
Optimizing RDD

Transformations



Objective

Dedicated chapter on optimizing RDDs
• you don't get the same control for the same operations in DF land

• I'll add comments in this chapter that are applicable to DFs as well



Dependencies
Narrow dependencies
• one input (parent) partition influences a single output (child) partition

• fast to compute
• examples: map, flatMap, filter, mapValues

Wide dependencies
• one input partition influences more than one output partitions

• involve a shuffle = data transfer between Spark executors
• are costly to compute

• examples: grouping, joining, sorting

parent child

parent child



Dependencies
Narrow dependencies
• given a parent partition, a single child partition depends on it

• fast to compute
• examples: map, flatMap, filter, projections

Wide dependencies
• given a parent partition, more than one child partitions depend on it

• involve a shuffle = data transfer between Spark executors
• are costly to compute

• examples: grouping, joining, sorting

parent child

parent child

Expressed differently in terms of "depends on":



Perf Consequences

Narrow dependencies are fast
• no data transfer between executors

• can be executed in a single pass over data
• fault-tolerance: if an executor fails, recomputing a partition needs a single parent partition

Wide dependencies are bad for multiple reasons
• need data transfer between executors – slow!

• may need disk IO for shuffle files
• impose stage boundaries

• limit parallelism
• fault-tolerance: if an executor fails, recomputing a partition takes forever



RDD Implementations

RDD variations are different in two ways
• in the type of elements contained

• in the actual implementation of the RDD interface

RDDs have different APIs
• some operations are only available for RDDs of tuples

RDD transformations can be computed differently
• certain RDD implementations may hold additional information e.g. locality/ordering

• example: MappedRDD vs CoGroupedRDD



Spark rocks


