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Copula ideas provide

a better understanding of dependence,

a basis for flexible techniques for
simulating dependent random vectors,

scale-invariant measures of association
similar to but less problematic than linear
correlation,

a basis for constructing multivariate
distributions fitting the observed data,

a way to study the effect of different
dependence structures for functions of
dependent random variables, e.g. upper
and lower bounds.
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Example of bounds for linear correlation
For o > 0 let

X ~ Lognormal(0, 1),
Y ~ Lognormal(0, o2).

Then the minimal obtainable correlation
between X and Y (obtained when X and

Y are countermonotonic) is

pMN(X,Y) = ——,

and the maximal obtainable correlation
(obtained when X and Y are comonotonic) is

pN(X,Y) = —H
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The upper bound p"**(X,Y’) and lower bound
p""(X,Y) for o € [0, 5].

Note: This holds regardless of the dependence
between X and Y.

Note: For o = 4, p)(X,Y) = 0.01372 means
that X and Y are perfectly positively depen-
dent (Y =T(X), T increasing)!
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Drawbacks of linear correlation

e Linear correlation is not defined if the
variance of X or Y is infinite.

e Linear correlation can easily be
misinterpreted.

e Linear correlation is not invariant under non-
linear strictly increasing transformations
T:R—R, i.e.,

pr(T(X), T(Y)) # p (X,Y).

e Given margins F and G for X and Y, all
linear correlations between —1 and 1 can
in general not be obtained by a suitable
choice of the joint distribution.
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Naive approach using linear correlation

Consider a portfolio of n “risks” Xq,...,Xn.
Suppose that we want to examine the distribu-
tion of some function f(Xq,...,Xy) represent-
ing the risk of or the future value of a contract
written on the portfolio.

—_t

Estimate marginal distributions Fy, ..., Fjy.

2. Estimate pairwise linear correlations
pl(Xz',Xj) for 1,7 € {1, e ,n} with 7 £ 7.

3. Use this information in some Monte

Carlo simulation procedure to generate

dependent data.

Questions:

e Is there a multivariate distribution with this
linear correlation matrix?

e How do we in general find an appropriate
simulation procedure?
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Copulas

Definition

A copula, C : [0,1]™ — [0, 1], is a multivariate
distribution function whose margins are uni-
formly distributed on [0, 1].

Sklar’s theorem

Let H be an n-dimensional distribution func-
tion with margins Fy,..., F,. Then there exists
an n-copula C such that for all z1,...,zn iNR",

H(x1,...,2n) = C(F1(x1),...,Fn(xn)).

Conversely, if C' is an n-copula and Fyq,...,F,
are distribution functions, then the function H
defined above is an n-dimensional distribution
function with margins Fy,..., Fj.

Hence the copula of (Xq,...,Xn) ~ H is the
distribution function of (F1(X1q),..., Fn(Xn)).
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If Fq,...,F, are strictly increasing distribution
functions (d.f.s), then for every u = (u1,...,un)
in [0, 1],

C(u) = H(F{ Y(uy), ..., Ey t(un)).

From the multivariate standard normal distri-
bution N, (0, p;) we get the normal or Gaussian
n-copula

CPR(w) = d2 (D L (ug),..., > 1 (un)),

where &7 is the d.f. of NVn(0,p;), p; is a linear
correlation matrix and @ is the d.f. of A/(0,1).

The multivariate normal distribution Ny (u, 2)
gives the same copula expression, with p; cor-
responding to 2.
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Further examples of copulas

M"™(u) = min(ui,us,...,upn)
W' () = max(ui +u>r~+---4+upn—n-+1,0)
I_In(u) — Ul1uU2...Un

Note: M™ and IN™ are copulas for all n > 2 but
W™ is a copula only for n = 2.

Definition
1. X, Y comonotonic
<~ (X,Y) has copula M?
<— (X,Y) =4 (a(Z2),6(Z)), o, B increasing
and Z is some real valued r.v.

2. X,Y countermonotonic
<= (X,Y) has copula W?2
— (X,Y) =4 (a(Z2),8(Z)), a inc., B dec.
and Z is some real valued r.v.

3. Xq,...,Xy independent
<— (X1,...,Xpn) has copula N".
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Properties of copulas

Bounds
For every u € [0, 1]™ we have

W) < C(u) < M"(u).
These bounds are the best possible.
Concordance ordering

If C'1 and C5 are copulas, we say that Cy
is smaller than Cs and write 'y < (5 if

Cl (’U,, U) < CQ(’LL, ’U)

for all u,v in [0,1].

Copulas and monotone transformations

If a1,a0,...,an are strictly increasing, then
a1(X1),ar(X5),...,an(Xn) have the same
copula as X1, Xo,..., Xn.
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Let a1, a0,...,an be strictly monotone and let
a1(X1),a>(X5),...,an(Xn) have copula

Cay (X1),02(X2),0c.an (Xn)-
Suppose «7 is strictly decreasing. Then

Ca1(X1),00(X2),om(Xn) (W15 U2 -+ Un)
Caun(X2)emsan(Xn) (U2 - - - Un)
= Uxy an(X0),om(Xn) (1 = U1, U2, o un).

If « and 3 are strictly decreasing:

Ca(x),6(7) (V)

=v — Cx gy)(1 —u,v)
v—(l—u—nyy(l—u,l—v))
u+v—-14+Cxy(l—-u,1-w)

Here C,(x) g(y) is the survival copula, C, of X
and Y, i.e

H(z,y) = PX >z,Y > y]
C(F(x),G(y)).
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Kendall’s tau and Spearman’s rho

Let (x,y) and (2/,y") be two observations from
a random vector (X,Y) of continuous random
variables. We say that (z,y) and (2/,y’) are
concordant if (z—z')(y—v') > 0, and discordant

if (x —2")(y—1") <O.

Let (X’,Y’) be an independent copy of (X,Y).
Then Kendall's tau between X and Y is

(X,Y) = P[(X-X)YY -Y)>0] -
P(X — X'WY —=Y') < 0]
For a sample of size n from (X,Y), with ¢ con-

cordant pairs and d discordant pairs the sample
version of Kendall's tau is given by

c—d n
o= V)
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Kendall's tau can be expressed only in terms
of the copula C of (X,Y)

H(X,Y) = 7(C) = 4//[0 o O ) a0, v) ~ 1

and this is also true for Spearman’'s rho
ps(X,Y) = ps(@) =12 [ uwdC(u,v) -3

= 12 //[O e C(u,v)dudv — 3.

Note that for (U,V) ~ C

ps(C) = 12//[0 1]2uv dC(u,v) — 3

E(UV) — 1/4
1/12
E(UV) —-E(U)E(V)

\/Var(U)\/Var(V) |
Since (F(X),G(Y)) ~ C we get

ps(X,Y) = p(F(X),G(Y)).

Kendall's tau and Spearman’s rho are called

rank correlations.
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Properties of rank correlation

Let X and Y be continuous random variables
with copula C, and let ¢ denote Kendall's tau
or Spearman’s rho. The following properties
are not shared by linear correlation.

e If T is strictly monotone, then
(T(X),Y) =46(X,Y), T increasing,
0(T(X),Y) = —-6(X,Y), T decreasing.

¢ (X, Y)=1 «— C=M?
¢ {(X,)Y)=-1 +— (C=W-?
e 6(X,Y) depends only on the copula of (X,Y).

Given a proper rank correlation matrix there is
always a multivariate distribution with this rank
correlation matrix, regardless of the choice of
margins. This is not true for linear correlation.
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Tail dependence
Let X and Y be random variables with con-
tinuous distribution functions F' and G. The
coefficient of upper tail dependence of X and
Y is
lim, 1 PY > G t(w)|X > F1(uw)] =Xy

provided that the limit Ay € [0, 1] exists.
If a bivariate copula C is such that

limy, 1 Clu,u)/(1 —u) =Xy >0
exists, then C has upper tail dependence.
Recall that C(u,u) =1 — 2u + C(u,u).
If

limyN0C(u,u)/u= A >0

exists, then C has lower tail dependence.

Note that tail dependence is a copula property.
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Gaussian Gumbel
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Two bivariate distributions with standard
lognormal margins and Kendall's tau 0.7,
but different dependence structures.
Gumbel copulas (defined later) have upper
tail dependence, but Gaussian copulas
have not.
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Four bivariate distributions with Gamma(3,1)
margins and Kendall's tau 0.7, but different
dependence structures.
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Marshall-OIlkin copulas

Consider a two component system where the
components are subjects to shocks, which are
fatal to one or both components.

Let X7 and X5 denote the lifetimes of the com-
ponents.

Assume that the shocks form three indepen-
dent Poisson processes with parameters A1, Ao
and A1o > 0, where the index indicate whether
the shocks kill only component 1, only com-
ponent 2 or both. Then the times 71, 7> and
Z1o of occurrence of these shocks are indepen-
dent exponential random variables with these
parameters. The joint survival function of X;
and X» is

H(z1,z2) = C(F1(z1), Fa(z2)).
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The univariate survival margins
Fi(z1) = exp(—(A\1 + A12)z1),

Fo(zo) = exp(—(Ap + A12)z0)

and the survival copula (a Marshall-Olkin
copula)

C(ui,uz) = Cay,as(u1,up)
= nﬂn(u%_a1u2,u1u%_a2)
with parameters
a1 = A12/(A1 + A12), a2 =A12/(A2 + A12).

Spearman’s rho, Kendall’s tau and the
coefficient of upper tail dependence

Poray = 12//[0 12 Caviaa(u,0) dudo — 3

3aq1an

2001 + 200 — ajan’
7-0417042 = 4//[0 1]2 Cal,QQ(u, 'U) dCal,QQ('U;, 'U) — 1

. a1
a1+ ap —ajap’
Ay = lim Clu,u) = min(aq, as).
u/1 1—wu
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A natural multivariate extension

Consider n components. Assign shock inten-
sities A1,...A; to each of the [ = 2" — 1 non-
empty subsets of components, then (Xq,...,Xn)
has a survival copula whose bivariate margins
for i,7 € {1,...,n} for ¢ = j are Marshall-Olkin
copulas Cq;,a; With

z z
o = (Z %k%‘k%) / (Z az’k>\k>a
k=1 k=1
l l
= <Z aq;kajkAk) / (Z ajkAk)a
k=1 k=1

where a;;. € {0, 1} indicates whether a shock of
subset k£ Kills component «.

Shock models are used as models in e.g. insur-
ance and credit risk.

Remark: A multivariate extension is an n-copula
whose bivariate margins are in the bivariate
copula family and whose higher dimensional
margins are of the same multivariate form.
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Elliptical copulas

A spherical distribution is an extension of the
multivariate normal distribution N,(0,I,) and
an elliptical distribution is an extension of
Nn(p, 22). Recall that M,(u, ) can be defined
as the distribution of

X = u+ AY,
where Y ~ N,(0,I,) and ¥ = AAT,

A random vector X is said to have a spherical
distribution if for every orthogonal matrix I
(Hfr=rrf =1,)

rX =, X.

Alternatively, X has a spherical distribution if
X =4 RU

for some positive random variable R indepen-
dent of the random vector U uniformly dis-
tributed on the unit hypersphere
S,_1={zecR"|zl'z=1}.

©2000 (F. Lindskog, RiskLab) 20



A random vector X is said to have an elliptical
distribution with parameters u and 2 if

X =gp+ AY,

where Y has a spherical distribution of dimen-
sion k = rank(X) and A is an (n x k)-matrix
with AAT =3,

An elliptical distribution is uniquely determined
by its mean, covariance matrix and the type of
its margins (t,, normal, etc.).

Hence the copula of an multivariate elliptical
distribution is uniquely determined by its cor-
relation matrix and knowledge of its type.

One example is the Gaussian n-copula

CH2(u) = N (P H(uq), ..., 2" H(un)),

where p; is a linear correlation matrix.
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Distributions with Gaussian copulas

If (Xq1,...,Xn) have a multivariate normal dis-
tribution with linear correlation matrix p;, then
for i,5 € {1,...,n}

e Spearman’s rho pS(Xi,Xj) — S arcsin @

T

e Kendall's tau 7(X;, X;) = 2 arcsin p;(i, 5)

It follows from transformation invariance for
strictly increasing d.f.s Fy,..., Fy that

e the elements of the Kendall’s tau and Spear-
man’'s rho correlation matrix for
(FrH(®(X1)), ..., By L(9(X,)) ~ H is given
by the above expressions,

e all proper rank correlations matrices can be
obtained for H for all choices of Fy,..., Fjy.
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t,-copulas

The multivariate ty-copula is given by

Cy ,(0) =0 ) (t, 1 (u1), ..., (un)),

where ©y , is the d.f. of the n-dimensional
standard t, distribution with linear correlation
matrix p; and t,jl is the quantile function of
the univariate standard t, distribution with v

degrees of freedom.

An n-dimensional t, distribution can be ob-
taind from AN,(0,X) and x2 via

Vv
X =—-"7Z+ pu,
Vst
where Z ~ N,(0,X) is independent of S ~ x2.
Then X will have covariance matrix >~ (for v >

2) and expectation u (for v > 1).
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ty-copulas have upper (and equal lower) tail
dependence:

>‘U22zu—|—1<\/7/‘|‘1\/1 —pz/\/l-l-pz),

ty+1(xr) =1—t,41(x) and p; is the linear corre-
lation coefficient for a bivariate t, distribution.

Gaussian t

Y1l
0

Two bivariate distributions with standard
normal margins and linear correlation 0.8.
Gaussian and to-copulas.
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Simulation using t,-copulas

Suppose we want to simulate random vectors
from a distribution, H, with continuous mar-
gins Fy,...,F,, aty-copula and a given Kendall's
tau rank correlation matrix r.

e Set p;(i,5) = sin(n7(i,5)/2).

e Set X = %Z where Z ~ Np(0,p;) and

S ~ x2. X has a multivariate standard t,
distribution.

o (tu(X1),...,tu(Xn)) ~CE,
o (F{1(tu(X1)),. ., Fyt(tu(Xn))) ~ H

Hence simulating from H is easy.

Note: C} ,
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Standard Lognormal

Gamma(8,1)

A sample from (X,Y), where X ~ Gamma(8,1),
Y ~ Lognormal(0,1) and (X,Y) has the cop-
ula C5 5 -. The linear correlation for the data is
0.6, Sioearman's rho is 0.66 and Kendall’'s tau
IS 0.49. The upper right rectangle shows si-
multaneous exceedences of the respective 99%
quantiles.
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Archimedean copulas

Let ¢ be a continuous, strictly decreasing con-
vex function from [0,1] to [0,oc0] such that
©(1) = 0. Then

(o) + (),  u,ve0,1],

IS a copula with generator ¢, where

- _ [ o7t ®, t <9(0),
oD = { 0 > 0(0).

If ©(0) = oo, then ol=1 = =1,

e Gumbel copula:
Take p(t) = (= Int)? with 6 € [1, 00),
Cy(u,v) = exp(—[(—Inu)? + (- Inv)?11/%)

e Clayton copula:
Take ¢(t) = (t79—1)/0 with 0 € [-1, 00)\{0},
Cy(u,v) = max([u=f +v=0 —1]71/9 0)
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One possible trivariate extension:

o7 (o1 0 05 (o (u1) + 2(un)) + @1 (u3z))

Given that a few additional conditions are sat-
isfied this is a copula and the bivariate (1,2)-
margin is an Archimedean copula with gener-
ator ¢5, and the bivariate (1,3)- and (2,3)-
margins are Archimedean copulas with gener-
ator 1.

This extension generalizes to any dimension.

Problem: Only n — 1 of n(n — 1)/2 bivariate
margins are different.

Advantages: Simulating from this class of
n-copulas is easy, a great variety of copulas
belong to this class and many of them pos-
sess nice mathematical and statistical proper-
ties (multivariate extreme value copulas etc.).
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An insurance example

Consider a portfolio of n risks Xq,...,X,. Let

the risks represent potential losses in depen-

dent lines of business for an insurance company

and let k4, ..., kn be some thresholds/retensions.
Suppose the insurer seeks reinsurance for the

situation that [ of n losses exceed their reten-

sions. In this case these losses will be paid in

full by the reinsurer.

Assume historical data are available allowing
estimation of

e Mmarginal distributions

e pairwise rank correlations

N = |{i c{1,....,n}X; > ki}| is the number of
losses exceeding their retensions.

Ly = 1y S0 (Xilgx,=p,}) IS the loss to the
reinsurer.
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T he probability that all losses exceed their reten-
sions is given by

P{N =n} = H(kq,...,kn)
— C(Fl(kl)ayfn(kn))

We can evaluate/estimate P{N > [} and E[L,]
for various copulas.

Illustration: | = n; X; ~ Lognormal(0,1) and
k; = k for all 4; 7(X;, X;) = 0.5 for all i # j.

We compare trivariate Gaussian and Gumbel
copulas and use the relations

1

pp = sin(r7/2) and 0 = —

to parametrizise the respective copulas so that

they have a common Kendall's tau rank corre-
lation matrix.

©?2000 (F. Lindskog, RiskLab) 30



Probability of payout
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Note that for Kk =5 ~ VaRg 95(X;)
PGumbel{N — 3}
]pGaussian{N = 3} ~

and that for k = 10 = VaRg g9(X;)

PGumbel{N = 3}
pGaussian{N — 3} ~
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Expected loss to the reinsurer

4 6 8 10
Threshold

o 4
N

Simulation results for ESUMPelrr 1 (upper curve)
and EGaussianir 1 (lower curve).

If the dependence structure is given by a cop-
ula with upper tail dependence the expected
loss to the reinsurer is much bigger than for
the Gaussian case (for high retensions).

° \Ga = 0

o MNe=2f3(V2F+1yT—p )/ VI+p)~052
o NGu=02_21/0 =5 21-05~0.59
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Splus Simulations

> copvals<-mvsncopula(2000,F,rcorm)

> rnvals<-simulRn(copvals,c("Tdistr","Gdistr",

"Lognormal","Exponential"),c(2,3,0,2),4)

>

> cor(copvals)

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.7124862 0.7004455 0.7127428
[2,] 0.7124862 1.0000000 0.7173173 0.7037622
[3,] 0.7004455 0.7173173 1.0000000 0.7061682
[4,] 0.7127428 0.7037622 0.7061682 1.0000000
>
> cor(rnvals)

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.5321945 0.5242888 0.4891848
[2,] 0.5321945 1.0000000 0.6367366 0.6996728
[3,] 0.5242888 0.6367366 1.0000000 0.6189779
[4,] 0.4891848 0.6996728 0.6189779 1.0000000

We see that linear correlation can change a lot
when changing the margins.
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> cor(rank(copvals[,1]) ,rank(copvals([,2]))
[1] 0.7125685

> cor(rank(copvals[,1]) ,rank(copvals[,3]))
[1] 0.7009264

> cor(rank(copvals[,1]) ,rank(copvals([,4]))
[1] 0.7128279

>

> cor(rank(rnvals[,1]) ,rank(rnvals[,2]))
[1] 0.7125685

> cor(rank(rnvals[,1]) ,rank(rnvals[,3]))
[1] 0.7009264

> cor(rank(rnvals[,1]) ,rank(rnvals[,4]))
[1] 0.7128279

Spearman’s rho (and Kendall's tau) is not changed
when changing the margins.

“rnvals” is a sample from a 4-variate distribu-
tion with a Gaussian copula and t,, Gamma(3,1),
Lognormal(0,1) and Exp(2) margins and all
pairwise Spearman’s rank correlations 0.7.
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