interestingly, how this algorithm works in light of nodes moving from one
cell to another.

The technique for selecting an AP is called scanning and involves the
following four steps:

1. The node sends a Probe frame.
2. All APs within reach reply with a Probe Response frame.

3. The node selects one of the access points and sends that AP an
Association Request frame.

4. The AP replies with an Association Response frame.

A node engages this protocol whenever it joins the network, as well as
when it becomes unhappy with its current AP. This might happen, for
example, because the signal from its current AP has weakened due to
the node moving away from it. Whenever a node acquires a new AP, the
new AP notifies the old AP of the change (this happens in step 4) via the
distribution system.



Distribution system

M FIGURE 2.33 Node mobility.

Consider the situation shown in Figure 2.33, where node C moves from
the cell serviced by AP-1 to the cell serviced by AP-2. As it moves, it sends
Probe frames, which eventually result in Probe Response frames from
AP-2. At some point, C prefers AP-2 over AP-1, and so it associates itself
with that access point.

The mechanism just described is called active scanning since the node
is actively searching for an access point. APs also periodically send a
Beacon frame that advertises the capabilities of the access point; these
include the transmission rates supported by the AP. This is called passive
scanning, and a node can change to this AP based on the Beacon frame
simply by sending an Association Request frame back to the access point.

Frame Format

Most of the 802.11 frame format, which is depicted in Figure 2.34, is
exactly what we would expect. The frame contains the source and des-
tination node addresses, each of which is 48 bits long; up to 2312 bytes of
data; and a 32-bit CRC. The Control field contains three subfields of inter-
est (not shown): a 6-bit Type field that indicates whether the frame carries
data, is an RTS or CTS frame, or is being used by the scanning algorithm,
and a pair of 1-bit fields—called ToDS and FromDS—that are described
below.

The peculiar thing about the 802.11 frame format is that it contains
four, rather than two, addresses. How these addresses are interpreted

2.7 Wireless

141



142

CHAPTER 2 Getting connected

16

16 48 48 48 16 48 0-18,496 32

Control

Duration | Addr1 | Addr2 | Addr3 | SeqCtrl | Addr4 Payload% CRC

M FIGURE 2.34 802.11 frame format.

depends on the settings of the ToDS and FromDS bits in the frame’s Con-
trol field. This is to account for the possibility that the frame had to be
forwarded across the distribution system, which would mean that the
original sender is not necessarily the same as the most recent transmitting
node. Similar reasoning applies to the destination address. In the simplest
case, when one node is sending directly to another, both the DS bits are 0,
Addr1 identifies the target node, and Addr2 identifies the source node. In
the most complex case, both DS bits are set to 1, indicating that the mes-
sage went from a wireless node onto the distribution system, and then
from the distribution system to another wireless node. With both bits set,
Addr1 identifies the ultimate destination, Addr2 identifies the immediate
sender (the one that forwarded the frame from the distribution system to
the ultimate destination), Addr3 identifies the intermediate destination
(the one that accepted the frame from a wireless node and forwarded it
across the distribution system), and Addr4 identifies the original source.
In terms of the example given in Figure 2.32, Addr1 corresponds to E,
Addr2 identifies AP-3, Addr3 corresponds to AP-1, and Addr4 identifies A.

2.7.2 Bluetooth® (802.15.1)

Bluetooth fills the niche of very short range communication between
mobile phones, PDAs, notebook computers, and other personal or
peripheral devices. For example, Bluetooth can be used to connect a
mobile phone to a headset or a notebook computer to a keyboard.
Roughly speaking, Bluetooth is a more convenient alternative to con-
necting two devices with a wire. In such applications, it is not necessary
to provide much range or bandwidth. This means that Bluetooth radios
can use quite low power transmission, since transmission power is one
of the main factors affecting bandwidth and range of wireless links. This
matches the target applications for Bluetooth-enabled devices—most of
them are battery powered (such as the ubiquitous phone headset) and
hence it is important that they not consume much power.'!

""And who really wants a high-power radio transmitter in their ear?



Bluetooth operates in the license-exempt band at 2.45 GHz. Bluetooth
links have typical bandwidths around 1 to 3 Mbps and a range of about
10 m. For this reason, and because the communicating devices typically
belong to one individual or group, Bluetooth is sometimes categorized as
a Personal Area Network (PAN).

Bluetooth is specified by an industry consortium called the Bluetooth
Special Interest Group. It specifies an entire suite of protocols, going
beyond the link layer to define application protocols, which it calls pro-
files, for arange of applications. For example, there is a profile for synchro-
nizing a PDA with a personal computer. Another profile gives a mobile
computer access to a wired LAN in the manner of 802.11, although this
was not Bluetooth’s original goal. The IEEE 802.15.1 standard is based on
Bluetooth but excludes the application protocols.

The basic Bluetooth network configuration, called a piconet, consists
of a master device and up to seven slave devices, as shown in Figure 2.35.
Any communication is between the master and a slave; the slaves do not
communicate directly with each other. Because slaves have a simpler role,
their Bluetooth hardware and software can be simpler and cheaper.

Since Bluetooth operates in an license-exempt band, it is required to
use a spread spectrum technique (as discussed at the start of this section)
to deal with possible interference in the band. It uses frequency-hopping
with 79 channels (frequencies), using each for 625 ps at a time. This
provides a natural time slot for Bluetooth to use for synchronous time
division multiplexing. A frame takes up 1, 3, or 5 consecutive time slots.
Only the master can start to transmit in odd-numbered slots. A slave can
start to transmit in an even-numbered slot—but only in response to a
request from the master during the previous slot, thereby preventing any
contention between the slave devices.

A slave device can be parked; that is, it is set to an inactive, low-power
state. A parked device cannot communicate on the piconet; it can only be
reactivated by the master. A piconet can have up to 255 parked devices in
addition to its active slave devices.

In the realm of very low-power, short-range communication there are
a few other technologies besides Bluetooth. One of these is ZigBee®,
devised by the ZigBee alliance and standardized as IEEE 802.15.4. It is
designed for situations where the bandwidth requirements are low and
power consumption must be very low to give very long battery life. It
is also intended to be simpler and cheaper than Bluetooth, making it

2.7 Wireless

143



144

CHAPTER 2 Getting connected

g Slae
Slave (active)

(parked)

(active)

M FIGURE 2.35 A Bluetooth piconet.

financially feasible to incorporate in cheaper devices such as sensors. Sen-
sors are becoming an increasingly important class of networked device, as
technology advances to the point where very cheap small devices can be
deployed in large quantities to monitor things like temperature, humidity,
and energy consumption in a building.

2.7.3 Cell Phone Technologies

While cellular telephone technology had its beginnings around voice
communication, data services based on cellular standards have become
increasingly popular (thanks in part to the increasing capabilities
of mobile phones or smartphones). One drawback compared to the



technologies just described has tended to be the cost to users, due in part
to cellular’s use of licensed spectrum (which has historically been sold
off to cellular phone operators for astronomical sums). The frequency
bands that are used for cellular telephones (and now for cellular data)
vary around the world. In Europe, for example, the main bands for cellular
phones are at 900 MHz and 1800 MHz. In North America, 850-MHz and
1900-MHz bands are used. This global variation in spectrum usage cre-
ates problems for users who want to travel from one part of the world to
another and has created a market for phones that can operate at multiple
frequencies (e.g., a tri-band phone can operate at three of the four fre-
quency bands mentioned above). That problem, however, pales in com-
parison to the proliferation of incompatible standards that have plagued
the cellular communication business. Only recently have some signs of
convergence on a small set of standards appeared. And, finally, there
is the problem that, because most cellular technology was designed for
voice communication, high-bandwidth data communication has been a
relatively recent addition to the standards.

Like 802.11 and WiMAX, cellular technology relies on the use of base
stations that are part of a wired network. The geographic area served
by a base station’s antenna is called a cell. A base station could serve a
single cell or use multiple directional antennas to serve multiple cells.
Cells don’t have crisp boundaries, and they overlap. Where they overlap,
a mobile phone could potentially communicate with multiple base sta-
tions. This is somewhat similar to the 802.11 picture shown in Figure 2.32.
At any time, however, the phone is in communication with, and under
the control of, just one base station. As the phone begins to leave a cell,
it moves into an area of overlap with one or more other cells. The cur-
rent base station senses the weakening signal from the phone and gives
control of the phone to whichever base station is receiving the strongest
signal from it. If the phone is involved in a call at the time, the call must
be transferred to the new base station in what is called a handoff.

As we noted above, there is not one unique standard for cellular, but
rather a collection of competing technologies that support data traffic
in different ways and deliver different speeds. These technologies are
loosely categorized by generation. The first generation (1G) was analog,
and thus of limited interest from a data communications perspective.
Second-generation standards moved to digital and introduced wireless

2.7 Wireless

145



146 CHAPTER 2 Getting connected

data services, while third generation (3G) allowed greater bandwidths and
simultaneous voice and data transmission. Most of the widely deployed
mobile phone networks today support some sort of 3G, with 4G start-
ing to appear. Because each of the generations encompasses a family of
standards and technologies, it’s often a matter of some debate (and mar-
keting interest) as to whether a particular network is 3G or some other
generation.

The concept of a third generation was established before there was
any implementation of 3G technologies, with the aim of shaping a single
international standard that would provide much higher data bandwidth
than 2G. Unfortunately, a single standard did not emerge, and this trend
seems likely to continue with 4G. Interestingly, however, most of the
3G standards are based on variants of CDMA (Code Division Multiple
Access).

CDMA uses a form of spread spectrum to multiplex the traffic from
multiple devices into a common wireless channel. Each transmitter uses
a pseudorandom chipping code at a frequency that is high relative to
the data rate and sends the exclusive OR of the data with the chip-
ping code. Each transmitter’s code follows a sequence that is known to
the intended receiver—for example, a base station in a cellular network
assigns a unique code sequence to each mobile device with which it is
currently associated. When a large number of devices broadcast their sig-
nals in the same cell and frequency band, the sum of all the transmissions
looks like random noise. However, a receiver who knows the code being
used by a given transmitter can extract that transmitter’s data from the
apparent noise.

Compared to other multiplexing techniques, CDMA has some good
properties for bursty data. There is no hard limit on how many users
can share a piece of spectrum—you just need to make sure they all
have unique chipping codes. The bit error rate does however go up with
increasing numbers of concurrent transmitters. This makes it very well
suited for applications where many users exist but at any given instant
many of them are not transmitting—which pretty well describes many
data applications such as web surfing. And, in practical systems when it is
hard to achieve very tight synchronization among all the mobile handsets,
CDMA achieves better spectral efficiency (i.e., it gets closer to the theo-
retical limits of the Shannon-Hartley theorem) than other multiplexing
schemes like TDMA.



&

One interesting aspect of wireless networks that has received a great deal
of attention in the research community in recent years is the way they chal-
lenge the conventions of layered protocol architectures. For example, the
802.11 standards enable you to create a link abstraction that connects one
node to another in what appears to be a point-to-point manner. Having
done that, any higher layer protocol can just treat the link like any other
point-to-point link. But is that the right approach?

Consider, for example, three nodes A, B, and C in a row such as shown in
Figure 2.30. If we want to get a packet from A to C, a conventional approach
would be for A to send a packet to B and B to send the packet to C. But,
in reality, the range over which a given node can send packets isn't a nice
crisply defined circle as shown here, but rather it drops off slowly with
increasing distance. So it may well be that A can send a packet to C with,
say, 30% likelihood of success while it can send a packet to B with 80% likeli-
hood of success. So sometimes (30% of the time) there would be no need for
B to forward the packet to C, as C would already have it. Hence, it might be
nice for C to tell B “Don't bother to forward that packet—I've got it already.”
Such an approach was actually tested on a wireless testbed called Roofnet
near the Massachusetts Institute of Technology and was shown to increase
throughput substantially over conventional approaches. But this approach
also means that A, B, and C can no longer just act like they are connected by
simple links; we have passed information that is specifically related to wire-
less links up to a higher layer. Some people shout “layer violation” when they
see such a thing, while others (like the authors of this book) admire the inge-
nuity of those who improved performance by thinking beyond traditional
layering.

There are countless other examples where passing some information up
from the wireless link layer to higher layers can provide benefits; also, it can
help to pass information up from the physical layer to the link layer. There
is a fine balancing act here. Layering is a great tool—without it, networks
would be impossibly difficult to reason about and to construct on a large
scale. But we need to be aware that whenever we hide information—which
layering does—we might lose something we really would have been better
not hiding. We should think of layering (or any other form of abstraction) as
a tool rather than an inviolable rule.

Security of Wireless Links
One of the fairly obvious problems of wireless links compared to wires
or fibers is that you can’t be too sure where your data has gone. You can

2.7 Wireless

147



148

CHAPTER 2 Getting connected

probably figure out if it was received by the intended receiver, but there is
no telling how many other receivers might have also picked up your trans-
mission. So, if you are concerned about the privacy of your data, wireless
networks present a challenge.

Even if you are not concerned about data privacy—or perhaps have
taken care of it in some other way (see Chapter 8 for discussion of this
topic)—you may be concerned about an unauthorized user injecting data
into your network. If nothing else, such a user might be able to consume
resources that you would prefer to consume yourself, such as the finite
bandwidth between your house and your ISP.

For these reasons, wireless networks typically come with some sort of
mechanism to control access to both the link itself and the transmitted
data. These mechanisms are often categorized as wireless security. Secu-
rity is a large topic in its own right, to which we devote Chapter 8, and
we’ll look at the details of wireless security in that context in Section 8.4.5.

. 2 V-

One other form of wireless communication that sees application in cer-
tain scenarios is based around the use of satellites. Satellite phones (sat-
phones) use communication satellites as base stations, communicating on
frequency bands that have been reserved internationally for satellite use.
Consequently, service is available even where there are no cellular base
stations. Satellite phones are rarely used where cellular is available, since
service is typically much more expensive. (Someone has to pay for putting
the satellites into orbit.) Satphones are also larger and heavier than modern
cell phones, because of the need to transmit and receive over much longer
distances to reach satellites rather than cell phone towers. Satellite com-
munication is more extensively used in television and radio broadcasting,
taking advantage of the fact that the signal is broadcast, not point-to-point.
High-bandwidth data communication via satellite is commercially available,
but its relatively high price (for both equipment and service) limits its use to

regions where no alternative is available.
B NN T W 4

2.8 SUMMARY

This chapter introduced the many and varied types of links that are
used to connect users to existing networks and to construct large
networks from scratch. While links vary enormously in their detailed




characteristics, there are many problems and techniques for solving them
that are common. We looked at the five key problems that must be solved
so that two or more nodes connected by some medium can exchange
messages with each other.

The first problem is to encode the bits that make up a binary mes-
sage into the signal at the source node and then to recover the bits from
the signal at the receiving node. This is the encoding problem, and it is
made challenging by the need to keep the sender’s and receiver’s clocks
synchronized. We discussed four different encoding techniques—NRZ,
NRZI, Manchester, and 4B/5B—which differ largely in how they encode
clock information along with the data being transmitted. One of the key
attributes of an encoding scheme is its efficiency, the ratio of signal pulses
to encoded bits.

Once it is possible to transmit bits between nodes, the next step is to
figure out how to package these bits into frames. This is the framing prob-
lem, and it boils down to being able to recognize the beginning and end
of each frame. Again, we looked at several different techniques, includ-
ing byte-oriented protocols, bit-oriented protocols, and clock-based
protocols.

Assuming that each node is able to recognize the collection of bits that
make up a frame, the third problem is to determine if those bits are in fact
correct or if they have possibly been corrupted in transit. This is the error
detection problem, and we looked at three different approaches: cyclic
redundancy check, two-dimensional parity, and checksums. Of these, the
CRC approach gives the strongest guarantees and is the most widely used
at the link level.

Given that some frames will arrive at the destination node contain-
ing errors and thus will have to be discarded, the next problem is how to
recover from such losses. The goal is to make the link appear reliable. The
general approach to this problem is called ARQ and involves using a com-
bination of acknowledgments and timeouts. We looked at three specific
ARQ algorithms: stop-and-wait, sliding window, and concurrent chan-
nels. What makes these algorithms interesting is how effectively they use
the link, with the goal being to keep the pipe full.

The final problem is not relevant to point-to-point links, but it is the
central issue in multiple-access links: how to mediate access to a shared
link so that all nodes eventually have a chance to transmit their data. In
this case, we looked at a variety of media access protocols—Ethernet and
several wireless protocols—that have been put to practical use in building

2.8 Summary

149



150

CHAPTER 2 Getting connected

local area networks. Media access in wireless networks is made more
complicated by the fact that some nodes may be hidden from each other
due to range limitations of radio transmission. Most of the common wire-
less protocols today designate some nodes as wired or base-station nodes,
while the other mobile nodes communicate with a base station. Wireless
standards and technologies are rapidly evolving, with mesh networks, in
which all nodes communicate as peers, now beginning to emerge.

s the processing power and memory capacity of small, inexpensive,

low-power devices have continued to increase, the very concept

of an Internet “host” has undergone a significant shift. Whereas the

Internet of the 1970s and 1980s was mostly used to connect

fixed computers, and today's Internet hosts are often

laptops or mobile phones, it is becoming feasible to think

of much smaller objects, such as sensors and actuators,

as legitimate Internet hosts. These devices are so small

and potentially numerous that they have led to the

concept of an “Internet of Things"—an Internet in which

the majority of objects, ranging from light switches

to boxes of inventory in a factory, might be
addressable Internet “hosts.”

WHAT’S NEXT: “THE INTERNET OF THINGS”

While the concept of networking vast numbers of tiny

objects might sound like science fiction (and perhaps

dystopian fiction at that), there are many concrete and

practical applications of this idea. One of the most

popular is the idea of controlling energy consumption

through the application of networking to everyday appli-

ances. Light switches, power outlets, and appliances

could all be fitted with sensors (to measure electrical load,

ambient temperature, etc.) and actuators (e.g., to control

when devices are active, such as postponing the use of a

washing machine until an off-peak period when electricity is

cheaper). This concept often appears under the title of “smart

grids” and is actively being pursued by energy companies and
equipment vendors today.




S

Further reading 151

Pushing networking out to trillions of small, lower-power, inexpensive, and inter-
mittently connected devices raises a host of technical challenges. As a simple
example, the design of IP version 6, which we’ll discuss in Chapter 4, was somewhat
influenced by the realization that the number of addresses needed may be much
larger than the number of conventional computers in the world. Similarly, new rout-
ing protocols are being developed to move data efficiently among devices that may
have very low energy budgets and unreliable wireless connections to the rest of the
world. There are even new operating systems developed specifically to run on tiny
devices with limited power, CPU, and memory resources.

Exactly how this “Internet of Things” vision will play out remains to be seen, but at
this point it seems clear that the Internet is moving beyond the original vision of just
interconnecting computers. The applications that are enabled by interconnecting
trillions of smart objects are just beginning to be realized.

B FURTHER READING

One of the most important contributions in computer networking over
the last 20 years is the original paper by Metcalf and Boggs (1976) intro-
ducing the Ethernet. Many years later, Boggs, Mogul, and Kent (1988)
reported their practical experiences with Ethernet, debunking many of
the myths that had found their way into the literature over the years. Both
papers are must reading. The third paper laid much of the groundwork
for the development of wireless networks including 802.11.

m Metcalf, R, and D. Boggs. Ethernet: Distributed packet switching
for local computer networks. Communications of the ACM
19(7):395-403, July 1976.

m Boggs, D., J. Mogul, and C. Kent. Measured capacity of an Ethernet.
Proceedings of the SIGCOMM '88 Symposium, pages 222-234,
August 1988.

= Bharghavan, V,, A. Demers, S. Shenker, and L. Zhang. MACAW: A

media access protocol for wireless LANs. Proceedings of the
SIGCOMM ’94 Symposium, pages 212-225, August 1994.

There are countless textbooks with a heavy emphasis on the lower
levels of the network hierarchy, with a particular focus on telecommu-
nications—networking from the phone company’s perspective. Books



152

CHAPTER 2 Getting connected

by Spragins et al. [SHP91] and Minoli [Min93] are two good examples.
Several other books concentrate on various local area network technolo-
gies. Of these, Stallings’s book is the most comprehensive [Sta00], while
Jain [Jai94] gives a good introduction to the low-level details of optical
communication.

Wireless networking is a very active area of research, with many
novel and interesting papers appearing each year. Gupta and Kumar’s
paper [GK00] establishes the theory behind capacity of wireless networks.
Basagni et al. [BCGS04] provide a good introduction to ad hoc wireless
networks. Bicket et al. [BABMO05] describe the Roofnet wireless mesh net-
work experiment, and Biswas and Morris [BM05] present EXOR, which ran
on Roofnet. The latter paper was an early example of using cross-layer
information to improve performance of a wireless network. A different
use of cross-layer techniques to improve throughput in the face of bit
errors is described by Jamieson et al. [JBO7]. Wong et al. [WYLBO06] look
at the problem of how to pick the correct rate of data transmission given
all the tradeoffs around error rate and bandwidth in a wireless channel.
Katti et al. [KRH " 06] established the viability of using network coding to
improve the performance of wireless networks.

A recent book by Xiao et al. [XCL10] surveys many aspects of sen-
sor networking. Vasseur and Dunkels [VD10] provide a forward-looking
view of how the “Internet of Things” might play out with the adoption of
Internet protocols to interconnect sensors and other smart objects.

For an introduction to information theory, Blahut’s book is a good
place to start [Bla87], along with Shannon’s seminal paper on link capac-
ity [Sha48].

For a general introduction to the mathematics behind error codes,
Rao and Fujiwara [RF89] is recommended. For a detailed discussion of
the mathematics of CRCs in particular, along with some more informa-
tion about the hardware used to calculate them, see Peterson and Brown
[PB61].

Finally, we recommend the following live reference:

m http://standards.ieee.org/: status of various IEEE network-related
standards, including Ethernet and 802.11



Exercises 153

( Exercises )

1. Show the NRZ, Manchester, and NRZI encodings for the bit
pattern shown in Figure 2.36. Assume that the NRZI signal starts
out low.

1001111 100010001

M FIGURE 2.36 Diagram for Exercise 1.

2. Show the 4B/5B encoding, and the resulting NRZI signal, for the
following bit sequence:

1110 0101 0000 0011

w/ 3. Show the 4B/5B encoding, and the resulting NRZI signal, for the
following bit sequence:

1101 1110 1010 1101 1011 1110 1110 1111

4. In the 4B/5B encoding (Table 2.2), only two of the 5-bit codes
used end in two 0s. How many possible 5-bit sequences are there
(used by the existing code or not) that meet the stronger
restriction of having at most one leading and at most one
trailing 0? Could all 4-bit sequences be mapped to such 5-bit
sequences?

5. Assuming a framing protocol that uses bit stuffing, show the bit
sequence transmitted over the link when the frame contains the
following bit sequence:

110101111101011111101011111110
Mark the stuffed bits.



:

154 CHAPTER 2 Getting connected

6. Suppose the following sequence of bits arrives over a link:
1101011111010111110010111110110

Show the resulting frame after any stuffed bits have been
removed. Indicate any errors that might have been introduced
into the frame.

w/ 7. Suppose the following sequence of bits arrives over a link:

011010111110101001111111011001111110

Show the resulting frame after any stuffed bits have been
removed. Indicate any errors that might have been introduced
into the frame.

8. Suppose you want to send some data using the BISYNC framing
protocol and the last 2 bytes of your data are DLE and ETX. What
sequence of bytes would be transmitted immediately prior to the
CRC?

9. For each of the following framing protocols, give an example of a
byte/bit sequence that should never appear in a transmission:
(a) BISYNC
(b) HDLC

ﬁ 10. Assume that a SONET receiver resynchronizes its clock whenever
a 1 bit appears; otherwise, the receiver samples the signal in the
middle of what it believes is the bit’s time slot.

(a) What relative accuracy of the sender’s and receiver’s clocks is
required in order to receive correctly 48 zero bytes (one ATM
cell’s worth) in a row?

(b) Consider a forwarding station A on a SONET STS-1 line,
receiving frames from the downstream end B and
retransmitting them upstream. What relative accuracy of A’s
and B’s clocks is required to keep A from accumulating more
than one extra frame per minute?

11. Show that two-dimensional parity allows detection of all 3-bit
€erTors.

12. Give an example of a 4-bit error that would not be detected by
two-dimensional parity, as illustrated in Figure 2.14. What is the
general set of circumstances under which 4-bit errors will be
undetected?



S

Exercises 155

13. Show that two-dimensional parity provides the receiver enough
information to correct any 1-bit error (assuming the receiver
knows only 1 bit is bad), but not any 2-bit error.

14. Show that the Internet checksum will never be OxFFFF (that is,
the final value of sum will not be 0x0000) unless every byte in the
buffer is 0. (Internet specifications in fact require that a
checksum of 0x0000 be transmitted as 0xFFFF; the value 0x0000
is then reserved for an omitted checksum. Note that, in ones
complement arithmetic, 0x0000 and 0xFFFF are both
representations of the number 0.)

15. Prove that the Internet checksum computation shown in the text
is independent of byte order (host order or network order) except
that the bytes in the final checksum should be swapped later to
be in the correct order. Specifically, show that the sum of 16-bit
words can be computed in either byte order. For example, if the
one’s complement sum (denoted by +y of 16-bit words is
represented as follows,

[AB]+'[CD]+ -+ [¥.Z]
the following swapped sum is the same as the original sum above:
[BA]+ [D,C]+" -+ [ZY]

16. Suppose that one byte in a buffer covered by the Internet
checksum algorithm needs to be decremented (e.g., a header hop
count field). Give an algorithm to compute the revised checksum
without rescanning the entire buffer. Your algorithm should
consider whether the byte in question is low order or high order.

ﬁ 17. Show that the Internet checksum can be computed by first taking
the 32-bit ones complement sum of the buffer in 32-bit units,
then taking the 16-bit ones complement sum of the upper and
lower halfwords, and finishing as before by complementing the
result. (To take a 32-bit ones complement sum on 32-bit twos
complement hardware, you need access to the “overflow” bit.)

18. Suppose we want to transmit the message 11100011 and protect
it from errors using the CRC polynomial z° + 1.
(a) Use polynomial long division to determine the message that
should be transmitted.



156 CHAPTER 2 Getting connected

VAT

20.

(b) Suppose the leftmost bit of the message is inverted due to
noise on the transmission link. What is the result of the
receiver’s CRC calculation? How does the receiver know that
an error has occurred?

Suppose we want to transmit the message 101100100100 1011

and protect it from errors using the CRC8 polynomial

PR

(a) Use polynomial long division to determine the message that
should be transmitted.

(b) Suppose the leftmost bit of the message is inverted due to
noise on the transmission link. What is the result of the
receiver’s CRC calculation? How does the receiver know that
an error has occurred?

The CRC algorithm as presented in this chapter requires lots of
bit manipulations. It is, however, possible to do polynomial long
division taking multiple bits at a time, via a table-driven method,
that enables efficient software implementations of CRC. We
outline the strategy here for long division 3 bits at a time (see
Table 2.5); in practice, we would divide 8 bits at a time, and the
table would have 256 entries.

Let the divisor polynomial C' = C(z) be 2* + 2 + 1, or 1101. To
build the table for C, we take each 3-bit sequence, p, append
three trailing Os, and then find the quotient ¢ = p~ 000 = C,

Table 2.5 Table-Driven CRC Calculation

P q=p 000+-C C Xq
000 000 000 000
001 001 001101
010 011 010 ____
011 0___ 011 ____
100 111 100011
101 110 101110
110 100 110 ____
111 I L —




i\( 21.

22,

23.

Exercises 157

ignoring the remainder. The third column is the product C x g,

the first 3 bits of which should equal p.

(a) Verity, for p = 110, that the quotients p~ 000 + C' and
p~ 111 = C are the same; that is, it doesn’t matter what the
trailing bits are.

(b) Fillin the missing entries in the table.

(c) Use the table to divide 101 001 011 001 100 by C'. Hint: The
first 3 bits of the dividend are p = 101, so from the table the
corresponding first 3 bits of the quotient are ¢ = 110. Write
the 110 above the second 3 bits of the dividend, and subtract
C x ¢ =101 110, again from the table, from the first 6 bits of
the dividend. Keep going in groups of 3 bits. There should be
no remainder.

With 1 parity bit we can detect all 1-bit errors. Show that at least

one generalization fails, as follows:

(a) Show that if messages m are 8 bits long, then there is no error
detection code e = e(m) of size 2 bits that can detect all 2-bit
errors. Hint: Consider the set M of all 8-bit messages with a
single 1 bit; note that any message from M can be
transmuted into any other with a 2-bit error, and show that
some pair of messages m; and ms in M must have the same
error code e.

(b) Find an N (not necessarily minimal) such that no 32-bit error
detection code applied to N-bit blocks can detect all errors
altering up to 8 bits.

Consider an ARQ protocol that uses only negative
acknowledgments (NAKSs), but no positive acknowledgments
(ACKs). Describe what timeouts would have to be scheduled.
Explain why an ACK-based protocol is usually preferred to a
NAK-based protocol.

Consider an ARQ algorithm running over a 40-km point-to-point

fiber link.

(a) Compute the one-way propagation delay for this link,
assuming that the speed of light is 2 x 10% m/s in the fiber.

(b) Suggest a suitable timeout value for the ARQ algorithm to use.

(c) Why might it still be possible for the ARQ algorithm to time
out and retransmit a frame, given this timeout value?




158 CHAPTER 2 Getting connected

24.

26.

27.

28.

Suppose you are designing a sliding window protocol for a
1-Mbps point-to-point link to the moon, which has a one-way
latency of 1.25 seconds. Assuming that each frame carries 1 KB of
data, what is the minimum number of bits you need for the
sequence number?

. Suppose you are designing a sliding window protocol for a

1-Mbps point-to-point link to the stationary satellite revolving
around the Earth at an altitude of 3 x 10* km. Assuming that each
frame carries 1 KB of data, what is the minimum number of bits
you need for the sequence number in the following cases?
Assume the speed of light is 3 x 10® m/s.

(a) RWS=1

(b) RWS=SWS

The text suggests that the sliding window protocol can be used to
implement flow control. We can imagine doing this by having the
receiver delay ACKs, that is, not send the ACK until there is free
buffer space to hold the next frame. In doing so, each ACK would
simultaneously acknowledge the receipt of the last frame and tell
the source that there is now free buffer space available to hold the
next frame. Explain why implementing flow control in this way is
not a good idea.

Implicit in the stop-and-wait scenarios of Figure 2.17 is the
notion that the receiver will retransmit its ACK immediately on
receipt of the duplicate data frame. Suppose instead that the
receiver keeps its own timer and retransmits its ACK only after
the next expected frame has not arrived within the timeout
interval. Draw timelines illustrating the scenarios in

Figure 2.17(b) to (d); assume the receiver’s timeout value is twice
the sender’s. Also redraw (c) assuming the receiver’s timeout
value is half the sender’s.

In stop-and-wait transmission, suppose that both sender and

receiver retransmit their last frame immediately on receipt of a

duplicate ACK or data frame; such a strategy is superficially

reasonable because receipt of such a duplicate is most likely to

mean the other side has experienced a timeout.

(a) Draw a timeline showing what will happen if the first data
frame is somehow duplicated, but no frame is lost. How long



S

29.

30.

31.

v 32

Exercises 159

will the duplications continue? This situation is known as the
Sorcerer’s Apprentice bug.

(b) Suppose that, like data, ACKs are retransmitted if there is no
response within the timeout period. Suppose also that both
sides use the same timeout interval. Identify a reasonably
likely scenario for triggering the Sorcerer’s Apprentice bug.

Give some details of how you might augment the sliding window
protocol with flow control by having ACKs carry additional
information that reduces the SWS as the receiver runs out of
buffer space. Illustrate your protocol with a timeline for a
transmission; assume the initial SWS and RWS are 4, the link
speed is instantaneous, and the receiver can free buffers at the
rate of one per second (i.e., the receiver is the bottleneck). Show
what happens at 7'=0,7 = 1,...,7 = 4 seconds.

Describe a protocol combining the sliding window algorithm
with selective ACKs. Your protocol should retransmit promptly,
but not if a frame simply arrives one or two positions out of order.
Your protocol should also make explicit what happens if several
consecutive frames are lost.

Draw a timeline diagram for the sliding window algorithm with
SWS = RWS = 3 frames, for the following two situations. Use a
timeout interval of about 2 x RTT.

(a) Frame 4 is lost.

(b) Frames 4 to 6 are lost.

Draw a timeline diagram for the sliding window algorithm with
SWS = RWS = 4 frames in the following two situations. Assume
the receiver sends a duplicate acknowledgment if it does not
receive the expected frame. For example, it sends DUPACK]2]
when it expects to see Frame[2] but receives Frame[3] instead.
Also, the receiver sends a cumulative acknowledgment after it
receives all the outstanding frames. For example, it sends ACK[5]
when it receives the lost frame Frame|[2] after it already received
Frame[3], Frame[4], and Frame[5]. Use a timeout interval of
about 2 x RTT.
(a) Frame 2 is lost. Retransmission takes place upon timeout (as
usual).




160 CHAPTER 2 Getting connected

33.

34.

35.

(b) Frame 2 is lost. Retransmission takes place either upon
receipt of the first DUPACK or upon timeout. Does this
scheme reduce the transaction time? (Note that some
end-to-end protocols, such as variants of TCP, use similar
schemes for fast retransmission.)

Suppose that we attempt to run the sliding window algorithm
with SWS = RWS = 3 and with MaxSegNum = 5. The Nth packet
DATA[ V] thus actually contains N mod 5 in its sequence number
field. Give an example in which the algorithm becomes confused;
that is, a scenario in which the receiver expects DATA[5] and
accepts DATA[0]—which has the same transmitted sequence
number—in its stead. No packets may arrive out of order. Note
that this implies MaxSeqNum > 6 is necessary as well as
sufficient.

Consider the sliding window algorithm with SWS = RWS = 3,
with no out-of-order arrivals and with infinite-precision
sequence numbers.

(a) Show that if DATA[6] is in the receive window, then DATA[O]
(or in general any older data) cannot arrive at the receiver
(and hence that MaxSeqNum = 6 would have sufficed).

(b) Show that if ACK[6] may be sent (or, more literally, that
DATA[5] is in the sending window), then ACK]2] (or earlier)
cannot be received.

These amount to a proof of the formula given in Section 2.5.2,
particularized to the case SWS = 3. Note that part (b) implies
that the scenario of the previous problem cannot be reversed to
involve a failure to distinguish ACK[0] and ACK[5].

Suppose that we run the sliding window algorithm with SWS = 5
and RWS = 3, and no out-of-order arrivals.

(a) Find the smallest value for MaxSeqNum. You may assume
that it suffices to find the smallest MaxSeqNum such that if
DATA[MaxSegNum] is in the receive window, then DATA[0]
can no longer arrive.

(b) Give an example showing that MaxSegNum — 1 is not
sufficient.

(c) State a general rule for the minimum MaxSegNum in terms
of SWS and RWS.



Exercises 161

M FIGURE 2.37 Diagram for Exercises 36 to 38.

36.

37.

38.

39.

40.

Suppose A is connected to B via an intermediate router R, as
shown in Figure 2.37. The A-R and R-B links each accept and
transmit only one packet per second in each direction (so two
packets take 2 seconds), and the two directions transmit
independently. Assume A sends to B using the sliding window
protocol with SWS = 4.
(a) For Time =0,1,2,3,4,5, state what packets arrive at and leave
each node, or label them on a timeline.
(b) What happens if the links have a propagation delay of
1.0 second, but accept immediately as many packets as are
offered (i.e., latency = 1 second but bandwidth is infinite)?

Suppose A is connected to B via an intermediate router R, as in
the previous problem. The A-R link is instantaneous, but the R-B
link transmits only one packet each second, one at a time (so two
packets take 2 seconds). Assume A sends to B using the sliding
window protocol with SWS = 4. For Time = 0, 1,2, 3, 4, state what
packets arrive at and are sent from A and B. How large does the
queue at R grow?

Consider the situation in the previous exercise, except this time
assume that the router has a queue size of 1; that is, it can hold
one packet in addition to the one it is sending (in each direction).
Let A’s timeout be 5 seconds, and let SWS again be 4. Show what
happens at each second from Time = 0 until all four packets from
the first window-full are successfully delivered.

What kind of problems can arise when two hosts on the same
Ethernet share the same hardware address? Describe what
happens and why that behavior is a problem.

The 1982 Ethernet specification allowed between any two
stations up to 1500 m of coaxial cable, 1000 m of other
point-to-point link cable, and two repeaters. Each station or
repeater connects to the coaxial cable via up to 50 m of “drop



162 CHAPTER 2 Getting connected

42.

Table 2.6 Typical Delays Associated

with Various Devices (Exercise 40)

Item Delay

Coaxial cable Propagation speed .77¢
Link/drop cable | Propagation speed .65c
Repeaters Approximately 0.6 s each

Transceivers Approximately 0.2 ps each

cable.” Typical delays associated with each device are given in
Table 2.6 (where ¢ = speed of light in a vacuum = 3 x 10® m/s).
What is the worst-case round-trip propagation delay, measured
in bits, due to the sources listed? (This list is not complete; other
sources of delay include sense time and signal rise time.)

. Coaxial cable Ethernet was limited to a maximum of 500 m

between repeaters, which regenerate the signal to 100% of its
original amplitude. Along one 500-m segment, the signal could
decay to no less than 14% of its original value (8.5 dB). Along
1500 m, then, the decay might be (0.14)% = 0.3%. Such a signal,
even along 2500 m, is still strong enough to be read; why then are
repeaters required every 500 m?

Suppose the round-trip propagation delay for Ethernet is 46.4 ps.

This yields a minimum packet size of 512 bits (464 bits

corresponding to propagation delay + 48 bits of jam signal).

(a) What happens to the minimum packet size if the delay time
is held constant, and the signalling rate rises to 100 Mbps?

(b) What are the drawbacks to so large a minimum packet size?

(c) If compatibility were not an issue, how might the
specifications be written so as to permit a smaller minimum
packet size?

. Let A and B be two stations attempting to transmit on an

Ethernet. Each has a steady queue of frames ready to send; A’s
frames will be numbered A;, A, and so on, and B’s similarly. Let
T = 51.2 us be the exponential backoff base unit.

Suppose A and B simultaneously attempt to send frame 1,
collide, and happen to choose backoff times of 0 x T"and 1 x T,
respectively, meaning A wins the race and transmits A; while B



S

44.

45.

46.

Exercises 163

waits. At the end of this transmission, B will attempt to retransmit

B; while A will attempt to transmit As. These first attempts will

collide, but now A backs off for either 0 x T" or 1 x T', while B

backs off for time equal to one of 0 x T',...,3 x T.

(a) Give the probability that A wins this second backoff race
immediately after this first collision; that is, A’s first choice of
backoff time k x 51.2 is less than B’s.

(b) Suppose A wins this second backoff race. A transmits A3, and
when it is finished, A and B collide again as A tries to transmit
A4 and B tries once more to transmit B;. Give the probability
that A wins this third backoff race immediately after the first
collision.

(c) Give areasonable lower bound for the probability that A wins
all the remaining backoff races.

(d) What then happens to the frame B;?

This scenario is known as the Ethernet capture effect.

Suppose the Ethernet transmission algorithm is modified as
follows: After each successful transmission attempt, a host waits
one or two slot times before attempting to transmit again, and
otherwise backs off the usual way.

(a) Explain why the capture effect of the previous exercise is now
much less likely.

(b) Show how the strategy above can now lead to a pair of hosts
capturing the Ethernet, alternating transmissions, and
locking out a third.

(c) Propose an alternative approach, for example, by modifying
the exponential backoff. What aspects of a station’s history
might be used as parameters to the modified backoff?

Ethernets use Manchester encoding. Assuming that hosts sharing
the Ethernet are not perfectly synchronized, why does this allow
collisions to be detected soon after they occur, without waiting
for the CRC at the end of the packet?

Suppose A, B, and C all make their first carrier sense, as part of an
attempt to transmit, while a fourth station D is transmitting.
Draw a timeline showing one possible sequence of transmissions,
attempts, collisions, and exponential backoff choices. Your
timeline should also meet the following criteria: (i) initial




164 CHAPTER 2 Getting connected

47.

49.

transmission attempts should be in the order A, B, C but
successful transmissions should be in the order C, B, A, and
(ii) there should be at least four collisions.

Repeat the previous exercise, now with the assumption that
Ethernet is p-persistent with p = 0.33 (that is, a waiting station
transmits immediately with probability p when the line goes idle
and otherwise defers one 51.2-pus slot time and repeats the
process). Your timeline should meet criterion (i) of the previous
problem, but in lieu of criterion (ii) you should show at least one
collision and at least one run of four deferrals on an idle line.
Again, note that many solutions are possible.

. Suppose Ethernet physical addresses are chosen at random

(using true random bits).

(a) What is the probability that on a 1024-host network, two
addresses will be the same?

(b) What is the probability that the above event will occur on one
or more of 22 networks?

(c) What is the probability that, of the 230 hosts in all the
networks of (b), some pair has the same address?

Hint: The calculation for (a) and (c) is a variant of that used in

solving the so-called Birthday Problem: Given N people, what is

the probability that two of their birthdays (addresses) will be the

same? The second person has probability 1 — % of having a

different birthday from the first, the third has probability 1 — 2=

of having a different birthday from the first two, and so on. The

probability that all birthdays are different is thus

1 2 N-1
(1‘%) x (l_ﬁ)x'”x (1_7365 )

which for smallish IV is about

1424+ (N-1)

1
365

Suppose five stations are waiting for another packet to finish on

an Ethernet. All transmit at once when the packet is finished and

collide.

(a) Simulate this situation up until the point when one of the five
waiting stations succeeds. Use coin flips or some other



S

50.

51.

52

Exercises 165

genuine random source to determine backoff times. Make
the following simplifications: Ignore inter-frame spacing,
ignore variability in collision times (so that retransmission is
always after an exact integral multiple of the 51.2-p.s slot
time), and assume that each collision uses up exactly one slot
time.

(b) Discuss the effect of the listed simplifications in your
simulation versus the behavior you might encounter on a real
Ethernet.

Write a program to implement the simulation discussed above,
this time with N stations waiting to transmit. Again, model time
as an integer, T, in units of slot times, and again treat collisions as
taking one slot time (so a collision at time T followed by a backoff
of kK = 0 would result in a retransmission attempt at time T + 1).
Find the average delay before one station transmits successfully,
for N =20, N =40, and N = 100. Does your data support the
notion that the delay is linear in N? Hint: For each station, keep
track of that station’s NextTimeToSend and CollisionCount. You
are done when you reach a time T for which there is only one
station with NextTimeToSend == T. If there is no such station,
increment T. If there are two or more, schedule the
retransmissions and try again.

Suppose that N Ethernet stations, all trying to send at the same
time, require /2 slot times to sort out who transmits next.
Assuming the average packet size is 5 slot times, express the
available bandwidth as a function of N.

Consider the following Ethernet model. Transmission attempts
are at random times with an average spacing of X slot times;
specifically, the interval between consecutive attempts is an
exponential random variable x = —\logu, where u is chosen
randomly in the interval 0 < u < 1. An attempt at time ¢ results in
a collision if there is another attempt in the range from ¢ — 1 to
t + 1, where t is measured in units of the 51.2-us slot time;
otherwise, the attempt succeeds.
(a) Write a program to simulate, for a given value of ), the
average number of slot times needed before a successful
transmission, called the contention interval. Find the




166 CHAPTER 2 Getting connected

53.

54.

55.
56.

57.

minimum value of the contention interval. Note that you will
have to find one attempt past the one that succeeds in order
to determine if there was a collision. Ignore retransmissions,
which probably do not fit the random model above.

(b) The Ethernet alternates between contention intervals and
successful transmissions. Suppose the average successful
transmission lasts 8 slot times (512 bytes). Using your
minimum length of the contention interval from above, what
fraction of the theoretical 10-Mbps bandwidth is available for
transmissions?

How can a wireless node interfere with the communications of
another node when the two nodes are separated by a distance
greater than the transmission range of either node?

Why is collision detection more complex in wireless networks
than in wired networks such as Ethernet?

How can hidden terminals be detected in 802.11 networks?

Why might a wireless mesh topology be superior to a base station
topology for communications i