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Abstract
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1. Introduction

Catastrophic events such as the Northridge earthquake and Hurricane
Andrew each cost the insurance industry in excess of $10 billion. While most
insured losses were paid, each event resulted in insurer insolvencies and illus-
trated the potential stress facing insurance markets from a major catastrophe.
Hurricane Andrew, which cost the insurance industry about $19 billion, *
would have been much more severe had its path veered slightly to hit Miami.
Moreover, scenarios constructed by catastrophe modeling firms suggest the
feasibility of a $76 billion hurricane in Florida, a $21 billion Northeast hur-
ricane, a $72 billion California earthquake and a $101 billion New Madrid
earthquake. * At first glance, it might appear that the insurance industry would
be able to pay for such mega catastrophes. The US property-liability insurance
industry’s equity capital is approximately $350 billion. This capital is poten-
tially available to pay for losses which exceed the reserves (established for their
payment from premiums). However, the reality would be different; depending
on the distribution of damage and the spread of coverage, many insurers would
become insolvent. > Technically, this problem should be solved by the state
operated insurance guaranty funds which re-allocate defaulted liabilities
among solvent insurers. But these only operate within small limits, ¢ and even
this burden would stretch the already strained resources of surviving insurers.
Thus, the prospect of a mega-catastrophe brings the real threat of widespread
insurer failures and unpaid claims. Moreover, surviving insurers would be so
depleted of surplus, and thus over-levered, they would have to reduce the fu-
ture sale of all types of property-liability insurance causing price increases and
severe availability problems.

3 Swiss Re (2000).

4 These figures were obtained from Risk Management Solutions. Similar figures have been
projected by other firms, including Applied Insurance Research. These estimates relate only to the
insured losses. The total damage, including infrastructure, would be higher. For hurricane losses a
substantial portion of total losses is likely to be insured. However, for earthquake losses. many
properties are not insured and others carry high deductibles. Thus, for earthquake losses the total
societal loss could be multiples of this estimate.

3 Insurers can spread their liabilities to other insurers through reinsurance. In principle, the
effects of catastrophes can be spread through the worldwide reinsurance market. In practice the
available capacity of reinsurers is limited even though it has increased significantly since Hurricane
Andrew (Cummins and Weiss, 2000). Although estimates vary, it seems clear that a substantial gap
exists between existing reinsurance coverage and a catastrophic loss exceeding the $15-20 billion
range. For example, Swiss Re (1997) estimated that reinsurers would pay 39% of a US once-in-100-
year catastrophe loss such as a $56 billion hurricane or a $65 billion earthquake in California. The
Swiss Re study estimated a worldwide total of $53 billion in catastrophe excess of loss reinsurance
in place in 1997. See also Guy Carpenter (1998).

© Guaranty funds limit the amount paid for any given loss, typically to $300,000, as well as
limiting the annual assessment against solvent insurers to 2-3% of premiums.
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These scenarios have led both state and federal governments to contemplate
legislative solutions involving the government as a reinsurer and/or enlisting
capital markets to provide catastrophe financing (Lewis and Murdock, 1996;
Cummins et al., 1999). Moreover, the vulnerability of insurance markets has
led to financial market innovations such as catastrophic loss derivatives.
Among the new financial instruments that have been introduced are CAT
bonds in which borrowers contract for some degree of debt forgiveness in
the event of a predefined catastrophe. Another innovative instrument is the
CatEPut in which re-capitalization can be achieved after a catastrophe by the
firm’s exercising a put option on its own stock. Also, in the absence of adequate
reinsurance, insurers have sometimes swapped their catastrophe exposures.

In this paper, we conduct a theoretical and empirical analysis of the capacity
of the insurance industry to respond to catastrophic events. Given appropriate
technical (weather, seismic, etc.) data, plus descriptions of insured properties for
each insurer, one can estimate an insurer response for any given event such as a
force 5 hurricane hitting Miami or an 8.2 earthquake in San Francisco. Such
scenario analysis is carried out by modeling firms such as Applied Insurance
Research and Risk Management Solutions. However, there is a very large
number (approaching infinite) of potential catastrophe scenarios, and the data
demands for conducting such an analysis for the entire insurance industry are
enormous. Moreover, while such scenarios are valuable for planning at the firm
level, they provide too much detail for assessing the efficiency of the insurance
market in spreading risk. Rather, we seek a more general response function.
We estimate the distributional characteristics of catastrophic losses and allo-
cate such losses to individual insurers using correlations and financial data. The
result is an option-like function that defines the estimated deliverable insurance
payments conditional on any given size of aggregate catastrophic loss and
projects the number of insurer insolvencies that would result.

Such a measure of capacity rests on two broad components; size and di-
versification — how much equity or “surplus’ is available and how effectively
the riskiness of insurance losses is spread though the insurance market. The
traditional instrument to spread risk between insurers is reinsurance. By buying
and selling “options™ on their portfolios with each other, and to specialized
reinsurers, insurers can change the risk characteristics of their portfolios. In a
paper that anticipated the capital asset pricing model, Borch (1962), showed
that the value maximizing trades would leave all insurers holding net of
reinsurance portfolios defined solely on the market aggregate loss and that
insurance would be priced solely on the correlation with this aggregate port-
folio. We show that the distribution of insurance liabilities which minimizes
insolvencies, and thereby maximizes payments to policyholders, is similar to
Borch’s equilibrium. However, this structure also provides a framework
for measuring the available capacity of the industry to respond to major
catastrophes.
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The paper is organized as follows: Section 2 sets forth our theory of industry
capacity and derives the option-like model used in our capacity estimation.
Section 3 discusses sample selection and our empirical approach to estimating
capacity. Section 4 presents the results, and Section 5 concludes.

2. Diversification and the mutuality principle

In this section, we develop a theoretical model of capacity in an insurance
market. We begin by examining a baseline case in which the liabilities in an
insurance market are distributed amongst insurers so as to maximize payouts
to policyholders for any given loss scenario. The baseline case establishes a
basic relationship between the capacity of the insurance industry to respond to
catastrophic loss experience and the correlation structure of its liabilities. We
then derive a measure of capacity which is parameterized by these correlations
together with other firm and market features.

2.1. Definition of insurance capacity

We examine a baseline case in which the liabilities in an insurance market
are distributed amongst insurers so as to maximize payouts to policyholders for
any loss scenario. This base case is useful for defining industry capacity and
also provides a yardstick for measuring capacity. In the baseline case, insol-
vencies will be minimized for any given level of industry losses and thus actual
payments to policyholders will be maximized.

It is well known that in a market in which risk bearing is costly to firms but
where transacting between firms is costless, the Pareto optimal risk sharing
arrangement is one in which the industry “mutualizes™ its risk in the sense that
all insurers hold the same net (after reinsurance) liability portfolio. This result,
due to Borch (1962), is similar to (and preceded) the capital asset pricing
model. According to Borch, the Pareto optimal reinsurance arrangement is one
in which each insurer holds a net (after reinsurance) portfolio which is a
proportionate claim on total insured losses, L. This result is equivalent to the
CAPM proposition that each investor will hold the market portfolio. The
implication is that all insurers portfolios are perfectly correlated after rein-
surance transactions have been exploited. After all possibilities for diversifi-
cation through reinsurance are exhausted, insurers will hold the same loss
portfolio though the scale may differ. The aggregate loss for the market is
> L; =L, where L;, the loss sustained by insurer i. The riskiness of the ag-
gregate portfolio will depend on the total number of individual policies in-
sured, 7, and on their correlations. If the number of policyholders is very large
and the policy correlations are low then, by the law of large numbers, L will
have little risk (¢(L/n) — 0 as n — oo, where o(L/n) the standard deviation of
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average losses per policy). But with small » and/or high correlation among
insured losses, L will have higher risk.

To address the implications of limited liability, first consider the terminal
value of equity, T;, of an insurer, #, in a simple one period model:

T, = MAX{(P, + O))(1 + r) — w,L; 0}, (1)

where 0 is opening equity or “surplus” for insurer i, P, is premium income net
of expenses, and r is the rate of return on investments, assumed to be riskless.
Insurer i is assumed to hold a proportionate share o; of the market insurance
portfolio so that its losses L, = o;L. For simplicity, assume that the market is
competitive, thus P, = E(L;)/(1 + r). Denoting Q; = Q°(1 + r), terminal equity
is re-stated as

T; = MAX{E(L;) + O; — L;; 0}. (1)

Now consider the implications of limited liability for policyholders. The
amount which insurer “/”” can pay to policyholders, L}, is the minimum of
the face value of its liability or its financial resources which, in this model are

the sum of net premiums and equity capital E(L;) + Q;, i.e.,
L} = MIN{L; E(L;) + O} (2)

If there is a bad draw from the loss distribution, i.e., a catastrophic loss, the
ability of the insurer to pay the unexpected loss L; — E(L;) depends on its equity
capital Q;. If we scale up this problem, then the ability of the market to respond
to unexpected losses depends on the total industry capital, but also on how the
liabilities and surplus are distributed across insurers. We will use this concept
to define and measure market capacity.

If we compare this limited liability world with Borch’s equilibrium, there is
an apparently stark contrast. In Borch’s world, insurers are risk averse and will
gain from risk sharing through reinsurance transactions. In our limited liability
model, insurers own a put option on L; with strike price E(L;) + Q;. The value
of this option is increasing in the variance of the underlying asset (in this case
the loss portfolio). Thus, apparently, insurers would not engage in risk re-
ducing reinsurance transactions. We can add more structure to resolve this
difference by allowing premium rates to depend on insurer risk. ’ This addi-
tional structure is not necessary for our present task, but it does focus our
attention on what the payouts to policyholders would be when insurers are
perfectly diversified as shown by Borch.

Consider a Borch equilibrium in which each insurer, “i”” holds a share o; of
L and assume that each insurer’s surplus is scaled to its share of aggregate loss.
The first implication is that the aggregate terminal equity of insurers will be the

7 See Doherty and Tinic (1981).
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difference between the industry equity >, O; and the unexpected industry loss
L — E(L), as shown in Eq. (3a) below. The second implication is that the in-
dustry’s whole surplus will be available to meet unexpected losses. Thus, the
amount of aggregate losses that will be paid to policyholders, LP, will be the
minimum of the face value of losses L and the industry’s total resources
E(L) + Q, as shown in Eq. (3b).

XN: T, = MAX{ XN:[OC[E(L) 0, - ol); o}

i=1 i=1

= MAX{E(L) +2N:Q,- L;O}, (3a)

zNij = MIN{L;E(L) + zN: Q,}, (3b)

i=1 i=1

where N, the total number of insurers in the market. Currently, the US
property-liability insurance industry’s equity capital is about $350 billion. If
our model applied to the industry, the entire amount of the equity capital
would be available to pay unexpected losses. In effect, with perfect diversifi-
cation, the industry acts as a single firm. No one firm would become insolvent
until the entire industry capital is exhausted and, at this point, all firms would
simultaneously become insolvent. This equilibrium distributes industry liabil-
ities and resources in a way that maximizes payouts to policyholders.

Definition. For any configuration of losses for which insurers are liable, the
capacity of the insurance market is the proportion of those liabilities that is
deliverable given the financial resources of firms on whom the losses fall
and given all arrangements (such as reinsurance, guarantee funds, etc.) for re-
allocating those losses among insurers.

In the equilibrium considered, all industry surplus would be accessible by
policyholders.

2.2. Conditions for capacity maximization

Consider each insurer’s aggregate loss as the sum of its catastrophe exposure
and its idiosyncratic risk. Part of the individual insurer loss, d;, is idiosyncratic
and diversifiable; i.e., COV(d;,d;) = 0 Vi # j. The remaining part of the in-
surer’s loss is catastrophe risk in the sense that all insurers are exposed to
highly correlated losses, Ly, from events such as hurricanes and earthquakes.

The proportion of the total pool of catastrophe losses written by insurer 7’ is
¢;. Thus, the loss of insurer i is
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Li=cLy +d;. 4)

Given that Y L, must equal the aggregate industry losses, L = Ly + D (where
D = %", d; is the total industry diversifiable losses), then ) ¢; = 1. The essential
characteristic of diversifiable risk is that it will tend to zero if a large enough
number of policies is insured. To provide a rationale for a reinsurance market,
we assume that any individual insurer holding n; policies is insufficiently di-
versified to secure this risk elimination, but the total insurance market having
> n; = n policies does effectively eliminate risk, i.e.,

()0 (oo o()er ()0

The first expression in Eq. (5) says that diversifiable risk can be substantially
eliminated by diversification across the marketplace. The second expression
says that each individual insurer’s endowment of potentially diversifiable ex-
posures is not sufficient to eliminate this risk (i.e., it does not have sufficient
policies to fully exploit the law of large numbers). The third and fourth ex-
pressions in Eq. (5) assert that the risk of Ly is not diversifiable (i.e., losses are
positively correlated), even in the limit. The third expression is particularly
important in providing a rationale for insurance. By definition of d; and ¢;Ly,
the former can be reduced through further risk spreading whereas the latter
cannot.

We now develop the following necessary condition for optimal risk sharing
behavior:

Proposition. A necessary condition for the average industry capacity per poli-
cyholder, Y, E(L?|n), to be maximized is that all firms hold a net of reinsurance
portfolio which is proportional to Ly and D.

The proposition requires that all insurers hold portfolios of the form
oL = ¢;Ly + kD where o;, ¢;, and k; are firm specific constants. ® Suppose that
this were not true. Then at least one insurer would hold a portfolio containing

8 The reinsurance structure that maximizes industry capacity (o;L = ¢;Ly + k;:D,V i) is similar to
the Pareto optimal reinsurance market identified by Borch (1962). The similarity is more
pronounced when it is noticed that, since D is diversifiable, the value of k; makes little difference to
the availability of capital to pay catastrophic losses. Thus, one can consider the special case in
which o; = k;. However, even for this special case, our result and that of Borch are not necessarily
identical. While, in both results, insurers’ loss portfolios are defined solely on L, we rely on a
maximization of aggregate dollar capital whereas Borch relied on expected utility maximizing
trades between risk averse insurers. The non-linearity in our result comes from the truncating effects
of insolvency whereas the non-linearity in Borch’s reinsurance market comes from the parameters
of insurer utility functions.



564 J.D. Cummins et al. | Journal of Banking & Finance 26 (2002) 557-583

some idiosyncratic risk; i.e., oLy + d;, where d; # k;D. Since D = ). d;, the
existence of one insurer holding ¢;Ly + d; implies that all other insurers must
hold in total

N
(I1—c)ly+D—di=) ¢;Ly+D—d;
#i

which cannot be of the form

N N
> el + Y kD

J#i J#

since d; # kD and D=, d.. ° Thus, at least one other insurer must hold a
portfolio of the form ¢;,Ly + d; where d; # k;D. Of the universe of insurers M
we define a subset m; having such ‘“undiversified” portfolios o;Ly + d; and
subset m, having “diversified” portfolios of the form o;Ly + k;D. Since

(1 —Zk_,«)D: > d

JjEmMy i€my

then the following mutual exchange is possible. All type m,; insurers pool their
diversifiable risk which leads to an aggregate m; diversifiable liability of
(1= >, k)D. Now define a set of weights k] and apportion this aggregate
liability over m; insurers such that each assumes a liability of

. B |
k{(l—ZkJD:k,-D since & = k; T—S% and Zk;:l.

JjEMy Jemy Jjem

These conditions ensure that > k; = 1 (i.e., that diversifiable risk D is fully
allocated over all insurers). Since the only requirement placed on %] is that it
sum to unity, these weights can be chosen such that the E(d;) = E(k;D). Thus,
these transactions will leave all m, insurers unaffected and will leave the ex-
pected face value of liability of all m; unchanged. However, since a(d;/n;) > 0;
and o(k;D/n;) = 0, these transactions are mean preserving, and risk reduc-
ing, for all m; insurers. Now since the payable loss of any insurer is a short
position in a put option, its value will increase as its standard deviation is

To see this, consider that all other insurers did hold portfolios of the form
>z %Lu + 37, kiD. Thus the total of the diversifiable risk portfolios of all insurers would be:
(a) D= E#i k;D 4 d;. This can be re-stated as (b) D= Zk/.%i k;D + kD — kD + d; = Z/. k;D +
(d; — k;D) which is equal to (¢) D = D + (d; — k;D) since Zj k; = 1. However, since d; # k;D; then

(c), and therefore (a), is contradicted.
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reduced. Consequently, these transactions will leave E(L} /n), where L is de-
fined by Eq. (3b), unchanged for all m; insurers but increased for all m; in-
surers. As a result, aggregate available industry capacity Y, E(LY /n) will be
increased.

The proposition shows the necessary conditions for capacity maximization.
The sufficient conditions concern the relationship between the liability allo-
cation, o;, and the and the distribution of surplus, Q;, across insurers. The effect
of surplus will become important in the capacity measures derived in the next
section.

Corollary. When the necessary conditions for maximization of capacity per
policyholder Y, E(LY /n) are satisfied, all insurers will hold net of reinsurance
portfolios L; that are perfectly correlated with aggregate industry losses, L.

Note that COV(L;, L) = E{[ci(Ly — E(Ly)) + (d; — E(d;))][L — E(L)]} which
can be simplified to E{[c;(Ly — E(Ly))][L — E(L)]} since d; is independent of L
by assumption. Using COV(D,L) = 0 and L = Ly + D, we can write; 6>(L) =
E{[Ly — E(Ly)][L — E(L)]}. Thus, COV(L; L) = ¢;,6*(L). Proof of the corollary
follows immediately from the proposition noting that COV(L;,L) = c;o*(L)
and that ¢; and k; are constants.

The corollary shows that each insurer must hold a net portfolio which is
perfectly correlated with the aggregate insurable loss L to maximize capacity.
This will provide a yardstick for measuring capacity. Since o;L = ¢;Ly + k;:D
maximizes capacity for a given initial industry surplus Q, and since this result
is characterized by perfect correlation between all L; and L, the actual corre-
lations will provide a measure of capacity utilization.

Various frictions can frustrate the conditions described in the proposition
and corollary. In addition to factors that limit firm size, reinsurance and other
insurer hedges are costly. Froot and O’Connell (1996) estimated the cost of
catastrophe reinsurance from the complete set of contracts brokered by the
largest reinsurance broker. The transaction cost, ((price —expected loss)/
expected loss), ranges between about 10% and 140% from 1970-1995. In the
last decade of the series, the average transaction cost is about 65%. Several
explanations can be given for this high cost including information asymmetries
about the parameters of the loss distribution and the value of losses sustained
from a given catastrophe, moral hazard, and excessive rent taking. Another
explanation for incomplete diversification is that shareholders may seek to ex-
propriate wealth from policyholders by choosing a high risk financial structure
(Myers, 1977; Doherty and Tinic, 1981). This expropriation will be mitigated
by reputation effects and where the policyholders and/or their agents can
monitor the financial condition and reinsurance purchases of their insurers. We
now examine the relationship between capacity, correlations between insurer
losses, and the financial structure of insurers.
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2.3. Correlations and capacity utilization for a given catastrophic loss

Our task is to estimate the industry’s ability to respond to abnormal loss
experience defined by Eq. (3b). This is the industry response conditional on
industry losses of any given size L. The response function is illustrated in
Fig. 1. The horizontal axis measures possible values for aggregate insurance
industry losses, and the vertical axis measures the expected payout of all firms
combined. Consider two possible loss scenarios: first, a California earthquake
that causes an industry loss of $30 billion above the expected loss E(L) and,
second, a combination of a Florida hurricane of $20 billion and automobile
losses that are $10 billion above expectations. Both scenarios lead to industry
losses that are $30 billion above the expected value (E(L) + 30). But the sce-
narios would impact different insurers and could lead to different numbers of
insolvencies depending on the distribution of coverage across insurers. For
example, the expected payout in the first scenario might be W which is very low
because much of the California earthquake coverage is from local insurers that
are poorly diversified and poorly capitalized. However, the second scenario
might be spread more evenly over firms, with a payout shown as Y.

Points W and Y are the conditional responses which are described below in
Egs. (7)—(9). These are only two of many potential configurations that could
result in industry losses of $30 billion above expected value. The average of all
possible payouts for all feasible scenarios which sum to $30 billion above ex-
pected loss is denoted X. This value, X, is the conditional response, i.e., the
expected payout of the industry conditional on an industry loss of E(L) + $30

LCapacity
Utilization

E(L)+
g, ¢ mmmmmmmm

E(LyE30.
EQLIEQ,

> L

Fig. 1. Capacity utilization. Note: The line 04C represents maximum capacity utilization. The line
0Z=E(L)+ > 0;— > E(T|L) represents estimated capacity utilization.
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billion. The locus of all such conditional payouts is the response function which
is shown as OZ. Notice that OZ lies at or below the 45° line and, we postulate,
will diverge from the 45° line as loss realizations increase. The divergence
implies that insolvencies will increase disproportionately with losses as more
and more insurers are stressed and that failures are passed through the market
via reinsurance thus causing “knock on” insolvencies.

It is useful to start with the expected terminal equity of insurer i

5(0)-() YIE(L) 0 - LI (L)dL, (©)

n; n;

where Z; = E(L;) + Q;. To derive the conditional response function note that
the aggregate expected terminal equity for the industry, conditional on industry
losses of L, is

S e =Y [ e + 0~ LIt 7)

i=

This value is shown in Fig. 1 as the distance between the horizontal line be-
ginning at E(L) + >_ O; on the vertical axis and the response function OZ.
Thus, the response function can be defined as R|[L = E(L) + Y Q; — >, E(T}|L).

To estimate the response function, it is necessary to make distributional
assumptions about L. Using the normal distribution and the properties of
conditional moments, the response function becomes: '

E(L:) + Qi — 1y,
E(T|0:i, L) = (E(Li) + Oi — )N (Li) + Oi — 1

OL|L
L. V+0i—u o0 1)
+GL"Lme (1/2)(E(Li)+Qi—nr,L)/o1;L) ; (8)
where
Pi0i
o = #et 7L =) and oy = ol =),

gL

where y; = E(L;), u, = E(L), and p; is the correlation coefficient between L; and
L. Not surprisingly, this formulation resembles an option pricing model. ' The
response function is

19 Derivations of Egs. (8) and (9) are available from the authors.

"I However, it is important to point out that we are not pricing an option in the usual sense
by using a risk-neutralized probability density function. Rather, we are calculating a conditional
expected value. Nor are we asserting that insurance risk can be hedged by forming a replicating
portfolio.
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RiL = E(L:) + Qi — E(T|0:, L)
= (E(L;) + Qi) N(-C;) + :uL,|LN(Ci) - JLian(Ci)a )

where

E(L) + O — uy,
C = (Li) +Q :uL,\L’

OLIL

N(-) =the standard normal distribution function, and n(-)=the standard
normal density function. Note that R;|L = f[E(L;),E(L),a(L;), (L), O;, p;|L].
Thus, we can measure the capacity of the industry for any industry loss L, as
a function of two industry variables {E(L),o(L)} and four firm variables
{E(L),o(L;), p;, O;}. '* Comparative statics analysis of the response function
(Eq. (9)) reveals that the expected response value is decreasing in ¢; and in-
creasing in p,, i.e., industry capacity is inversely related to ¢; and directly re-
lated to p,. Intuitively, this occurs because the value of the insurer’s option to
default is increasing in ¢; and because the industry is closer to Borch’s ideal
equilibrium (the 45° line in Fig. 1) the higher are the p;.

3. Measuring the capacity of the US insurance industry

In this section we develop estimates of response functions for the US
property-liability insurance industry by selecting samples of insurers and es-
timating the parameters of Eq. (9). The response functions are then calculated
for various values of L, the total industry loss. The objective of the analysis
is to determine the ability of the US insurance industry to respond to cata-
strophic losses and to measure the efficiency of the industry in spreading risk
across the market. This section discusses the technique we use to measure in-
dustry efficiency as well as sample selection and parameter estimation. The
results are presented in Section 4.

12 Alternatively, the response function can be estimated under the assumption that firm and
industry losses are jointly lognormal (derivation available from the authors). However, if the L; are
lognormally distributed, L; and L cannot be jointly lognormal, because sums of lognormals are not
lognormal. Hence, the lognormal response function is only valid as an approximation. In
experimenting with the lognormal response function we found that the results were generally
consistent with those obtained using the normal response function. However, the results using the
lognormal function were extremely sensitive to assumptions made to apply the function as an
approximation as opposed to an exact result. Accordingly, the lognormal results are not as reliable
as the normal distribution results and hence are not reported in the paper.
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3.1. Measuring industry efficiency

Recall that in a fully efficient insurance market, the industry responds to
losses as if it were a single firm. The response function for an efficient market is
thus given by the line 04C in Fig. 1, i.e., an efficient insurance industry would
pay 100% of all losses up to the point when all industry resources are ex-
hausted. Thus, one measure of market inefficiency is the magnitude of the
wedge between the fully efficient response function and the actual industry
response function represented by the line 0Z in Fig. 1. We measure the area of
the wedge bordered by line segment 04, the response curve 0Z, and the dotted
vertical line segment originating at the point V' = E(L) + >_ Q; on the hori-
zontal axis. The ratio of the area under the response curve to the area of the
triangle 04V is our primary measure of market efficiency. For a fully efficient
industry, market efficiency would equal 1; and for an inefficient industry,
market efficiency is between 1 and 0. We also consider other measures of
industry performance, including the percentage of the total losses and the
number of insolvencies.

3.2. Sample selection and modeling approach

The data for the study are taken from the regulatory annual statements
filed by insurers with the National Association of Insurance Commissioners
(NAIC). Our efficiency estimates are for 1997, the most recent report year
available at the time the study was begun. To estimate parameters, we use data
from the period, 1983-1997, providing fifteen annual observations on the
companies in the sample. '* We decided not to extend the sample prior to 1983
because the number of insurers for which we have complete time series would
have been reduced significantly by including earlier years. Although companies
present in the data base for 1997 but not for earlier years are included in our
capacity estimation, the companies present in the sample for the entire sample
period (the full-time series (FTS) companies) are important because they are
used to estimate regression models to obtain the parameters of the companies
that are not present for the entire sample period (see below). To obtain reliable
parameter estimates, it is important to include as many companies as possible
in the FTS regressions.

Two samples of insurers were selected — a national sample and a Florida
sample — to represent the capacity of the industry to respond to national
catastrophes and to Florida catastrophes, respectively. Use of the national

'3 Insurance prices and profits have been shown to be cyclical, with a cycle period between six
and seven years (Cummins and Outreville, 1987). The fifteen year sample period thus gives us
approximately two complete underwriting cycles.
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sample assumes that the total reserves and equity capital of the industry are
potentially available to pay catastrophic losses, while the use of the Florida
sample assumes that the total resources of companies operating in Florida are
potentially available to pay the costs of a Florida catastrophe. In both cases,
the total resources of all insurers in the respective samples are assumed to be
potentially available to pay catastrophic loss claims, even though some insurers
do not write policies likely to be triggered by a catastrophe. '* The fact that
some insurers do not write insurance covering catastrophes, do not do business
in catastrophe prone areas, or happen to be “lucky” in suffering relatively low
losses as a result of a given event are captured by the estimated correlation
coefficients p; between company and industry losses. To the extent that dif-
ferences in loss correlations under or over-adjust for these features of industry
loss exposure and experience, our estimates must be viewed as approximations
to the “true” industry capacity.

In selecting both the national and Florida samples, our objective was to
maximize the number of companies that could meaningfully be included in the
analysis. Thus, the screening criteria used in selecting the sample focused pri-
marily on eliminating insurers that were not viable operating entities in 1997,
such as firms that were experiencing severe financial difficulties or not actively
participating in the market. '> To be included in the Florida sample, insurers
also were required to have positive losses in Florida in 1997. '

Ownership structure in the insurance industry also is likely to have an effect
on market capacity. Many insurance firms are organized as insurance groups,
consisting of several companies under common ownership. To allow for the
potential impact of ownership structure on capacity, we conduct the analysis
separately on the basis of two alternative assumptions about insurance groups.
The first analysis is based on the assumption that the full resources of the group
are available to support losses arising from any subsidiary of the group, i.e., the
group is considered to act as a single firm. This is equivalent to assuming that
groups always rescue failing subsidiaries. The second analysis ignores group
affiliations entirely and conducts the analysis as if the members of groups are

4 For example, a company specializing in commercial liability insurance is not exposed to the
property losses caused by a catastrophe and hence its resources would not be called upon to fund
catastrophic loss claims.

!5 Insurers are required to report financial data to the NAIC even if they are undergoing severe
financial difficulties, are inactive, or are in “runoff mode.” An insurer in runoff mode is engaged in
settling existing claims but not writing or renewing policies currently. Such an insurer would not
be “on the risk” for projected catastrophes.

16 Losses rather than premiums were used for the Florida screen because an insurer can remain
liable for loss payments in a given year even if it writes no premiums in that year because coverage
is provided by policies written in the preceding year (and on which premiums had been paid in the
preceding year) that had not yet expired at the beginning of the current year. The results would be
nearly identical based on a premium screen.
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freestanding, unaffiliated companies. This analysis implicitly assumes that
groups never bail our failing subsidiaries. The two analyses can be viewed as
giving upper and lower bounds on industry capacity.

The losses used in estimating capacity are net losses incurred, defined as
direct losses incurred plus losses due to reinsurance assumed minus losses due
to reinsurance ceded. Direct losses incurred are losses paid or owed directly to
policyholders, while net losses incurred reflect the netting out of reinsurance
transactions. Our analysis thus implicitly takes into account the effects of
reinsurance on capacity.

3.3. Parameter estimation

To estimate capacity for the industry in 1997, we included in the sample all
of the companies reported on by the NAIC in 1997 that met our screening
criteria for operating viability. However, only a subset of these companies are
in the NAIC data base for the full time period covered by the study (1983—
1997). Accordingly, we adopt a three-stage procedure for estimating para-
meters.

In the first stage we estimate parameters for the companies that have data
for the full time period 1983-1997. We refer to this set of companies as the FTS
sample. Two sets of parameters are estimated — raw parameter estimates cal-
culated directly from the FTS data, and detrended estimates based on the re-
siduals from time trend regressions. The reason for computing the detrended
estimators is that property-liability insurance losses are subject to a strong
positive time trend. Thus, the raw estimates of the loss standard deviation
capture trend-related growth in losses across years as volatility. However, the
trend is highly predictable and insurers can easily plan for it by increasing
premiums each year. Differences in losses across years due to this trend effect
thus are not unanticipated loss fluctuations and probably should not be in-
cluded when measuring the effect of catastrophes and other types of random
shocks on insurance market capacity. !’ By measuring capacity using both the
raw and detrended parameters, we avoid potential time-trend bias.

To define the raw and detrended parameters more precisely, let L;, the
observed losses of company i in year ¢ and let L, = >, L, total industry losses
in year t. The raw standard deviations are obtained using the following for-
mulas:

171t might be argued that insurers also could set aside reserves sufficient to pay for large
catastrophic losses on the grounds that the probable maximum loss amounts due to catastrophes
are reasonably predictable even though the time of these losses is unpredictable. However, as Jaffee
and Russell (1997) point out, accumulation of large catastrophe reserves is not possible in practice
due to legal, regulatory, accounting, and tax rules that constrain the ability of insurers to
accumulate reserves for events that have not yet taken place.
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where 67, the estimator of the variance of losses for company 7, 62, the esti-
mator of the variance of losses for the industry, L; = (1/7)>,L, and
L= (1/T)Y,L,. The correlation coefficient between company i’s losses and the
industry losses is estimated using the following formula:

()2 L = L)(L, — 1) '

0, = —
! 0,0

(11)

To obtain the detrended parameter estimates, we first conduct the following
regressions:

Ly = oi + ot + &x, (12)
L, = oo+ ot +&.
Detrended estimates of 62 and 62 are obtained by applying the formulas in Eq.
(10) to the estimated values of the residuals ¢, and ¢, respectively, from Eq.
(12); and the detrended estimate of p; by applying Eq. (11) to the estimated
residual series ¢; and ¢ from Eq. (12).

The final parameters to be estimated are the means, y; and y;. To estimate
capacity for 1997, we set y; and u; equal, respectively, to company #’s and the
total industry losses incurred for 1997. This implicitly assumes that the com-
panies’ net premiums are equal to incurred losses. Although this is not precisely
correct, it is a good approximation, especially in view of the fact that there were
no major catastrophes during the year. '

In the second stage of our parameter estimation procedure, we estimate
regression models using the FTS sample with the estimated parameters as
dependent variables and company financial characteristics as independent
variables. The rationale for the regression analysis is twofold: First, the esti-
mated parameter values for some insurers are likely to reflect non-recurring
financial shocks leading to unusually high or low estimated parameters. Such
parameters are likely to be non-representative of the actual parameters af-
fecting these insurers in future periods. Using the fitted values of parameters
from the regression models in place of the raw stage one parameter estimates
enables us to smooth the parameter series by tempering the extreme observa-
tions. The second, and equally important, reason for conducting the regression

18 As a robustness check, we also used fitted values from the regression time trend lines for 1997.
The results were virtually the same using the actual and fitted losses to represent yx; and ;.
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analysis is that the regression models can be used to provide parameter esti-
mates for firms that are not in the data base for a sufficiently long period to
permit the reliable estimation of stage one parameter values. Parameters for
these companies can be estimated by inserting their 1997 financial data into the
regression models. Estimation of parameters for this set of companies (called
non-full time series (NFTS) companies), by obtaining fitted values from the
regression models, is the third stage in the parameter estimation process.
Conducting the third stage enables us to include the maximum number of
insurers in the sample and thus to obtain a comprehensive estimate of industry
capacity.

4. Empirical results

The estimation proceeds by calculating response functions using Eq. (9),
separately for the national and the Florida samples. The response functions
give the expected payout for each insurer as a function of its parameters, the
industry parameters, and the total industry loss L. By varying L, we generate
expected payments for each company for a range of industry losses, starting
with a value of L approximately equal to industry expected losses and in-
creasing to the point where L equals total industry resources. In addition to
expected loss payments, the analysis also determines whether a company be-
comes insolvent (i.e., if its loss payment, conditional on L, exceeds its premi-
ums and equity capital). For insolvent firms the total payment is capped at the
sum of premiums and equity capital. Various statistics can be computed from
the response function output, including industry efficiency, the percentage of
total catastrophe losses paid, and the number of insolvencies.

As mentioned above, we conduct the estimation for two definitions of the
industry in terms of the treatment of insurance groups. The first definition
assumes that each insurance group acts as if it were a single firm. Based on this
definition, the industry is defined as consisting of groups and unaffiliated single
insurers. This industry definition is called the group sample. The second in-
dustry definition assumes that companies that are members of insurance
groups operate independently. This industry definition is called the company
sample.

4.1. Summary statistics

Summary statistics on losses and equity capital, the two most important
determinants of capacity, are shown in Table 1 for the Florida and national
samples. The Florida figures are the countrywide totals of losses and equity for
insurers doing business in Florida, rather than the Florida business of these
companies, based on the rationale that the total resources of the company are
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Table 1

Summary statistics: losses and equity capital
Case 1997 1997 % of Total Number

Losses Equity industry equity  of firms

National net loss: groups 201,905.0 370,993.4 96.6% 1,248
and unaffiliated cos
National net loss: all com- 201,905.0 370,993.4 96.6% 2,256
panies
Florida net loss: groups 156,404.4 306,861.8 79.9% 431
and unaffiliated cos
Florida net loss: all com- 156,404.4 306,861.8 79.9% 898
panies

Note: Losses and equity are in millions of dollars. Equity has not been adjusted for intra-group
consolidations. An adjustment for consolidations was made in estimating capacity. Florida losses
are the total (countrywide) losses of insurers operating in Florida.

available to pay losses from Florida catastrophes. The national sample cap-
tures 96.6% of industry equity, and thus provides an excellent representation
of the industry as a whole. Companies doing business in Florida account for
79.9% of industry equity.

Average values of the raw and detrended parameter estimates are shown in
Table 2. As expected, detrending significantly reduces the magnitudes of the
loss standard deviations and the correlations between company and industry
losses. Recall that the response functions are decreasing in the insurer’s loss
standard deviation and increasing in the correlation between the insurer loss
and the industry loss. Because detrending leads to larger reductions in the
correlations than in the standard deviations, we expect the estimated loss
payments to be lower for the detrended parameter estimates than for the raw
parameter estimates.

Table 2
Detrended and raw parameter estimates: property-liability insurance industry
Case Averages
Detrended Detrended Sigma Correlation N
sigma correlation
National net loss: groups 0.4112 0.1751 0.5188 0.4366 1,248
and unaffiliated cos
National net loss: all 0.4203 0.1916 0.5303 0.4320 2,256
companies
Florida net loss: groups 0.4110 0.1308 0.4760 0.4921 431
and unaffiliated cos
Florida net loss: all 0.4442 0.1821 0.5177 0.4683 898

companies
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The standard deviation estimates tend to be larger for the company sample
than for the group sample, reflecting the smoothing effect of intragroup rein-
surance transactions. The raw estimates of the correlation coefficients are
somewhat larger for the group sample than for the company sample, as ex-
pected if intra-group reinsurance transactions tend to increase the covariability
of the loss series. However, the detrended correlation coefficients and rho
statistics are lower for the group sample than for all company sample, i.e., after
removal of the time trend, there is less covariability among firms in the group
sample than in the company sample.

4.2. Industry capacity: The national sample

The response functions for the national sample are shown in Fig. 2. The
figure shows the estimated amounts that would be paid for industry losses
ranging from $200 billion to $500 billion. These limits were chosen because
total losses and loss adjustment expenses for the US property-liability insur-
ance industry in 1997 were approximately $200 billion and the total equity
capital was approximately $300 billion. Thus, the response curve ranges from
the industry’s actual loss up to the industry’s total resources. Four response
curves are shown in the figure, based on (a) raw parameters for the group
sample, (b) detrended parameters for the group sample, (¢) raw parameters for
the company sample, and (d) detrended parameters for the company sample.
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Fig. 2. Response functions: national net loss.
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The estimated response curves are expected to follow certain ordering re-
lationships, based on option pricing theory and the assumption regarding the
exercise of the default option for failing insurers that are members of groups.
Larger payments are expected when raw parameter estimates are used rather
than detrended parameter estimates because removal of the time trend leads to
a larger reduction in the correlation coefficients than in the standard deviations
(see Table 2). Because the response function values are positively related to the
correlation coefficient and negatively related to the standard deviation, the
detrended parameters give lower estimated payments. Secondly, payments for
the group sample are expected to be higher than payments using the company
sample, holding constant the parameter set used in the estimation, i.e., for the
raw parameter estimates, the estimated payments for the group sample should
be larger than the payment for the company sample, and likewise for the
detrended parameter estimates. In the group sample, if a company that is a
group member exhausts its resources, payments continue to be made from the
resources of other group members until the group’s resources are exhausted.
However, in the company sample, the failure of a company does not trigger
additional payments from members of the same group, because group rela-
tionships are ignored in this estimation.

The expected relationships are borne out in the estimated response curves
shown in Fig. 2. The largest estimated payments are obtained using the raw
parameter estimates for groups, followed by the estimates based on the raw
parameter estimates for companies, the detrended parameter estimates for
groups, and the detrended parameter estimates for companies. Generally, a
high proportion of total losses are paid for industry losses near to the expected
value of $200 billion and ranging up to about $300 billion. Above that level,
noticeable gaps begin to appear between the industry loss and the estimated
payments.

The estimated efficiencies for the national sample are shown in Fig. 3. Recall
that efficiency is defined as the ratio of the area below the curved lines in Fig. 2
to the total area represented by the triangle bordered by the 100% payment line
and the horizontal axis. Obviously, the efficiencies will differ depending upon
the value of industry loss used as the starting or attachment point. Accord-
ingly, Fig. 3 shows efficiency for various attachment points ranging from $200
to $500 billion. Efficiency is inversely related to the attachment points. For an
attachment point of $200 billion, the efficiency estimates range from 91% based
on raw parameters for the group sample to about 78% based on detrended
parameter estimates for the company sample. For the highest attachment
points, efficiencies range from about 80% based on raw parameters for the
group sample to about 65% based on detrended parameters for the company
sample.

The response function analysis also produces estimates of the percentage of
losses that would be paid for catastrophes of different sizes (see Fig. 4). For
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relatively small catastrophes, the industry would be able to pay very high
percentages of the loss. For example, for a $20 billion catastrophe, we estimate
that the industry could pay at least 98.6% of the loss. The estimated percent-
ages paid for larger losses decline at an increasing rate. For example, using the
detrended parameter estimates, the industry would be able to pay about 96.4%
of a $100 billions loss based on the group sample and 92.8% based on the
company sample. For a $200 billion loss, the industry could pay 84.0% based
on the group sample and 78.6% based on the company sample.
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The significant capacity of the industry to respond to catastrophes in the
range of losses represented by Hurricane Andrew and the Northridge earth-
quake is primarily due to an increase in the relative capitalization of the in-
dustry over the past few years. The ratio of premiums to surplus, a commonly
used leverage ratio in the insurance industry, was 1.4 in 1991, prior to Andrew,
but had declined to 0.9 in 1997.

We conduct an additional analysis to determine the impact on capacity of
the increase in capitalization since 1991. A gauge of the capitalization increase
that is more consistent with our model than the premiums to surplus ratio is
the ratio of capital to losses. In 1991, the ratio of capital to losses was $0.88,
while in 1997 the ratio was $1.56. We recalculated the 1997 capacity of the
industry after reducing capital proportionately for the firms included in our
sample so that the ratio of 1997 capital to losses was the same as in 1991, i.e.,
$0.88. The results are presented in Fig. 5, which plots the expected company
and group payments for catastrophes of various sizes, based on 1991 and 1997
capitalization. To reduce the number of curves on the chart and focus on the
most realistic results, Fig. 5 includes only the capacity estimates based on
detrended parameter values.

Fig. 5 reveals a noticeable increase in industry capacity to bear catastrophic
losses between 1991 and 1997. Focusing on the detrended company loss esti-

!9 The increase in capitalization reflects the strong investment performance of the 1990s, capital
inflows due to concern about catastrophe risk, and the introduction of risk-based capital (RBC)
regulation in 1995. See Cummins and Nini (2001).
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mates, for a $20 billion catastrophe, the industry would be able to pay 98.6%
on 1997 capitalization levels, compared to 94.5% based on 1991 capitalization
levels. The results are even more dramatic for larger catastrophes. For a $100
billion catastrophe, again based on detrended company parameters, the in-
dustry could pay 92.8% based on 1997 capitalization but only 79.6% based on
1991 capitalization. For a $200 billion catastrophe, the industry could pay
78.6% based on 1997 capitalization but only 56.4% based on 1991 capitaliza-
tion. The capacity of the industry, even for catastrophes in the $100 billion
range, is clearly much larger in 1997 than it was prior to Andrew and
Northridge. However, even at 1997 capitalization levels, a $100 billion catas-
trophe would disrupt the market by causing a significant number of insol-
vencies. For example, based on the detrended parameters, a $100 billion
catastrophe is projected to cause 30 insolvencies for the group sample and 136
insolvencies for the company sample. The comparable numbers of insolvencies
at 1991 capitalization levels would be 108 groups and 216 companies.

4.3. Industry capacity: The Florida sample

We estimated response functions and efficiencies for the Florida market.
Though we do not show these results here we note that, because the number of
insurers operating in Florida is smaller than the number operating nationally,
the resources available to pay claims in Florida is commensurately reduced and
this reduces efficiency. For example, at an attachment point of $200 billion, the
Florida efficiency based on raw parameter estimates for the group sample is
about 85%, compared to 91% at the same attachment point for the national
case. Based on detrended parameter estimates for the company sample, the
efficiency at the $200 billion attachment point is 72% in Florida, compared to
78% nationally.

The estimated Florida payments for catastrophic losses of various sizes are
shown in Fig. 6 for the detrended parameter estimates at 1997 and 1991 capital
levels. As in the national case, industry capacity to respond to moderate ca-
tastrophes appears to be adequate both in 1997 and 1991. For a catastrophe of
$20 billion, the expected payment for the group sample at 1997 capital levels is
99.4%, compared to 97.9% at 1991 capitalization. The comparable figures for
companies are 98.6% and 94.4%, respectively. Capacity in 1997 also appears to
be reasonably adequate for a catastrophe of $100 billion. The expected pay-
ment for groups would be 94.2% and the payment for companies would be
89.7%. At 1991 capitalization levels, on the other hand, the capacity of the
industry to finance a $100 billion catastrophe was much lower — 77.5% pay-
ment by groups and only 72.2% by companies. The principal finding is that the
capacity of the industry increased dramatically between 1991 and 1997 and
now is adequate to bear catastrophes in the range of the projected “Big One”
(e.g., $100 billion). However, such a catastrophe would still be disruptive to the
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insurance market because it is projected to cause the failure of 34 companies
and 10 groups.

4.4. Regression models for parameter estimation

Finally, we provide examples of the regression models used in estimating the
parameters for the companies in the market in 1997 that did not have data for
the full time period covered by the study (the NFTS companies). The proce-
dure is to estimate regression models with the parameters of the FTS compa-
nies as dependent variables and company financial characteristics as regressors.
The NFTS company parameters are estimated by inserting the financial char-
acteristics of these firms into the equation to obtain fitted parameter values,
which are used in estimating capacity.

The regression models are based on the underlying theoretical principle that
insurers seek to maximize returns for a given level of risk (see Cummins and
Sommer, 1996). There are two primary reasons why insurers are likely to have
target risk levels: (1) The primary creditors of financial firms are also their
customers (Merton and Perold, 1993), e.g., the primary debt capital of prop-
erty—liability insurers consists of policy reserves, which constitute funds held
to pay policyholder claims. Because the purpose of insurance is likely to be
subverted if the debt claims are overly risky, insurers incur a product market
penalty for taking excessive risk (Cummins and Danzon, 1997), providing an
important rationale for having a risk target. (2) Insurers are subject to rigorous
solvency regulation that includes RBC requirements. The RBC rules subject
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Table 3
Regression models of raw standard deviations: Net losses incurred

Variable Florida National Florida National

companies companies groups groups

Intercept 1.825 1.328 1.297 0.970
8.047 9.588 5.253 5.367

Equity capital/assets —0.817 —0.800 —0.761 —0.540
—5.502 —8.358 —3.320 —3.423

Ln(net losses incurred) —0.296 —0.357 0.338 —0.355
—10.126 —20.645 —6.219 —12.040

Ln(equity capital) 0.221 0.309 0.293 0.317
7.124 17.223 5.333 10.467

Return on assets 0.930 1.852 1.339 3.966
2.358 6.270 1.155 7.509

Net income/net premiums written 0.194 —0.183 —0.564 —0.545
1.711 —3.730 —2.499 —5.405

Reinsurance accounts receivable/assets 1.133 0.722 1.698 0.770
3.417 3.258 3.335 2.008

Stocks/assets —0.036 —0.194 —0.012 —0.269
—0.313 —2.629 —0.075 —2.222

Adjusted R? 37.9% 40.1% 33.1% 44.6%

No. of observations 511 953 172 286

Note: The dependent variable is the standard deviation of losses over the period 1983-1997. For
each variable, the upper number is the regression coefficient and the lower number is the z-ratio.

insurers to increasingly restrictive regulations if capital declines below specified
thresholds, imposing potential regulatory costs on insurers that can be avoided
by holding capital sufficiently in excess of the RBC thresholds (Cummins et al.,
1994). The existence of target solvency levels would imply that firms which are
relatively risky along one dimension, such as investment risk, are likely to
compensate by reducing risk along other dimensions. We report the results of
these regressions in Table 3. Though we will not discuss these results here, we
will simply mention that they are roughly consistent with the solvency target
theory.

5. Conclusions

In this article, we conduct a theoretical and empirical analysis of the ca-
pacity of the US property-liability insurance industry to finance major cata-
strophic property losses. In our theoretical analysis, we show that the necessary
condition for industry capacity to be maximized is that all insurers hold a
proportionate share of the industry underwriting portfolio. The sufficient
condition for capacity maximization, given a level of total resources in the
industry, is for all insurers to hold a net of reinsurance underwriting portfolio
which is perfectly correlated with aggregate industry losses. Based on these
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results, we derive an option-like model of insurer responses to catastrophes,
where the total payout, conditional on total industry losses, is a function of the
industry and company expected losses and standard deviations of losses,
company net worth, and the correlation between industry and company losses.
The industry response function is obtained by summing the company response
functions, providing an estimate of industry capacity.

The empirical analysis estimates the capacity of the industry to bear losses
ranging from the expected value of loss up to a loss equal to total industry
resources. We develop a measure of industry efficiency equal to the ratio of the
estimated loss payment based on our model to the loss that would be paid if the
industry acts as a single firm. For example, using detrended group parameter
estimates, the results indicate that national industry efficiency ranges from
about 83.3% to 81.6%, based on catastrophe losses ranging from zero to $300
billion, and from 76.6% to 70.2%, based on catastrophe losses ranging from
$200 to $100 billion. The industry has more than adequate capacity to pay for
catastrophes of moderate size. For example, based on both the national and
Florida samples, the industry could pay at least 98.6% of a $20 billion catas-
trophe at 1997 capitalization levels. For a catastrophe of $100 billion, the in-
dustry could pay at least 92.8% nationally and at least 89.7% in Florida.

We also compare the industry’s capacity to respond to catastrophic losses
based on 1997 capitalization with its capacity based on 1991 capitalization,
motivated by the sharp increase in capital following Hurricane Andrew and the
Northridge earthquake. In 1991, the industry had $0.88 in equity capital per
dollar of incurred losses, whereas in 1997 this ratio had increased to $1.56. To
compare 1991 and 1997, we proportionately reduce the capital of the insurers
in our sample to achieve an industry-wide capital-to-loss ratio of $0.88 in 1997.
Our lower bound estimates of nationwide industry capacity suggest that the
industry could have paid 92.8% of a $100 billion catastrophe loss in 1997 but
only 79.6% in 1991. For the Florida sample, insurers could have paid at least
89.7% of a $100 billion catastrophe in 1997 but only 72.2% in 1991. Thus, the
ability of the industry to pay for “The Big One” increased dramatically be-
tween 1991 and 1997.
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