
Join Mechanics



Objective

Recap essential join concepts

Understand why joins are (usually) slow and expensive

Learn how partitioning plays a critical role in joins



Joins
Combine the data in multiple DataFrames/RDDs
• rows are combined

• join condition: only the rows passing the condition are kept

Join types
• inner: combine only the rows passing the condition

• left_outer: inner + all rows in the left "table", with nulls in the corresponding fields of the other "table"
• right_outer: same, for the right "table"

• full_outer = same, for both "tables"

More join types (DFs only)
• left_semi = all the rows in the left DF for which there is a row in the right DF passing the condition

• left_anti = all the rows in the left DF for which there is NO row in the right DF passing the condition

* "table" = DataFrame or RDD



Why Are Joins Slow?
If DFs or RDDs don't have a known partitioner, a shuffle is needed
• data transfer overhead

• potential OOMs
• limited parallelism

Co-located RDDs
• have the same partitioner

• reside in the same physical location in memory (on the same executor)
• can be joined without any network transfer

Co-partitioned RDDs
• have the same partitioner

• may be on different executors
• will (in general) be joined with network traffic

• although much less than without the partitioning information



Shuffled Join

RDD A RDD B

No partitioner is known
• Rows with the same key must be on the same partition

• Spark needs to shuffle both RDDs
• VERY expensive



Optimized Join

RDD A RDD B

One RDD doesn't have a known partitioner, or partitioners are different
• we can force the other RDD to obey the same partitioner

• one shuffle instead of two

no shuffle = 
"map-like transformation"

shuffle here



Optimized Join +

RDD A RDD B

Both RDDs have the same partitioner (co-partitioned)
• just fetch the existing partitions and do the join

• no shuffles
• narrow dependency

no shuffleno shuffle



Optimized Join ++
Same partitioners, partitions loaded in memory (co-located)
• no partition fetching

• no shuffle
• no network transfer

• fastest joins possible

executor 1 executor 2 executor 3



Join Mechanics

Shuffling, colocation & copartitioning apply to RDDs and DFs

Next chapter: joins on RDDs

This chapter: joins on DFs

Techniques apply to grouping as well



Spark rocks


