LINEAR FUNCTIONS

In 2004 in a city, there were 17,500 homes with internet connections. A service provider predicts that each year an additional 750 homes will get internet connections.

(a) Write a linear model for the number of homes, \(n \), with internet connections \(t \) years after 2004.

(b) Write down an assumption made by the model

(c) Comment on the validity of the model for large values of \(t \)

\[
\begin{align*}
\frac{n}{t} &= a + b \\
2004: &\\
\text{gradient:} &
\end{align*}
\]

(a) \(n = 750t + 17500 \)

(b) 750 extra homes get internet each year

(c) The model suggests that as \(t \to \infty \), \(n \to \infty \)

but you can't have infinitely many homes in one town.
A company uses a model to determine how the amount of fertiliser used, f kg per hectare, affects the grain yield g, measured in tonnes per hectare.

$$g = 6 + 0.03f - 0.00006f^2$$

(a) Interpret the value of the constant 6 in this model.

(b) A farmer uses 20 kg of fertiliser per hectare. How much more fertiliser would he need to increase his grain yield by 1 tonne per hectare?

$$g = 6 + 0.03(20) - 0.00006(20)^2$$

$$= 6 + 0.6 - 0.00006(400)$$

$$= 6.576$$

$$7.576 = 6 + 0.03f - 0.00006f^2$$

$$0.00006f^2 - 0.03f + 1.576 = 0$$

$$f = \frac{440.35}{8} \quad \text{or} \quad f = 59.65$$

$$59.65 - 20 = 39.65 \text{ kg per hectare}$$
SKETCHING FACTORISED POLYNOMIALS

Each factor gives a root. Put roots on x axis.

Determine start & end quadrants from basic shape

Classify root types & sketch

Odd power

Even power

Draw an inflection point

Add y axis to sketch

Add y intercept (sub in x=0)

\[y = (4-x)(x-1)^3(2+x)^2 \]

-2 1 4

\[(4-x) = 0 \quad (x-1) = 0 \quad (2+x) = 0 \]

\[4 = x \quad x = 1 \quad x = -2 \]

Single-slice \quad Triple-inflection \quad Double-touch
Graph Transformations

Reflection
- $f(-x)$
- $-f(x)$

Translation
- $f(x+a)$
- $f(x)+a$

Stretches
- $af(x)$

The journey of x
- $cf(ax+b)+d$

Sketch $y = 1 - f(3x-1)$

Graphs showing different transformations:
- Reflection
- Translation
- Stretching
Describe the transformation which maps \(f(x) = x^2 \) onto \(g(x) = 3x^2 + 6x - 1 \). What is the equation of \(g(x) \)?

\[f(x) = \frac{1}{x^2} \text{ is translated by } (\frac{2}{3}, -3) \text{ then reflected over the } x \text{ axis to obtain the graph of } g(x). \]

Journey

Parent:

Journey:

- **Translate**
- **Reflect over**...
- **Stretch of**...
- **Over the**... axis about the... axis

\[g(x) = \]
CUBIC/QUARTIC FUNCTIONS

What is the equation corresponding to this graph?

\[
y = A (x+3)^3 + C
\]

\[
y = A (x-2)^2 + 1
\]

When \(x=3 \), \(y=0 \):

\[
0 = A (3-2)^3 + 1
\]

\[
0 = A (1)^3 + 1
\]

\[
A = -1
\]

\[
y = -(x-2)^3 + 1
\]
Reciprocal Functions

Sketch: \(y = \frac{k}{x^2} - 1, \ k < 0, \) and \(y = 3x + 1 \) on the same axis.
State, with reason, the no. of solutions to the equation
\(x^2(3x+1) = k, \ k < 0, \) and whether the solution will be
a positive or a negative number.

Asymptotes & asymptotic behaviour

- \(y = \frac{1}{x} \)
- \(y = \frac{1}{x^2} \)
- \(y = \frac{1}{x+a} \)

Aeroplane landing

\(\frac{1}{(x+a)^2} \)

Note: \(k = x^2(3x+1), \ k < 0 \)

Sketch, reflect, translate.
SKETCHING RATIONAL FUNCTIONS

VERTICAL ASYMPOTOTE

The x which makes the denominator zero.

HORIZONTAL ASYMPOTOTE

Long term behaviour. Put in large x.

Y INTERCEPT

Sub in $x = 0$.

X INTERCEPT

Put $y = 0$ solve to get x (numerator = 0).

Think of an aeroplane landing

NOT: landed

NOT: fly by

NOT: crashing

NOT: taking off

Vertical asymptote: $x = -3$

Horizontal asymptote: $y = \frac{4(\text{big no.}) - 1}{(\text{big no.}) + 3} = 4$

Y intercept: $y = \frac{4(0) - 1}{(0) + 3} = -\frac{1}{3}$

X intercept: $0 = \frac{4x - 1}{x + 3} \Rightarrow 0 = 4x - 1 \Rightarrow x = \frac{1}{4}$
Take this topic seriously!!

Linear Inequalities
- Rearrange as if it was an = BUT...
- Flip sign if x or ÷ both sides by a negative no.
- Watch out for going too fast
 - $3 > 4 + n$
 - $n > 1$

Quadratic Inequalities
- Use a sketch.
 - $x < a$ or $x > b$
- Set notation
 - $\{x : a < x < b\}$

THINGS I DID

SOLVING INEQUALITIES

Find the set of values of x which satisfy both $5x - 10 > 4x + 7$ and $2x^2 - 10x + 5x$

- $3 < x < \frac{5}{4} + \frac{1}{4}\sqrt{105}$
SKETCHING INEQUALITIES

ALGEBRAIC TECHNIQUES

Take this topic seriously!!

Step 1
Sketch the line or curve, with =
- Use a solid line for ≤ or ≥
- Use a dotted line for < or >

Step 2
Use a test point (usually x=0, y=0)
- Substitute test point coordinates into the inequality
- Is the resulting statement true?
 - YES: we want the side of the line or curve where the test point is
 - NO: we don't want the side with the test point

Draw and label 'R', the region which satisfies
\[y \geq x^2 - x - 2 \quad \text{and} \quad y \leq 3 \quad \text{and} \quad x - y < 1 \]