Sequences Mixed Exam Questions MS

Attempt these exam questions independently showing full and clear solutions. Check each answer as you go against the exam board mark scheme.

Arithmetic Sequences

1

1.		ı	. ~	
3(a)	(Tenth term) = $a + (10-1) d$	M1		
	$\dots = 1 + 9(6) = 55$	A 1	2	NMS or rep. addn. B2 CAO
				SC if M0 award B1 for 6 <i>n</i> –5 OE
(b)(i)	$S_n = \frac{n}{2} [2 + (n-1)6]$	M1		Formula for $\{S_n\}$ with either $a = 1$ or $d = 6$ substituted
	$\frac{n}{2}[2+6n-6] = 7400$	A1		Eqn formed with some expansion of brackets
	$3n^2 - 2n = 7400 \Rightarrow 3n^2 - 2n - 7400 = 0$	A1	3	CSO AG
(ii)	(3n+148)(n-50)=0	M1		Formula/factorisation OE
	$\Rightarrow n = 50$	A 1	2	NMS single ans. 50 B2 CAO NMS 50 and –49.3(3) B1 CAO
	Total		7	

2.

(a)
$$a + 17d = 25$$
 or equiv. (for 1^{st} B1), $a + 20d = 32.5$ or equiv. (for 2^{nd} B1), B1 (2)

(b) Solving (Subtract) $3d = 7.5$ so $d = 2.5$ so $a = -17.5$ (*)

(c) $2750 = \frac{n}{2} \left[-35 + \frac{5}{2} (n-1) \right]$ M1A1ft

 $4 \times 2750 = n(5n-75)$ M1

 $4 \times 550 = n(n-15)$ M1

 $n^2 - 15n = 55 \times 40$ (*)

(d) $n^2 - 15n - 55 \times 40 = 0$ or $n^2 - 15n - 2200 = 0$ M1

 $(n-55)(n+40) = 0$ $n = ...$ M1

 $n = 55$ (ignore - 40)

A + 20d = 32.5 or equiv. (for 2^{nd} B1), B1

 (2) M1

A1cso (2)

M1

A1cso (4)

3.

(i) $u_5 = 8 + 4 \times 3$	M1	Attempt $a + (n-1)d$ or equiv inc list of
= 20 A.G.	A1 2	terms Obtain 20
(ii) $u_n = 3n + 5$ ie $p = 3$, $q = 5$	В1	Obtain correct expression, poss unsimplified, eg $8 + 3(n - 1)$
	B1 2	
(iii) arithmetic progression	B1 1	Any mention of arithmetic
(iv) $\frac{2N}{2}(16 + (2N-1)3) - \frac{N}{2}(16 + (N-1)3) = 1256$	M1	Attempt S_N , using any correct formula
$26N + 12N^2 - 13N - 3N^2 = 2512$	M1	(inc $\sum (3n+5)$) Attempt S_{2N} , using any correct formula, with $2N$ consistent (inc $\sum (3n+5)$)
$9N^2 + 13N - 2512 = 0$	M1*	Attempt subtraction (correct order) and equate to 1256
(9N+157)(N-16)=0	M1dep*	
N = 16	A1 5	Obtain $N = 16$ only, from correct working
	OR:	alternative method is to use $^{n}/_{2}(a+l) = 1256$
	M1	Attempt given difference as single summation with N terms
	M1	Attempt $a = u_{N+1}$
	M1	Attempt $l = u_{2N}$
	M1	Equate to 1256 and attempt to solve quadratic
	A1	Obtain $N = 16$ only, from correct working
	10	

Geometric Sequences

Q	Solution	Marks	Total	Comments
(a)	$ar = 48; ar^3 = 3$	B1		For either, OE
	$\Rightarrow 16r^2 = 1$	M1		Elimination of a OE
	$\Rightarrow 16r^2 = 1$ $r^2 = \frac{1}{16} \Rightarrow r = -\frac{1}{4}$	A1		CSO AG Full valid completion. SC Clear explicit verification (max B2 out of 3.)
	or $r = \frac{1}{4}$	В1	4	
(b)(i)	a = -192	B1	1	
(ii)	$\frac{a}{1-r} = \frac{a}{1 - \left(-\frac{1}{4}\right)}$	M1		$\frac{a}{1-r}$ used
	$S_{\infty} = \frac{-768}{5} \ (= -153.6)$	A1ft	2	Ft on candidate's value for a . i.e. $\frac{4}{5}a$
				SC candidate uses $r = 0.25$, gives $a = 192$ and
				sum to infinity = 256. (max. B0 M1A1)
	Total		7	

5.				
(a)	$r = 16 \div 20 = 0.8$	B1	1	OE
(b)	$\frac{a}{1-r} = \frac{20}{1-0.8} = 100$	M1 A1F	2	OE Using a correct formula with $a = 20$ or $r = c$'s 0.8 ft on c's value of r provided $ r < 1$
(c)	$\{S_{20} =\} \frac{a(1-r^{20})}{1-r}$	M1		OE Using a correct formula with $n = 20$
	$= 100(1 - 0.8^{20}) = 98.847\{07\}$	A1	2	Condone > 3dp
(d)	$nth term = 20 r^{n-1} = 20(0.8)^{n-1}$ $= 20 \times 0.8^{-1} \times 0.8^{n}$	M1		Ft on c's r . Award even if 16^{n-1} seen
	$=25\times0.8^n$	A1	2	CSO; AG
	Total		7	

10

(a)
$$(S =) a + ar + ... + ar^{n-1}$$
 "S =" not required. Addition required. B1

$$(rS =) ar + ar^2 + ... + ar^n$$
 " $rS =$ " not required (M: Multiply by r) M1

$$S(1-r) = a(1-r^n) \qquad S = \frac{a(1-r^n)}{1-r} \quad \text{(M: Subtract and factorise)} \quad (*) \qquad \text{M1 A1cso} \quad (4)$$

(b)
$$ar^{n-1} = 35000 \times 1.04^3 = 39400$$
 (M: Correct a and r, with $n = 3, 4 \text{ or } 5$). M1 A1 (2)

(c)
$$n = 20$$
 (Seen or implied) B1

$$S_{20} = \frac{35000(1-1.04^{20})}{(1-1.04)}$$
 M1 A1ft

(M1: Needs any
$$r$$
 value, $a = 35000$, $n = 19$, 20 or 21).

(A1ft: ft from
$$n = 19$$
 or $n = 21$, but r must be 1.04).

Inductive Sequences

7

7.			•	
(a)	(i)	$u_2 = \frac{1}{2}$	B1	State ½
		$u_3 = 4$	B1 FT	State 4, following their u_2
			[2]	
(a)	(ii)	periodic / alternating / repeating / oscillating / cyclic	B1	Any correct description
			[1]	

8.

$[1], \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$	2	B1 for [1], $\frac{1}{2}$, $\frac{1}{3}$

ALevelMathsRevision.com

Mixed Questions

9.

iA	10+20+30+40+50+60	B1	or $\frac{6}{2}(2\times10+5\times10)$ or $\frac{6}{2}(10+60)$	1
iB	correct use of AP formula with a = 10 and d = 10	M1		
	$n (5 + 5n) \text{ or } 5n (n + 1) \text{ or } 5 (n^2 + n) \text{ or } (5n^2 + 5n)$	A1		
iiA	10n ² + 10n - 20700 = 0 45 c.a.o. 4	M1 A1 1	Or better	4
iiB	£2555	2	M1 for 5(1 + 2 +2 ⁸) or 5(2 ⁹ - 1) o.e.	2
iiC	correct use of GP formula with a =5, r = 2	M1	o.e.	
	5(2" - 1) o.e.= 2621435	DM1	"S" need not be simplified	
	2 ⁿ = 524288 www	M1		
	19 c.a.o.	A1		4

10.		•	i	
(a)	(i)	$u_4 = \log_2 27 + 3\log_2 x$	M1	Use $u_4 = a + 3d$
		$=\log_2 27 + \log_2 x^3$	M1	Use $b \log a = \log a^b$ on $3\log_2 x$
		105227 10524	1,11	leg w en steg ₂ w
		$= \log_2(27x^3) \mathbf{AG}$	A1	Show $\log_2(27x^3)$ convincingly
			[3]	
			[2]	
		3 2		
(a)	(ii)	$27x^3 = 2^6$	B1*	State correct equation no longer
				involving $\log_2 x$
		4.		
		$x = \frac{4}{3}$	B1d*	Obtain ⁴ / ₃
			[2]	

\blacksquare	×	
百	同	K
_	_	
		5

-			l	
(b)	(i)	$\frac{1}{2} < y < 2$	M1	Identify at least one of ½ and 2 as endpoints
			A1	Obtain $\frac{1}{2} < y < 2$
			[2]	
(b)	(ii)	$\frac{\log_2 27}{1 - \log_2 y} = 3$	B1	State $\frac{\log_2 27}{1 - \log_2 y} = 3$
		$\log_2 27 = 3 - 3\log_2 y$ $\log_2 27 = 3 - \log_2 y^3$ $\log_2 (27y^3) = 3$	M1*	Attempt to rearrange equation to $\log_2 f(y) = k$
		$27y^3 = 8$	M1d*	Use $f(y) = 2^k$ as inverse of $log_2 f(y) = k$
			A1*	Obtain correct exact equation no longer involving $\log_2 y$
		$y^{3} = \frac{8}{27}$ $y = \frac{2}{3}$	A1d*	Obtain ² / ₃
			[5]	

11.

$oldsymbol{\pm}$	×	
百	同	
_	_	
	_	5

		I		
(i)		(x+4)-2x=(2x-7)-(x+4)	M1	Attempt to eliminate d to obtain equation in x only
		OR		
		$2x + d = x + 4 \qquad 2x + 2d = 2x - 7$	A1	Obtain correct equation in just <i>x</i>
		2x = 15		
		x = 7.5	A1	Obtain $x = 7.5$
			[3]	
(ii)	(a)	terms are 16, 12, 9 $^{12}/_{16} = 0.75, ^{9}/_{12} = 0.75$	B1	List 3 terms
		common ratio of 0.75 so GP	B1	Convincing explanation of why it is a GP
		$S_{\infty} = {}^{16}/_{1-0.75}$	M1	Attempt use of $a/1-r$
		= 64		
			A 1	Obtain 64
			A1	Obtain 64
			[4]	

(ii)	(b)	$(2x-7)/_{(x+4)} = (x+4)/_{2x}$ $4x^2 - 14x = x^2 + 8x + 16$	M1*	Attempt to eliminate r to obtain equation in x only
		OR $2xr = x + 4$ $2xr^2 = 2x - 7$	A1	Obtain $3x^2 - 22x - 16 = 0$
		$3x^{2} - 22x - 16 = 0$ $(3x + 2)(x - 8) = 0$ $x = \frac{-2}{3}, x = 8$	M1d*	Attempt to solve quadratic
			A1	Obtain $x = -2/3$
			[4]	