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PREFACE

Denis Kessler

President of the Fédération Frangaise des Sociétés d’ Assurances

As the new century begins, the question of risk and theories as to how it should
be understood and measured are at the forefront. We know that risks evolve, and
that today’s risks are different from those of the past. The characteristics, frequency,
intensity and, above all, the very nature of risks are changing radically.

If risks are becoming increasingly complex, it is because they are related to tech-
nological developments, new economic and social activities, and the aggregate effects
of multiple factors. At the same time, risks have become more integrated, since a given
event may have a series of consequences, giving rise to yet other risks. Risks are often
interrelated, and sometimes the combined effect is greater than the sum of the indi-
vidual parts. Smoking poses a risk, contact with asbestos poses another, and we know
that the combined effect of these two risks does not merely increase the threat to health
incrementally, but also exponentially.

The risks of today and tomorrow are also becoming more foreseeable as knowl-
edge increases and we upgrade our statistical databases. This trend poses a major
challenge to the insurance industry. Advances in genetics and more sophisticated
knowledge of weather patterns, for example, have an impact on insurance techniques.

Risks are also becoming more endogenous to the behaviors of economic agents
as we improve our understanding of such risks, as well as of the aggravating factors
or, conversely, the preventive measures whose efficacy can be measured. A pedestrian
who is hit on the head by a falling flowerpot is not responsible for his misfortune. A
smoker, on the other hand, engages in behavior that greatly increases his likelihood
of contracting a number of health problems. The risk run by the smoker can be quan-
tified and priced.

Finally, the new risks tend to unfold more gradually, are more spread out in time
and space, and often surface well after the causal event. This is true of environmen-
tal impairment, health risks and long-term care. Some risks are long-lasting or irre-
versible, making the analysis of appropriate preventive measures a complex matter.
This leads us to the now famous “principle of precaution.”

Given the changing face of risks, insurance techniques must evolve radically, and
a new paradigm of risk and uncertainty must be constructed.

At the end of World War II, the rise of game theory and the first precepts
of economic uncertainty theory initiated research in the field, laying the theoretical
foundations that will be vital to the practice of insurance tomorrow. In the 1960’
and 1970, theoretical work in these areas made spectacular strides possible, in
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the form of sophisticated economic risk models and the creation of new financial
instruments.

This theoretical body of work, enriched by developments to come, should be
applied to the science of risk. Broken down into their smallest component parts, these
risks can be hedged by relatively simple instruments, such as the “plain vanilla”
options of finance.

New and better-targeted insurance products can be designed to better meet the
needs and expectations of economic agents while more effectively dealing with the
issues of moral hazard and adverse selection. Consequently, the insurability of risks
will expand significantly.

However, this conceptual progress will not translate into better pricing of risks in
general, and of previously uninsurable risks in particular, unless practical risk man-
agement tools and the means of relaying information are also improved. The issue of
access to information needs to be resolved, as does the question of methods used to
monitor both insureds and claims.

Naturally, these changes will affect the organization and processes of the insur-
ance industry. We are likely to see broader integration of the various segments of the
insurance offer, as the development of new risk management techniques further blurs
the lines between various specialties and between insurance products.

In the face of new risks, and given our ability to better understand known risks,
the nature of insurance demand is bound to change. It will be more closely aligned
with the desire on the part of economic agents for protection against risks, which
appears to increase with the level of democracy and wealth.

We can expect a strong rise in the demand for insurance on the part of corpora-
tions, which is strongly correlated to their ability to generate lasting profit. Private
individuals are expected to demand more personalized products and greater freedom
of choice in terms of the insurance products available to them. It is very likely that
the days of cumbersome, constraining and uniform offers in health insurance, for
example, are over.

This transformation of risks and the attendant demand for insurance will ulti-
mately and necessarily lead to major changes in the insurance industry. This will be
seen on the level of product distribution as well as organizational and strategic choices,
in particular the relationship with banking services.

But this transformation in the nature of risks and insurance demand will also
affect pricing policy and risk management in insurance companies. Here again, the
development of new risk management and diversification techniques through rein-
surance or direct access to the financial markets should offer insurers more options
in terms of portfolio management, which will benefit end customers.

The new generation of derivative products, indexed to meteorological data for
example, lays the foundations of the risk management tools that will support this
enlarged insurance offer. Not only do such products allow for better coverage of risks
whose complexity or magnitude previously rendered them all but uninsurable, they
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also contribute to optimizing insurance company investments, asset liability manage-
ment and accounting for underwriting cycles.

The work accomplished by Georges Dionne and the authors who contributed to
this project is of vital importance to anyone who is interested in the development of
insurance. It lays the foundations of a new knowledge base—practically a new disci-
pline: that of the science of risks, which is likely to lie at the heart of our future.



INTRODUCTION

It was the article “Uncertainty and the Welfare Economics of Medical Care” by
Kenneth Arrow (American Economic Review, 1963) that first drew my research atten-
tion to risk, uncertainty, insurance, and information problems. This article proposed
the first theorem showing that full insurance above a deductible is optimal when the
premium contains a fixed-percentage loading, provided there are no information prob-
lems. It also suggested economic definitions of moral hazard and adverse selection.
It generated many doctoral dissertations, my own included.

During the 1970s, different contributions proposed theorems regarding optimal
insurance coverage, security design, and equilibrium concepts for situations with
imperfect information. The 1980s were characterized by several theoretical develop-
ments such as the consideration of more than one period; of many contracting agents;
of multiple risks; of non-expected utility; of commitment; and of several information
problems simultaneously. Other economic and financial issues such as underwriting
cycles, price volatility, insurance distribution, liability insurance crisis, and retention
capacity were addressed by academics and practitioners during that period. Hierarchi-
cal relationships in firms and organizations and organizational forms were also studied,
along with the pricing and design of insurance contracts in the presence of many risks.

The empirical study of information problems became a real issue in the 1990s.
These years were also marked by the development of financial derivative products
and large losses due to catastrophic events. The last months of 1999 were again cat-
astrophic for South America and Europe. Alternatives to insurance and reinsurance
coverages for these losses are now currently being proposed by financial markets.

The aim of this book is to provide a reference work on insurance for professors,
researchers, graduate students, regulators, consultants, and practitioners. It proposes
an overview of current research with references to the main contributions in different
fields. It contains twenty-eight chapters written by thirty-five collaborators who
have produced significant research in their respective domains of expertise. It can
be considered as a complement to the previous books I edited for the S.S. Huebner
Foundation of Insurance Education in 1992: Foundations of Insurance Economics—
Readings in Economics and Finance (with S. Harrington) and Contributions to Insur-
ance Economics.

Each chapter is presented with an abstract and keywords and each can be read
independently of the others. They were (with very few exceptions) reviewed by at least
two anonymous referees.

HISTORY AND FOUNDATIONS OF INSURANCE THEORY

The first chapter is concerned with history. H. Loubergé relates the evolution of
insurance research since 1973. One important message from this contribution is
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that the significant developments of insurance economics during the last 25 years are
exemplified by those in the economics of risk and uncertainty and in financial
theory.

We next turn to the foundations of insurance theory in the absence of informa-
tion problems. M. Machina’s chapter investigates whether or not some classical results
of insurance theory remain robust despite “departures from the expected utility
hypothesis.” His analysis covers insurance demand; deductible and co-insurance
choices; optimal insurance contracts; multilateral risk-sharing agreements; and
self-insurance vs self-protection. The general answer to the above question is posi-
tive although other restrictions are necessary since the technique of “generalized
expected utility analysis” is broader than that of the classical, linear expected-utility
model.

C. Gollier concentrates on comparisons among optimal insurance designs. He
shows that three significant results can be obtained without the restriction of linear
expected utility: (1) at least one state of the world is without insurance coverage; (2)
the indemnity schedule is deterministic; and (3) the optimal contract contains a
straight deductible. However, the hypothesis of linear expected utility generates addi-
tional results when transaction costs are nonlinear.

The ways in which changes in risk affect optimal-decision variables is a difficult
and elusive research topic. The major problem is that risk aversion is not sufficient to
predict that a decision-maker will reduce his optimal risky activity (or increase his
insurance coverage) if an exogenous increase in risk is made in the portfolio. Usually,
strong assumptions are needed regarding the variation of different measures of risk
aversion or regarding distribution functions, in order to obtain intuitive compara-
tive static results. C. Gollier and L. Eeckhoudt increase the level of difficulty by adding
a background risk to the controllable risk. They propose restrictions on first- and
second-order stochastic dominance to obtain the desired results. They also consider
restrictions on preferences.

H. Schlesinger has contributed to many articles on market insurance demand,
particularly as related to deductible insurance. He first presents the classical results
related to changes in optimal coinsurance and deductible insurance with respect to
initial wealth, loading (price), and risk aversion. Comparisons with self-protection and
self-insurance are given and the basic models are extended to account for default and
background risks.

ASYMMETRIC INFORMATION

The book then moves on to asymmetric information problems, which have often been
introduced into economics and finance journals through examples of insurance allo-
cation problems. Two sections of the book are devoted to this subject. The first reviews
the main results related to ex-ante and ex-post moral hazard (fraud), adverse selec-
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tion, liability insurance, and risk classification. The second studies the empirical
significance of these resource allocation problems.

R. Winter extends his 1992 survey by presenting the development of optimal
insurance under moral hazard over the past twenty-five years. He shows how the insur-
ance context manages to introduce some structural devices. For example, optimal
insurance contracts vary when effort affects the frequency (deductible) rather than
the severity (coinsurance above a deductible) of accidents. The author also discusses
dynamic contracts and contract renegotiation.

The chapter by G. Dionne, N. Doherty, and N. Fombaron proposes an extension
of Dionne and Doherty (1992). Many new subjects are added to the classical one-
period models of Stiglitz (Monopoly) and Rothschild and Stiglitz (Competition).
Much more attention is paid to the recent developments of multi-period contracting.
A section on the endogenous choice of types before contracting was added and another
one treats moral hazard and adverse selection simultaneously. Finally, the last section
covers various new subjects related to adverse selection: risk categorization and re-
sidual adverse selection; various types of risk aversion; incomplete symmetrical infor-
mation; principals better informed than agents; uberrima fides and adverse selection
with multiple risks.

The literature of risk classification was strongly influenced by K. Crocker and A.
Snow. Risk classification may increase efficiency when certain conditions are met but
it may also introduce adverse equity in some risk classes. The authors revise the theory
of risk classification in insurance markets and discuss in detail its implications for
efficiency and equity. They show how the adverse equity consequences of risk clas-
sification are related to economic efficiency through their treatment of the social cost
of risk classification.

S. Harrington and P. Danzon study the basic relationships between liability law,
liability insurance, and loss control. They study what implications limited wealth and
liability have for the demand for liability insurance and accident deterrence. They
discuss many other subjects such as correlated risks and liability insurance markets;
liability insurance contract disputes; tort and liability insurance crises in the 1980s;
and the efficiency of the U.S. tort liability/liability insurance system.

Insurance fraud is now a significant resource-allocation problem in many coun-
tries. It seems that traditional insurance contracts are not efficient to control this
problem. In fact, there is a commitment issue involved, since audit costs may become
quite substantial for different claims. P. Picard surveys the recent development of two
types of models: costly state verification and costly state falsification. In the second
type, the insured may use resources to modify the claims, whereas in the first he simply
lies. Other subjects include adverse selection; credibility constraints on anti-fraud
policies; and collusion between policy-holders and insurers’ agents.

The empirical measurement of information problems is a recent research topic.
Many issues are considered in the two chapters written by P.A. Chiappori (11) and
G. Dionne (12). PA. Chiappori puts the emphasis on empirical models that test for
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or evaluate the scope of asymmetric information in the insurance relationship, whereas
G. Dionne discusses insurance and other markets such as labour and used cars. PA.
Chiappori suggests that empirical estimation of theoretical models requires precise
information on the contract: information available to both parties on performance and
transfers. He provides many examples of articles that approximate such conditions.
G. Dionne concentrates his review on adverse selection and moral hazard in different
markets. He concludes that efficient mechanisms seem to reduce the theoretical dis-
tortions due to information problems and even eliminate some residual information
problems. However, this conclusion is stronger for adverse selection. One explanation
is that adverse selection is related to exogenous characteristics, while moral hazard is
due to endogenous actions that may change at any point in time. Finally, he shows
how some insurance contract characteristics may induce insurance fraud!

B. Fortin and P. Lanoie review the major contributions on workers compensation,
focusing on empirical measurement of the incentive effects of different workers com-
pensation regimes. They also discuss the theoretical issues raised concerning the
effects of such insurance on the individual’s behaviour. They show how workers
compensation can influence the frequency, duration, and nature of claims. They also
examine what impact workers compensation has on wages and productivity. Finally,
they show how workers compensation can be a substitute for unemployment insur-
ance, a subject on which they have contributed in the literature.

The last paper on the empirical measurement of information problems presents
statistical models of experience rating in automobile insurance. J. Pinquet shows how
predictions on longitudinal data can be performed via a heterogeneous model. He also
offers consistent estimations for numbers and costs of claims distribution. Examples
are given for count-data models and empirical results from the portfolios of insurers
in France are presented.

RISK MANAGEMENT AND INSURANCE PRICING

Risk management in insurance is now linked to the financial management of differ-
ent risks. N. Doherty points out that the recent financial innovations in managing
catastrophe risk may be interpreted as a response to the problem of insurance and
reinsurance capacity brought on by the catastrophes having occurred over the last
ten years. His chapter starts by showing why risk is costly to firms. The structure
developed shows how reinsurance, financial instruments, insurance policy design,
leverage management and organizational structure are linked to managing the
different risks.

The role of corporate insurance demand has not received much attention in the
literature, although we observe that insurance contracts are regularly purchased
by corporations and do have their importance in the management of corporate risk.
The model developed by R. MacMinn and J. Garven focuses on the efficiency gains
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of corporate insurance to reduce bankruptcy costs, agency costs, and tax costs. In fact,
insurance is simply another risk management tool much like corporate hedging.

D. Cummins, R. Phillips, and S. Smith survey the finance literature on corporate
hedging and financial-risk management and show how it applies to insurance. They
also present empirical results on corporate hedging. They then develop a theoretical
model to explain why insurers manage risk. They emphasize that the main motiva-
tion is to avoid shocks to capital that may trigger liquidations. The chapter by H.
Kunreuther examines the role of insurance in managing risks from natural disasters,
by linking insurance to cost-effective risk mitigation measures. The author outlines
the roles that private markets (financial, institutions, and real estate developers) and
municipalities can play in encouraging the adoption of cost-effective risk mitigation
measures.

We then attack insurance pricing. Two complementary chapters treat this subject:
the first discusses financial-pricing models, while the second introduces underwriting
cycles. D. Cummins and R. Phillips propose a comprehensive survey of financial
pricing for property-liability insurance and propose some extensions to existing
models. Financial-pricing models are based on either the capital-asset pricing model;
the intertemporal capital-asset pricing model; arbitrage theory or option pricing. Also
presented are approaches using internal rate of return and insurance derivatives such
as catastrophic-risk-call-spread and bonds.

After reviewing evidence that market insurance prices follow a second-order
autoregressive process, S. Harrington and G. Niehaus present different theories that
try to explain the cyclical behaviour of insurance prices. Capital shocks may explain
periods of high insurance prices, while moral hazard and/or winners-curse effects can
explain periods of low insurance prices. The potential effects of price regulation are
also summarized.

INDUSTRIAL ORGANIZATION

The section on the industrial organization of insurance markets starts off with the two
researchers who have most influenced this area of research, D. Mayers and C. Smith.
They stress the association between the choice of organizational structure and the
firm’s contracting costs. They analyze the incentives of individuals involved in the
three major functions of insurance firms: the executive function, the owner function,
and the customer function. They also examine evidence on corporate-policy choices
by alternative organizational structures: executive compensation policy; board com-
position; choice of distribution systems; reinsurance decisions; and use of participat-
ing policies. The relative efficiency of different organizational forms are reviewed.
Insurance distribution systems are analyzed by L. Regan and S. Tennyson. Their
chapter focuses on three major economic issues: (1) the choice of distributive
system(s) by an insurer; (2) the nature of insurer-agent relationships; and (3) the
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regulation of insurance distribution activities, including regulation of entry and dis-
closure of information to the consumer. J.F. Outreville studies the retention capacity
of insurance markets in developing countries. He analyzes which factors may affect
the aggregate-retention capacity of a country and provides statistical results obtained
from a data base published by the United States Conference on Trade and Develop-
ment of the 1988-1990 period.

Measuring the efficiency and productivity of financial firms is very difficult, since
the definitions of output are multidimensional. Cummins and Weiss review the basics
of modern frontier methodologies; discuss input and output measurement for insur-
ers; and review the significant contributions made on these topics. As pointed out by
the authors, modern frontier efficiency and productivity methodologies represent the
state of the art in measurement of firm performance. Measures of efficiency and pro-
ductivity based on these methods are useful in testing economic hypotheses about
market structure, corporate governance, organizational form and other important
topics. The measurement of efficiency and productivity also is useful in informing
regulators about the firm’s performance and in comparing performance across
countries. So, they hope that more economists will use these methodologies for the
insurance industry. The contribution of T. Harchaoui reviews the treatment of the
insurance business in the system of national accounts, with a focus on measurement
of productivity analysis. He first shows that the macroeconomics approach is very
limited in many aspects. A more desaggregated approach allows for better under-
standing of the delineation of insurers’ lines of business; the measurement of their
activity; and their interactions with the economy.

LIFE INSURANCE, PENSIONS, AND ECONOMIC SECURITY

The book ends with life insurance, pensions, and economic security. It is well known
that pension institutions face difficult years. One development, studied by O. Mitchell,
is that defined contribution plans are now very popular, often at the expense of pension
benefits. This changes the risk and rewards for participants and for government
regulators. The expenses associated with pension management have become an im-
portant issue. For the author, reforms will be necessary to restore government social
security programs to solvency.

B. Villeneuve analyses the micro-foundations of life insurance markets. He starts
with the well-known life-cycle hypothesis and builds on contract theory to highlight
the main issues in life insurance design. He shows how the trade-off between flexi-
bility and opportunistic behaviour is an equilibrium outcome of actual life insurance
contracts.

P. Zweifel proposes two types of reasons for the existence and growth of social
insurance: (1) possible enhancements of efficiency and (2) public choice related to the
interests of governments and politicians. Empirical evidence suggests that the second
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one is significant to explain the choice between private and social insurance. It also
shows that individuals in the United States and Germany are subject to excess asset
variance. Four proposals to improve the interplay between private and social insur-
ance are formulated.
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Abstract

The paper reviews the evolution in insurance economics over the past 25 years, by
first recalling the situation in 1973, then presenting the developments and new
approaches which flourished since then. The paper argues that these developments
were only possible because steady advances were made in the economics of risk and
uncertainty and in financial theory. Insurance economics has grown in importance to
become a central theme in modern economics, providing not only practical examples
to illustrate new theories, but also inspiring new ideas of relevance for the general
economy.
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1.1 INTRODUCTION

In the early seventies, some 25 years ago, the economics of risk and insurance was
still embryonic. Indeed, when the International Association for the Study of Insurance
Economics (known as the “Geneva Association”) was founded in 1973, one of the
main goals of its promoters was to foster the development of risk and insurance edu-
cation in economics curricula. In particular, there existed then a clear need to develop
an understanding for risk and insurance issues among the future partners of the insur-

* This survey is based on a previous survey published in The Geneva Papers on Risk and Insurance—
Issues and Practices in October 1998. The revision was performed on the occasion of a visit to the Uni-
versity of Alabama, Department of economics, finance and legal studies. The support of this university is
gratefully acknowledged. I thank Georges Dionne, Louis Eeckhoudt and Harris Schlesinger for their com-
ments on successive versions of this survey. The usual disclaimer applies.
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ance industry. It seemed also necessary to attract the attention of economists to risk
and insurance as a stimulating and promising research field.

At that time, some attempts to link insurance to general economic theory had
already been made, but they were still scarce. The books written by Pfeffer (1956),
Mahr (1964), Greene (1971) and Carter (1972), or the one edited by Hammond
(1968), tried to bridge the gap. (Corporate) risk management started, at least in the
United States, to be considered seriously as a branch of study—see Mehr and Hedges
(1963) and Greene (1973) as early references. The main obstacle was obvious: tradi-
tional economic theory was based on the assumption of perfect knowledge—with
some ad hoc departures from this assumption, as in the theory of imperfect compe-
tition or in keynesian macroeconomics. In order to witness an integration of risk and
insurance issues into general economics, the theory of risk had to develop and to gain
a position at the heart of economic theory. The foundations were already at hand: the
von Neumann-Morgenstern (1947) and Savage (1954) theory of behavior under uncer-
tainty, the Friedman-Savage (1948) application to risk attitudes, Pratt’s (1964) analy-
sis of risk aversion, Rothschild and Stiglitz’s (1970) characterization of increases in
risk, and the Arrow (1953) and Debreu (1959) model of general equilibrium under
uncertainty. These approaches had already started to bring about a first revolution in
the study of finance, with the Markowitz (1959) model of portfolio selection and the
Sharpe (1964)—Lintner (1965)—Mossin (1966) model of equilibrium capital asset
pricing (the CAPM). With the benefit of hindsight, we know now that they did provide
the starting point for the accomplishment of one of the Geneva Association’s long
term objective: the integration of risk and insurance research into the mainstream of
economic theory.

The purpose of this chapter is to remind the reader of the situation of insurance
economics in 1973 (section 1.2), and to summarize its main development since then
(section 1.3). A fourth section introduces a personal bias towards financial econom-
ics by focussing on the new approaches which resulted from the growing integration
of insurance and finance. The fifth section concludes. Due to limitations in space and
time, two important related topics were omitted from this survey: health economics
and social security. In addition, life insurance is only partially covered in the fourth
section. The discussion is mainly concentrated on risk and insurance economics issues
as they relate to property-liability insurance.

1.2 INSURANCE ECONOMICS IN 1973

In 1973, the economic theory of insurance had already begun to develop on the basis
of five seminal papers: Borch (1962), Arrow (1963), Mossin (1968), Ehrlich and
Becker (1972) and Joskow (1973)." All these papers were based on the expected utility

' Note that two of these six authors, Kenneth Arrow and Gary Becker, received later the highest dis-
tinction for economic research—the Nobel Prize in economics.
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paradigm. Following these papers, and more particularly the first two of them, a bunch
of important papers were published. They were a signal that the elaboration of an eco-
nomic theory of risk and insurance was under way.

1.2.1 Borch (1962)

In his 1962 Econometrica paper “Equilibrium in Reinsurance Markets”, Karl Borch
showed how Arrow’s (1953) model of general equilibrium under uncertainty could be
applied to the problem of risk-sharing among reinsurers. But generations of econo-
mists later learned that this insurance application had far-reaching implications for
the general economy.” In 1953 Arrow had shown that financial markets provide an
efficient tool to reach a Pareto-optimal allocation of risks in the economy. Nine
years later, Borch’s theorem® was showing how the mechanism could be organized in
practice.

The main argument is the following. In a population of risk-averse individuals,
only social risks matter. Individual risks do not really matter, because they can be
diversified away using insurance markets (the reinsurance pool of Borch’s paper). But
social risks—those affecting the economy at large—cannot be diversified: they have
to be shared among individuals. Borch’s theorem on Pareto-optimal risk exchanges
implies that the sharing rule is based on individual risk-tolerances (Wilson, 1968).
Each individual (reinsurer) gets a share in the social risk (the reinsurance pool) in pro-
portion to its absolute risk-tolerance, the inverse of absolute risk-aversion. If all indi-
vidual utility functions belong to a certain class (later known as the HARA® class, and
including the most widely used utility functions), the sharing rule is linear. The above-
mentioned CAPM, for long the dominant paradigm in finance theory, represents a
special case of this general result.

In my view, Borch’s paper provides the corner stone of insurance economics. It
may be conveniently used to show how the insurance mechanism of risk-pooling is
part of a more global financial mechanism of risk-allocation, and how a distinction
may nevertheless be made between insurance institutions and other financial institu-
tions.®> For this reason, it may be used to clarify ideas on a hotly-debated issue: the
links between finance and insurance (see section 1.4 below).

In the years until 1973, Borch’s seminal contribution found its main insurance
economics extensions in the papers by Arrow (1970) and Kihlstrom and Pauly

% See Gollier (1992) for a review of the economic theory of risk exchanges, Dréze (1979) for an appli-
cation to human capital, and Dréze (1990) for an application to securities and labor markets.

3 Actually, Borch’s theorem was already present in Borch (1960), but the latter article was primarily
written for actuaries, whereas the 1962 Econometrica paper was addressed to economists.

* HARA = Hyperbolic Absolute Risk Aversion. As noted by Dréze (1990), the linearity of the sharing
rule follows from the linearity of the absolute risk tolerance implied by hyperbolic absolute risk aversion.

* The question whether or not “institutions” are needed to allocate risks in the economy was tackled
later in the finance literature.
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(1971).° Arrow (1970) explicitly defined insurance contracts as conditional claims—
an exchange of money now against conditional money in the future. Kihlstrom and
Pauly (1971) introduced information costs in the risk-sharing model: they argued that
economies of scale in the treatment of information explain why insurance companies
exist. In 1974, Marshall extended further this analysis by introducing a distinction
between two modes of insurance operations: reserves and mutualization. Under the
reserve mode, aggregate risk is transferred to external risk-bearers (investors). With
mutualization, external transfer does not apply, or cannot apply: aggregate losses are
shared among insureds.

1.2.2 Arrow (1963)

The article published in 1963 by Kenneth Arrow in The American Economic
Review under the title “Uncertainty and the Welfare Economics of Medical Care”
represents the second point of departure for risk and insurance economics. This
work may be credited with at least three contributions. Firstly, the article provided,
for the first time, what has become now the most famous result in the theory of
insurance demand: if the insurance premium is loaded, using a fixed-percentage
loading above the actuarial value of the policy, then it is optimal for an expected utility
maximizing insured to remain partially at risk, i.e., to purchase incomplete insurance
coverage. More specifically, Arrow proved that full insurance coverage above a
deductible is optimal in this case. Secondly, Arrow also proved that, when the insured
and insurer are both risk-averse expected utility maximizers, Borch’s theorem
applies: the Pareto-optimal contract involves both a deductible and coinsurance
of the risk above the deductible—a result later extended by Moffet (1979) and
Raviv (1979), and more recently generalized by Gollier and Schlesinger (1996)
and by Schlesinger (1997) under the less restrictive assumption of risk aversion.’
Thirdly, the paper was also seminal in the sense that it introduced asymmetric
information into the picture. Arrow noted that transaction costs and risk aversion
on the insurer’s side were explanations for incomplete risk-transfer, but he also
realized that moral hazard and adverse selection represented major obstacles for a
smooth running of the insurance mechanism. By attracting the attention of econo-
mists to these problems, he paved the way to more focused work by Pauly (1968) and
Spence and Zeckhauser (1971)—on moral hazard—and by Akerlof (1970), on adverse
selection.

® The applications of Borch’s theorem in the actuarial literature are reviewed by Lemaire (1990).

7 More precisely, Schlesinger (1997) considers one version of Arrow’s theorem: the case where the
insurer is risk neutral and the insured is risk averse (risk aversion being defined by Schlesinger as prefer-
ences consistent with second-degree stochastic dominance). In this case a straight deductible policy is
optimal whenever the insurer’s costs are proportional to the indemnity payment.
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1.2.3 Mossin (1968)

The paper by Jan Mossin, “Aspects of Rational Insurance Purchasing”, published in
1968 in The Journal of Political Economy, is generally considered as the seminal paper
on the theory of insurance demand—although some of Mossin’s results were also
implicit in Arrow (1963) and explicit in another paper on insurance demand published
the same year, but earlier, in the same journal (Smith, 1968).® Mossin’s paper is mainly
famous to have shown: 1) that partial insurance coverage is optimal for a risk-averse
expected utility maximizer when the insurance premium is such that a positive pro-
portional loading applies to the actuarial value of the policy;’ and 2) that insurance is
an inferior good if the individual has decreasing absolute risk aversion (DARA). It
was later pointed out (see below) that these strong results are respectively based on
the implicit assumptions that the individual faces only one risk, and that the amount
at risk is fixed (unrelated to wealth or income).

1.24 Ehrlich and Becker (1972)

In the modern theory of risk management, insurance is only seen as one of the tools
available to manage risk. The whole set of tools may be decomposed into subsets
according to the different steps of the risk management process. Insurance belongs to
the set of risk-transfer tools and represents a very powerful financial mechanism to
transfer risk to the market. Another subset corresponds to risk-prevention. Broadly,
risk-prevention mechanisms may be classified under two headings: mechanisms
intended to modify the probability of an event; and mechanisms intended to mitigate
the consequences of an event. Ehrlich and Becker (1972) were the first to propose a
rigorous economic analysis of risk prevention. They coined the terms self-protection
and self-insurance to designate the two kinds of mechanisms and studied their
relationship to “market insurance”. For this reason, their paper may be seen as the
first theoretical paper on risk management. Briefly, the paper provides three main
results:

1) In the absence of market insurance, a risk averse expected utility maximizer
will engage into self-protection and self-insurance activities, but the optimal “invest-
ment” in these activities depends on their cost. As usual, marginal benefit (in terms
of higher expected utility) has to be weighted against the marginal disutility brought
about by additional costs, so that complete elimination of the risk is not optimal in
general.

2) Self-insurance and market insurance are substitutes: an increase in the degree
of protection provided by the insurer induces a rational individual to reduce his invest-

8 Optimal insurance coverage using a deductible was also analyzed by Pashigian, Schkade and Menefee
(1966) and by Gould (1969).
° Incomplete insurance may be obtained using a deductible or coinsurance (or both).
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ment into activities (or behavior) aimed at reducing the consequences of the insured
event. Of course, this result is also of importance for the theory of moral hazard (see
section 3), but Ehrlich and Becker did not assume asymmetric information.

3) Self-protection and market insurance may be complement or substitutes,
depending on the sensitivity of the insurance premium to the effects of self protec-
tion. Thus, the insurer can give to the insured an incentive to engage into self-
protection activities (which reduce the likelihood of a loss) by introducing a link
between the premium rate and the observation of such activities. This result is also of
importance for the theory of moral hazard, and more generally for agency theory (the
theory of relationships between an agent and a principal).

1.2.5 Joskow (1973)

The paper published by Paul Joskow in the Bell Journal of Economics and Manage-
ment Science under the title “Cartels, Competition and Regulation in the Property-
Liability Insurance Industry” represents the first successful attempt to submit the
insurance sector to an economic evaluation. The paper assesses competition by ana-
lyzing market concentration and barriers to entry, it measures returns to scale, and
discusses insurance distribution systems and rate regulation. By providing empirical
results on these issues, it has provided a reference point for subsequent research on
the sector. Briefly, Joskow found that the insurance industry was approximately com-
petitive, that constant returns to scale could not be excluded, and that the direct writer
system was more efficient than the independent agency system.

1.3 DEVELOPMENTS

The five seminal contributions presented in the preceding section prepared the ground
for numerous developments. These may be grouped under three main headings: the
demand for insurance and protection, economic equilibrium under asymmetric infor-
mation, and insurance market structure. It is striking to realize that many of these
developments are not developments in insurance economics per se. They occurred
within the wider domain of general economics, insurance providing in some cases an
illustration of general results, and in other cases a stimulation to search for general
results.'

1.3.1 Optimal Insurance and Protection

The observation of economic life shows that individuals generally do not insist to get
partial coverage when they subscribe an insurance policy. As the insurance premiums

' The survey of developments presented in this section draws on the excellent survey of insurance eco-
nomics by Dionne and Harrington (1992).
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are generally loaded (at least to cover insurance costs), this is however the behavior
which would be expected from them, according to Mossin’s (1968) results. Moreover,
insurance does not seem to be empirically an inferior good. If it was, insurance com-
panies would be flourishing in the poorer nations and would be classified among the
declining industries in the richer nations of the world. This is, again, in contradiction
with Mossin’s analysis (given that absolute risk aversion is, indeed, empirically
decreasing). One of the seminal papers at the roots of insurance economics has thus
led to two paradoxes, and it is interesting to observe how theory was reconciled with
factual observation.

The second paradox (insurance is an inferior good) did not stimulate much
research effort. Some scholars tried to dig into the idea by exploring the conditions
under which insurance would be not only an inferior good, but also a Giffen good:
see Hoy and Robson (1981), and Briys, Dionne and Eeckhoudt (1989). But the inter-
est remained limited. There are probably two reasons for that. Firstly, following Arrow
(1970), it was quickly recognized among economists that insurance is a financial
claim. Thus it does not seem really appropriate to apply to insurance concepts which
were derived to categorize consumption goods. Secondly, it has probably been noticed
by most scholars that the condition under which Mossin’s result obtains is not gener-
ally met in practice. Mossin assumes that the individual’s wealth increases, but that
the risky component of wealth remains unchanged. In reality, changes in wealth gen-
erally imply changes in the portion of wealth exposed to a risk of loss, and this is suf-
ficient to resolve the paradox (see Chesney and Loubergé, 1986).

The first paradox (partial coverage is optimal) has stimulated much more research
effort. It has first been noticed that the result is not robust to changes in the pricing
assumptions: for example, full insurance is optimal if the loading is a lump sum."
Some researchers pointed out that the result was either reinforced, or did not hold, if
the behavioral assumptions were modified: see Razin (1976) and Briys and Loubergé
(1985), or the nonexpected utility developments mentioned below. But the most inter-
esting breakthrough came from enlarging the scope of the analysis. This was made in
the early eighties by deriving the logical conclusion from the observation that insur-
ance is a financial claim. It had been recognized for long (Markowitz, 1959) that the
demand for financial assets should take place in a portfolio context, taking into con-
sideration imperfect correlations across random asset returns. The same kind of
reasoning was applied to insurance by Mayers and Smith (1983), Doherty and
Schlesinger (1983a) (1983b), Turnbull (1983) and Doherty (1984). In this portfolio
approach, which was soon accepted as an important improvement, the demand
for insurance coverage on one risk should not be analyzed in isolation from the other
risks faced by the decision-maker: insurance demand is not separable, even when the

"' It is obvious that the paradox may be resolved if one introduces differential information. If the insured
overestimates the probability (or the amount) of loss, full insurance may be optimal, even when the premium
is loaded with a fixed proportional factor.



10 Handbook of Insurance

risks are independent (Eeckhoudt and Kimball, 1992). When considering the insur-
ance demand for one risk, one has to take into account the other risks, their stochas-
tic dependence with the first risk, whether they are insurable or not, and under what
conditions, whether some insurance is compulsory or subsidized, whether a riskless
asset is traded, etc.: see, e.g., Schlesinger and Doherty (1985), von Schulenburg
(1986), Kahane and Kroll (1985), Briys, Kahane and Kroll (1988), and Gollier and
Scarmure (1994)."> Thus, assuming that correlation is a sufficient measure of depen-
dence, it may be optimal to partially insure a risk which is negatively correlated with
an other risk, even if the premium is actuarial. Conversely, it may be optimal to fully
insure a risk in spite of unfair pricing, if this risk is positively correlated with an other
uninsurable risk. In a portfolio context, incomplete markets for insurance provide a
rationale for full insurance of the insurable risks. Mossin’s paradox can thus be
resolved by changing the perspective, instead of changing the analytical model (the
expected utility model)."”

Building on these premises, the current research program is mainly devoted to
extend these preliminary results to more general cases of stochastic dependence.
Several papers verify the conditions under which optimal insurance demand under
background risk has desirable comparative statics properties, such as an increase in
optimal insurance coverage when the insured or uninsured risks increase, or whether
a deductible policy remains optimal under background risk: see Eeckhoudt and
Kimball (1992), Meyer (1992), Dionne and Gollier (1992), Eeckhoudt, Gollier and
Schlesinger (1991) (1996), Gollier and Schlesinger (1995), Gollier (1995), Gollier
and Pratt (1996), Gollier and Schlee (1997), Tibiletti (1995), Guiso and Jappelli
(1998), Meyer and Meyer (1998).

Research integrating joint optimal decisions on consumption, saving and insur-
ance represents a different research program, which was addressed by Moffet (1977)
and Dionne and Eeckhoudt (1984). The latter authors have shown that investing in the
riskless asset is a substitute to insurance purchasing. This work was generalized by
Briys (1988) using a continuous-time model. A related avenue of research concerns
the joint determination of insurable asset purchases and optimal insurance coverage:
see Meyer and Ormiston (1996) and Eeckhoudt, Meyer and Ormiston (1997) for
recent work along this line.

Surprisingly, research on risk prevention (self-protection and self-insurance activ-
ities) has not benefited much from progress in the theory of insurance demand. Analy-
sis has remained mainly circumscribed to the framework proposed by Ehrlich
and Becker (1972). For example, Boyer and Dionne (1989) have shown that self-

"2 On a related theme, see also Doherty and Schiesinger (1990) for the case where the insurance con-
tract itself is risky, due to a non-zero probability of insurer default. The paper shows that full insurance is
not optimal under fair insurance pricing and that the usual comparative statics result from the single risk
model do not carry over to the model with default risk.

" These theoretical advances closely followed similar advances in the theory of risk premiums under
multiple sources of risk: Kihlstrom, Romer and Williams (1981), Ross (1981).
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insurance leads to stronger changes in risk than self-protection (see also Chang and
Ehrlich, 1985). Dionne and Eeckhoudt (1985) obtained the surprising result that an
increase in risk aversion does not necessarily result in higher self-protection, every-
thing else constant (see also Briys and Schlesinger, 1990). Dionne and Eeckhoudt
(1988) also investigated the effects of increasing risk on optimal investment in self-
protection activities. But in contrast with most other domains of risk and insurance
economics, the analysis was not yet replaced in a broader context. A step in that direc-
tion was nevertheless made by Briys, Schlesinger and von Schulenburg (1991) with
their analysis of “risky risk management”.

Other work in the theory of optimal insurance concerns:

1) The specific issues raised by the corporate demand for insurance: these issues
will be considered in section 4 below.

2) The extension of the expected utility model to take into account state-
dependent utility functions. One can thus introduce into the analysis important obser-
vations from reality. For example, the observation that the indemnity paid by the
insurer cannot provide complete compensation for a non monetary loss, such as the
loss of a child, or the observation that the marginal utility of wealth is different under
good health and under disability: see Arrow (1974), Cook and Graham (1977) and
Schlesinger (1984) for important papers along this line.

3) The replacement of the expected utility model with recent generalizations,
grouped under the heading “nonexpected utility analysis”. This research program
started recently but it has already produced several interesting results. Using the dis-
tinction between risk aversion of order 1 and risk aversion of order 2,' Segal and
Spivak (1990) have shown that Mossin’s (1968) result on the optimality of partial cov-
erage under a loaded insurance premium does not hold necessarily if risk aversion is
of order 1 (see also Schlesinger, 1997). Now, risk aversion of order 1 may occur under
the expected utility model (if the utility is not differentiable at the endowment point),
or under some generalizations of this model, such as Yaari’s (1987) dual theory, or
Quiggin’s (1982) rank-dependent expected utility theory. In particular, using Yaari’s
model, Doherty and Eeckhoudt (1995) have shown that only full insurance or no insur-
ance (corner solutions) are optimal with proportional insurance, when the premium
is loaded."® Karni (1992) has shown that Arrow’s (1963) result on the optimality of a
deductible policy is robust to a change in behavioral assumptions if the modified
model satisfy some differentiability conditions, which are met by Yaari’s (1987) and
Quiggin’s (1982) models. Indeed, Schlesinger (1987) has shown that this result is very
robust to a change of model. Konrad and Skaperdas (1993) applied Ehrlich and
Becker’s (1972) analysis of self-insurance and self-protection to the rank-dependent
expected utility model. Schlee (1995) confronted the comparative statics of deductible

' The orders of risk aversion, as defined by Segal and Spivak (1990), rests on the behavior of the risk
premium in the limit, as the risk tends towards zero.

'* This result is reminiscent of the same result obtained under Hurwicz’s model of choice under risk:
see Briys and Loubergé (1985).



12 Handbook of Insurance

insurance in the two classes of model. So far, the most comprehensive attempt to
submit classical results in insurance economics to a robustness test by shifting from
expected utility to nonexpected utility can be found in Machina (1995, 2000). He uses
his generalized expected utility analysis (Machina, 1982) and concludes that most of
the results are quite robust to dropping the expected utility hypothesis. However, the
generality of his conclusion is challenged by Karni (1995) since Segal and Spivak
(1990) have shown that Machina’s generalized expected utility theory is characterized
by risk aversion of order 2.

The demand for insurance under background risk in a nonexpected utility setting
was analyzed by Doherty and Eeckhoudt (1995) using Yaari’s (1987) dual choice
theory. They show that an interior solution (partial insurance) may be obtained under
proportional coverage and a loaded insurance premium if an independent background
risk is present (full insurance remains optimal if the premium is fair). Dropping the
independence assumption, they note that the likelihood to get a corner solution
increases. But, qualitatively, the effects of introducing positively or negatively corre-
lated background risks are the same as under expected utility. More generally,
Schlesinger (1997) has shown that introducing an independent background risk in a
decision model with risk aversion does not change the predictions obtained under a
single source of risk: full insurance is optimal under a fair premium; partial or full
insurance may be optimal under a loaded premium; and a deductible policy remains
optimal.

1.3.2 Economic Equilibrium under Asymmetric Information

The Arrow (1953) model shows that a market economy leads to a general and effi-
cient'® economic equilibrium—even under uncertainty—if the financial market is
complete, i.e., provided the traded securities and insurance contracts make possible
to cover any future contingency. This is an important result since it extends to the case
of uncertainty the classical result on the viability and efficiency of a free market
economy.

However, as Arrow himself noticed in his 1963 article (see above), complete cov-
erage is not always available (or even optimal) in insurance markets due to various
reasons. Among these reasons, asymmetric information has received much attention
in the economic literature and has been generally discussed under two main headings:
moral hazard and adverse selection. Moral hazard exists when (1) the contract
outcome is partly under the influence of the insured, and (2) the insurer is unable to

'* An economic equilibrium is efficient if it is Pareto optimal: it is impossible to organize a reallocation
of resources which would increase the satisfaction of one individual without hurting at least one other indi-
vidual. The first theorem of welfare economics states that any competitive equilibrium is Pareto optimal,
and the second theorem states that a particular Pareto optimum may be reached by combining lump sum
transfers among agents with a competitive economic system. In an efficient equilibrium, market prices
reflect social opportunity costs.
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observe, without costs, to which extent the reported losses are attributable to the
insured’s behavior. Adverse selection occurs when (1) the prospective insureds are het-
erogeneous, and (2) the risk class to which they belong cannot be determined a priori
by the insurer (at least not without costs), so that every insured is charged the same
premium rate. Clearly, asymmetric information is a source of incompleteness in insur-
ance markets: e.g., a student cannot be insured against the risk of failing at an exam;
a healthy old person may not find medical insurance coverage at an acceptable
premium, etc. For this reason, a free market economy may not be efficient, and this
may justify government intervention.

1.3.2.1 Moral Hazard

Economists make a distinction between two kinds of moral hazard, depending on the
timing of the insured’s action. If the latter occurs before the realization of the insured
event, one has ex ante moral hazard, while ex post moral hazard exists when the
insured’s action is taken after the insured event.'’

Ex ante moral hazard was studied by Pauly (1974), Marshall (1976), Holmstrom
(1979) and Shavell (1979), among others. They showed that insurance reduces the
incentive to take care when the insurer is unable to monitor the insured’s action.
Dionne (1982) pointed out that moral hazard is also present when the insured event
results in non-monetary losses, for example the loss of an irreplaceable commodity.
Quite generally, partial provision of insurance is optimal under moral hazard. More
specifically it was demonstrated that uniform pricing is not optimal when the insured’s
behavior affects the probability of a loss. The equilibrium premium rate is an increas-
ing function of the amount of coverage purchased (non linear pricing): see Pauly
(1974). In addition, under moral hazard in loss reduction, the optimal contract is con-
ceived such as to make the degree of coverage a non-increasing function of the amount
of losses, large losses signalling careless behavior by the insured. Small losses are
fully covered, but losses exceeding a limit are partially covered (Winter, 1992, propo-
sition 4). Shavell (1982) (1986) extended the study of moral hazard to the case of lia-
bility insurance. He showed that making liability insurance compulsory results in less
than optimal care.

The existence of long-term (multi-period) contracts does not necessarily mitigate
the effect of moral hazard. Under the infinite period case, Rubinstein and Yaari (1983)
proved that the insurer can eliminate the moral hazard problem by choosing an appro-
priate experience rating scheme that provides an incentive to take care. But the result
does not, in general, carry over to the finite period case (Winter, 1992). In addition,
the possibility for the insured to switch to an other insurer makes a penalty scheme
difficult to enforce in truly competitive insurance markets, where insurers do not share
information on prospective insureds.

"7 Ex post moral hazard is particularly important in medical insurance, where claimed expenses are
dependent on decisions made by the patient and the physician once illness has occurred.
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Ex post moral hazard was first pointed out by Spence and Zeckhauser (1971), and
studied later by Townsend (1979) and Dionne (1984). In this case, the nature of the
accident is not observable by the insurer, who has to rely on the insured’s report or
engage in costly verification (in the limit, the moral hazard problem becomes a fraud
problem—see Picard, 1996). Mookerjee and Png (1989) showed that random audits
represents the appropriate response by the insurer in this situation.

The consequences of moral hazard for the efficiency of a market economy were
studied by Helpman and Laffont (1975), Stiglitz (1983), Arnott and Stiglitz (1990)
and Arnott (1992), among others. They showed that a competitive equilibrium may
not exist under moral hazard, and that the failure to get complete insurance coverage
results at best in sub-efficient equilibrium. This is due to the fact that “moral hazard
involves a trade-off between the goal of efficient risk bearing, which is met by allo-
cating the risk to the insurer, and the goal of efficient incentives, which requires
leaving the consequences of decisions about care with the decision maker.” (Winter,
1992, p. 63). However, government intervention does not necessarily improve welfare
in this case. This depends on government information, compared with the informa-
tion at the disposal of private insurers. Arguments may be put forward in favour of a
taxation and subsidization policy providing incentives to avoid and reduce losses, but
public provision of insurance does not solve the moral hazard problem (Arnott and
Stiglitz, 1990).

Moral hazard has become a popular theme in economics, not only because its
presence in insurance markets results in less than optimal functioning of any eco-
nomic system, but also because it is a widespread phenomenon. As Winter (1992)
notes, moral hazard can be defined broadly as a conflict of interests between an indi-
vidual (behaving rationally) in an organization, and the collective interest of the orga-
nization. Insurance markets provide the best illustration for the effect of moral hazard,
but the latter is also observed in labour relationships, in finance contracts, and quite
generally in all circumstances where the final wealth of a principal is both uncertain
and partially dependent upon the behavior of an agent whose actions are imperfectly
observable: for example, in a corporation, the wealth of the firm’s owners (stock-
holders) is partly dependent upon the actions of the manager; in judicial procedure,
the final outcome is partly dependent upon the efforts of the lawyers; in a team, the
success of the team is partly dependent on the individual effort of the members, etc.
All these situations were studied in the economic and financial literature under the
headings of principal-agent relationships or agency theory, with close connections to
the literature on moral hazard in insurance: in both cases, the objective is to define
the optimal “incentive contract” to mitigate the effect of asymmetric information, and
to study the consequences of different arrangements on deviations from efficiency:
see Ross (1973), Radner (1981) and Grossman and Hart (1983) for canonical refer-
ences. Similarly, the consequences for general economic equilibrium of market incom-
pleteness brought about, among other causes, by moral hazard has become a central
theme of research in economics: see, e.g., Polemarchakis (1990). On the moral hazard
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issue, at least, developments in insurance economics were closely related to develop-
ments in general economic theory.

1.3.2.2  Adverse Selection

A central development in the study of adverse selection was the paper by Rothschild
and Stiglitz (1976). This paper assumed two classes in the insured population: “good
risks” and “bad risks”. The two classes differ only with respect to their accident prob-
ability. The authors showed that a competitive insurance market does not necessarily
reach an equilibrium under adverse selection, and that, if it does, the “good risks”
suffer a welfare loss. More specifically, under the assumptions of the model, includ-
ing the assumption of myopic behavior by insurers (pure Cournot-Nash strategy),
equilibrium obtains if the proportion of good risks in the economy is not “too large”.
The equilibrium situation involves the supply of discriminating contracts providing
full insurance at a high price to the bad risks and partial coverage at a low price to
the good risks."* Compared to the symmetric information case, the bad risks get
the same expected utility, but the good risks suffer a welfare loss. The policy impli-
cation of the model is that, in some circumstances, insurance markets may fail,
and monopolistic insurance (under government supervision) may be justified as a
second best."”

Extensions of the basic Rothschild-Stiglitz model are due to Wilson (1977),
Spence (1978) and Riley (1979), who dropped the assumption of myopic behavior by
insurers. Then, an equilibrium exists always, either as a separating equilibrium (Riley,
Wilson), or as a pooling equilibrium (Wilson). Moreover, Spence showed that this
equilibrium is efficient if the discriminating insurance contracts are combined with
cross-subsidization among risk classes, the low risks subsidizing the high risks.”
Other, more recent, extensions concern the case where the individuals face a random
loss distribution (Doherty and Jung, 1993; Doherty and Schlesinger, 1995;
Landsberger and Meilijson, 1996; Young and Browne, 1997), and the case where they
are exposed to multiple risks (Fluet and Pannequin, 1997). Allard, Cresta and Rochet
(1997) have also shown that the Rothschild-Stiglitz results are not robust to the intro-
duction of transaction costs: for arbitrary small fixed set-up costs pooling equilibria
may exist in a competitive insurance market, and high risk individuals (rather than
low risk individuals) are rationed. In addition, it is important to note that a separat-
ing equilibrium may be invalidated if insureds have the opportunity to purchase cov-

'® Insurance contracts are defined in terms of price and quantity, instead of price for any quantity.
Insureds reveal their class by their choice in the menu of contracts. There is no “pooling” equilibrium, but
a “separating” equilibrium.

' Stiglitz (1977) studied the monopolistic insurance case. Under asymmetric information, the
monopolist insurer maximizes profit by supplying a menu of disciminating contracts. At the equilibrium
situation, the high risks get some consumer surplus, but the low risks are restricted to partial insurance and
do not get any surplus.

» See Crocker and Snow (1985) for a review of these models, and Dionne and Doherty (1992) for a
survey of adverse selection.
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erage for the same risk from different insurers. For this reason, Hellwig (1988)
extended the model to take into account the sharing of information by insurers about
the policyholders.

These models were empirically tested by Dahlby (1983, 1992) for the Canadian
automobile insurance market, and by Puelz and Snow (1994), who used individual
data provided by an automobile insurer in the state of Georgia. Both studies report
strong evidence of adverse selection and provide empirical support for the separat-
ing equilibrium outcome; in addition, the former study found evidence of cross-
subsidization among risk classes, whereas the latter found no such evidence.

Other insurance devices to deal with adverse selection are experience rating and
risk categorization. They may be used as substitutes or complements to discriminat-
ing contracts. Dionne (1983) and Dionne and Lasserre (1985) on one hand, and
Cooper and Hayes (1987) on the other hand, extended Stiglitz’s (1977) monopoly
model to multi-period contracts, respectively with an infinite horizon and a finite
horizon, and with full commitment by the insurer to the terms of the contract.?' Hosios
and Peters (1989) extended the finite horizon case to limited commitment. In this case,
contract renegociation becomes relevant, as information on the risk types increases
over time. In addition, strategic use of accident underreporting becomes an issue.

Cooper and Hayes (1987) also extended the Rothschild-Stiglitz (1976) model to
a two-period framework. They were able to demonstrate the beneficial effect of expe-
rience rating under full commitment by insurers, even when the insureds have the
opportunity to switch to a different insurer in the second period (semi-commitment).
At equilibrium, the competitive insurer earns a profit on good risks in the first period,
compensated by a loss in the second period on those good risks who do not report an
accident. This temporal profit pattern was labelled as “highballing” by D’Arcy and
Doherty (1990). A different model, without any commitment, and assuming myopic
behavior by insureds, was proposed by Kunreuther and Pauly (1985). The non-
enforceability of contracts imply that sequences of one-period contracts are written.
Private information by insurers about the accident experience of their customers allow
negative expected profits in the first period and positive expected profits on the poli-
cies they renew in subsequent periods (“lowballing”).”> More recently, Dionne and
Doherty (1994) proposed a model assuming private information by the insurer about
the loss experience of their customer and “semi-commitment with renegociation: the
insured has the option to renew its contract on prespecified conditions (future premi-
ums are conditional on prior loss experience). This latter assumption seems to come
closer to actual practices in insurance markets. They derive an equilibrium with first-
period semipooling” and second-period separation. Their model predicts “high-

*' In the monopoly case, insureds cannot switch to an other insurer over time.

2 In Kunreuther and Pauly (1985), the insurers have no information about the other contracts that their
customers might write. For this reason, price-quantity contracts are unavailable. The equilibrium is a pooling
equilibrium with partial insurance for the good risks, as in Pauly (1974).

# In the first period, insureds may choose either a pooling contract with partial coverage and possible
renegociation in the second year, or the Rothschild-Stiglitz contract designed for high risks.
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balling”, since a positive rent must be paid in the second period to the high risk indi-
viduals which experienced no loss in the first period, and this is compensated by a
positive expected profit on the pooling contract in the first period.?* Their empirical
test based on data from Californian automobile insurers provides some support to this
prediction: they conclude that some (but not all) insurers use semi-commitment strate-
gies to attract portfolio of predominantly low-risk drivers. In contrast, the prediction
of “lowballing” had previously received empirical support in D’Arcy and Doherty
(1990).

Risk categorization, which uses statistical information on correlations between
risk classes and observable variables (such as age, sex, domicile, etc.), was studied
by Hoy (1982), Crocker and Snow (1986) and Rea (1992). Their work shows that risk
categorization enhances efficiency when classification is costless, but its effect is
ambiguous when statistical information is costly (see also Bond and Crocker, 1991).
These results are of utmost political importance, given the ethical critics on the use
of observable personal attributes, such as sex and race, in insurance rating. The
problem of risk categorization is even more acute, when the personal attributes are
not observable a priori but may be revealed to the insurer and/or the insured after
some informational steps have been decided, as in the case of genetic diseases.
Rothschild and Stiglitz (1997) point out that this results in a conflict between the social
value of insurance and competition among insurers: if valuable information about
the probability (or certainty) for the insured to suffer from a particular genetic dis-
ease can be made available, insurers will want to get this information. But this will
result in less insurance coverage: the insureds who are virtually certain to get the
disease will not be able to get insurance, whereas those who are revealed to be immune
to the disease will not need insurance any longer.” For ethical reason, it is likely that
society will prohibit the use of genetic information by insurers to categorize risks
(steps were already made in that direction in the USA). But this means that adverse
selection problems will be enhanced, at least in medical insurance: as Doherty and
Posey (1998) have shown, private testing is encouraged when test results are confi-
dential and there is a treatment option available,? but the insurers are unable to charge
different prices to different customers with private information about their genetic pat-
rimony.

Like moral hazard, but to a lesser extent, adverse selection is an important
problem beyond the domain of insurance. It is mainly encountered in labour markets,
where the employers are uninformed about the productivity of the prospective employ-
ees, and in financial markets, where banks and finance companies lack information
on the reimbursement prospects of different borrowers. The insurance economics lit-

* For good risks who do not file a claim in the first period the reward takes the form of additional cov-
erage in the second period.

* This is an example of the well-known result that additional public information may have adverse
welfare consequences (see, e.g., Arrow, 1978).

* In contrast, Doherty and Thistle (1996) find that additional private information has no value if there
is no treatment option conditional on this information.
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erature on adverse selection reviewed above has thus led to applications to other eco-
nomic domains: see, e.g., Miyazaki (1977) for an application to the labour market and
Stiglitz and Weiss (1981) for an application to credit markets. Note, however, that in
these cases, quality signalling by the informed agents represents a feasible strategy to
circumvent the asymmetric information problem (Spence, 1973). For example, edu-
cation and dividend payments find an additional justification in these circumstances.
In contrast, signalling does not generally occur in insurance markets: insureds do not
engage in specific activities to signal that they are good risks.

1.3.2.3  Moral Hazard and Adverse Selection

As Arnott (1992) notes, only limited progress has been made in analyzing moral
hazard and adverse selection together, and this has considerably hindered empirical
investigation in the economics of insurance, since both problems combine in actual
insurance markets. First attempts were made by Dionne and Lasserre (1987) in the
monopoly case and by Eisen (1990) in the competitive case. More recently, Bond and
Crocker (1991) pointed out that risk categorization may be endogenous if it is based
on information on consumption goods that are statistically correlated with an indi-
vidual’s risk (correlative products). Thus, adverse selection and moral hazard becomes
related. If individual consumption is not observable, taxation of correlative products
by the government may be used to limit moral hazard and reduce the need for self-
selection mechanisms as an instrument for dealing with adverse selection. New devel-
opments along this line may be expected.

1.3.3 Insurance Market Structure

Numerous studies on the insurance sector have followed the lead provided by Joskow
(1973). The availability of data and better incentives to perform economic research
explain that most of these studies pertain to the US market.

— Insurance distribution systems were mainly analyzed by Cummins and
VanDerhei (1979).”

— Returns to scale in the insurance industry were submitted to empirical inves-
tigation by numerous authors, e.g., Doherty (1981), and Fecher, Perelman and Pestieau
(1991).

— The various forms of organizational structure in the insurance industry—stock
companies, mutuals, Lloyds’ underwriters—were analyzed in an agency theory frame-
work by Mayers and Smith in a series of papers: (1981), (1986) and (1988) among
others. They verified that conflicts of interest between owners, managers and policy-
holders affect the choice of organizational form for different insurance branches (see
also Hansmann, 1985).

77 See, however, Zweifel and Ghermi (1990) for a study using Swiss data.
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— The effects of rate and solvency regulation were scrutinized in numerous
researches, such as Borch (1974), Ippolito (1979), Munch and Smallwood (1980),
Danzon (1983), Finsinger and Pauly (1984), Pauly, Kleindorfer and Kunreuther
(1986), Harrington (1984), Cummins and Harrington (1987), D’Arcy (1988). These
studies were stimulated by the traditional government regulation of insurance activi-
ties, a general trend towards deregulation over the recent decades, and the consumer
pressures for re-regulation (mainly in California) since the end of the 1980s. Dionne
and Harrington (1992) conclude their survey of research on insurance regulation by
noting: firstly, that “not much is presently known about the magnitude of the effects
of regulatory monitoring and guaranty funds on default risk” (p. 32); and secondly,
that rate regulation seems to have produced a variety of effects. It favored high risk
groups, increased market size and encouraged insurers’ exits, but nonetheless reduced
the ratio of premiums to losses and operating expenses.

A related avenue of research, not considered by Joskow (1973), deals with cycles
in the insurance industry. It has been noticed in the seventies that insurance company
profits seemed submitted to more or less regular cycles, and that this phenomenon
was reflected in cyclical capacity and premium rates. The Geneva Association spon-
sored one of the first investigations in this area (Mormino, 1979). The most often
quoted papers were published later by Venezian (1985), Cummins and Outreville
(1987), and Doherty and Kang (1988). The US insurance liability “crisis” of the mid-
eighties stimulated research in insurance cycles (see Harrington, 1988). Briefly, this
research suggests that delays in the adjustment of premiums to expected claims costs,
due to regulation or structural causes, are responsible for cyclical effects. Grace and
Hotchkiss (1995) find that external unanticipated economic shocks have little effect
on underwriting performance.

The economic analysis of practical problems that the insurance industry has been
facing over the past years also attracted the attention of researchers. One of these prob-
lems, the insurance of catastrophes, has become a major concern for the industry and
the subject of intensive academic research. The major journals in the economics of
insurance devoted recently special issues on this topic. Researchers have tended to
take a broad view of the subject, so that the term “catastrophe” has been used to
encompass different kinds of situations: not only natural catastrophes (like earth-
quakes, floods and hurricanes) and man-made catastrophes (such as Tchernobyl or
Bhopal); but also socio-economic developments that result in catastrophic accumula-
tion of claims to insurers (see, e.g., Zeckhauser, 1995). The prominent example is the
liability crisis in the United States, due to the adoption of strict producers’ liability
and the evolution in the courts’ assessments of compensations to victims, as in the
cases of asbestos, breast implants, pharmaceuticals, etc. (see Viscusi, 1995). To cope
with the financial consequences of catastrophes, traditional insurance and reinsurance
is often insufficient (see Kunreuther, 1996). Several researchers have advocated more
government involvement (see, e.g., Lewis and Murdock, 1996), but others argue that
the government has no comparative advantage to the market in providing coverage for
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catastrophic losses (Priest, 1996). Alternative solutions may be found in financial
innovation, either in the design of insurance contracts (see Doherty and Dionne, 1993,
and Doherty and Schlesinger, 1998), or in the design of financial securities (see
section 4 below), or both.

Let us mention, finally, a topic which was not covered by Joskow (1973) and
which does not seem to have concerned many researchers: the issues raised by inter-
national insurance trade. Research on this topic remained relatively limited and con-
centrated in Europe: see Dickinson (1977) for an early reference and Pita Barros
(1993) for a more recent analysis.

1.4 NEW APPROACHES: FINANCE AND INSURANCE

Apart from the tremendous developments summarized in the preceding section, risk
and insurance economics has witnessed a major re-orientation in the 1970s and 1980s:
insurance has been analyzed more and more in the general framework of financial
theory. This change of perspective was implicit in the definition of Arrow (1970):
“insurance is an exchange of money for money”. It was also foreshadowed by the
recognition that insurers were financial intermediaries (Gurley and Shaw, 1960). It
became soon impossible to maintain a dichotomy in the analysis of the insurance firm:
insurance operations on one hand, financial investment on the other hand. As a result,
insurance research became deeply influenced by advances in the theory of finance.
The more so that finance underwent a major revolution in the 1970s, with the devel-
opment of option theory, and that this revolution stressed the similarity between
insurance products and new concepts due to financial innovation (e.g., portfolio
insurance).®

1.4.1 Portfolio Theory and the CAPM

The influence of portfolio theory on the analysis of insurance demand was mentioned
in the preceding section. But this theory had also a profound influence on the theory
of insurance supply. It was soon recognized that financial intermediaries could be ana-
lyzed as a joint portfolio of assets and liabilities (Michaelsen and Goshay, 1967), and
this global approach was applied to insurance company management. Under this view,
insurers have to manage a portfolio of correlated insurance liabilities and investment
assets, taking into account balance sheet and solvency constraints, and there is no jus-
tification for separating the operations in two distinct domains: what matters is the
overall return on equity (see Kahane and Nye, 1975, and Kahane, 1977).

%8 The similarity between option contracts and insurance policies was stressed by Briys and Loubergé
(1983).

¥ See also Loubergé (1983) for an application to international reinsurance operations, taking foreign
exchange risk into account, and MacMinn and Witt (1987) for a related model.
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This way of looking at insurance operations led to a theory of insurance rating,
reflecting the move observed a decade earlier in finance from portfolio theory to the
capital asset pricing model. Applying this model to insurance, it turns out that equi-
librium insurance prices will reflect the undiversifiable risk of insurance operations.
If insurance risks are statistically uncorrelated with financial market risk, equilibrium
insurance prices are given by the present value of expected claims costs (in the absence
of transaction costs). If they are statistically correlated, a positive or negative loading
is observed in equilibrium. The model was developed by Biger and Kahane (1978),
Hill (1979) and Fairley (1979). It was empirically evaluated by Cummins and Har-
rington (1985). It was also applied to determine the “fair” regulation of insurance
rating in Massachussets (Hill and Modigliani, 1986).*

14.2 Option Pricing Theory

A main limitation of the capital asset pricing model is that it does not take into account
non linearities arising from features such as limited liability and asymmetric tax
schedules. These aspect are best analyzed using option pricing theory, since it is well
known that optional clauses imply non linearities in portfolio returns. Doherty and
Garven (1986) and Cummins (1988) analyzed the influence of limited liability and
default risk on insurance prices, while Garven and Loubergé (1996) studied the effects
of asymmetric taxes on equilibrium insurance prices and reinsurance trade among
risk-neutral insurers. A major implication of these studies is that loaded premiums are
not only the reflect of transaction costs and asymmetric information, or insurers’ risk
aversion. They reflect undiversifiable risk arising from institutional features, and they
lead to prices implying risk-sharing in equilibrium, even when market participants are
risk neutral.

The importance of option theory for the economics of insurance has also been
recently observed in the domain of life insurance. This resulted from the fact that com-
petition between insurers and bankers, to attract saving, has led to the inclusion of
numerous optional features (hidden options) in life insurance contracts. Advances
in option theory are thus currently often used to value life insurance contracts
(see, e.g., Brennan and Schwartz, 1976, Ekern and Persson, 1996, and Nielsen and
Sandmann, 1996), or to assess the effects of life insurance regulation (Briys and
de Varenne, 1994).

1.4.3 Insurance and Corporate Finance

The portfolio approach to insurance demand led to a paradox when applied to cor-
porations. The latter are owned by stockholders who are able to diversify risks in a

30 Myers and Cohn (1986) extended the model to multi-period cash flows, while Kraus and Ross (1982)
considered the application to insurance of the more general arbitrage pricing theory.
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stock portfolio. If insurance risks, such as accident and fire, are diversifiable in the
economy, the approach leads to the conclusion that corporations should not bother to
insure them. They would increase shareholders’ wealth by remaining uninsured
instead of paying loaded premiums (Mayers and Smith, 1982).>' The paradox was
solved using the modern theory of corporate finance, where the firm is considered as
a nexus of contracts between various stakeholders: managers, employees, suppliers,
bondholders, banks, stockholders, consumers, etc. Reduction of contracting and bank-
ruptcy costs provides an incentive to manage risk and to purchase insurance, even if
the premium is loaded and the shareholders are indifferent to insurance risk: see Main
(1982) and Mayers and Smith (1982) (1990). In addition, convex tax schedules arising
from progressive tax rates and incomplete loss offset offer another explanation for
concern with insurance risk management in widely-held corporations: see Smith,
Smithson and Wilford (1990).

However, as Doherty (1997) notes, these considerations have changed the rela-
tionship of corporate managers to insurance and risk management. The latter are no
longer merely used because risks arise. They must find their justification in the overall
objective of value maximization. In addition, the development of financial engineer-
ing in the 1980’ challenged traditional insurance strategies in corporate risk man-
agement.* Traditional insurance strategies often involve large transaction costs, and
they fail if the risk is not diversifiable, as in the case of the US liability crisis. For this
reason, innovative financial procedures, such as finite risk plans and financial rein-
surance, represent promising instruments for dealing with corporate risks. Of course,
they widen the competitive interface between banks and insurers.

The theory of corporate finance was also used by Garven (1987) to study the
capital structure decision of the insurance firm. His paper shows that redundant tax
shields, default risk, bankruptcy costs and the above-mentioned agency costs influ-
ence the insurer’s capital structure decision. But here also, as Doherty (1997) remarks,
insurers’ management has been deeply influenced by developments in the financial
markets. The concept of asset-liability management, which has its roots in the port-
folio approach mentioned above, means that insurers are less relying on reinsurance
as the natural instrument to hedge their risks. This is all the more important that devel-
opments in the financial markets in the 1990’s have seen the emergence of derivative
products intended to complement traditional reinsurance treaties.

*' The same kind of argument was used by Doherty and Tinic (1981) to question the motivation of rein-
surance demand by insurers.

%2 Note that the term “risk management” has lost the insurance connotation that it had until the 1970’s.
In the economic and financial literature, it is nowadays more commonly associated with the management
of financial exposures, using derivative instruments, than with the management of “pure” risks, using risk
prevention and risk transfer instruments such as insurance. When one uses the term “risk management”
now, it is often necessary to make clear whether one intends to mean “corporate risk management” or
“financial risk management”. This distinction will tend to become obsolete with the import of financial risk
management strategies in the area of corporate risk management.
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1.4.4 Insurance and Financial Markets

In 1973, the insurance/banking interface was a sensitive subject. It was generally not
well-considered, in the insurance industry, to state that insurance was a financial claim
and that insurers and bankers performed related functions in the economy. Twenty-
five years later, and after numerous recent experiences of mergers and agreements
between banks and insurers, the question is not whether the two activities are closely
related, but where do they differ.

It is easy for an economist of risk and insurance to provide a general answer to
this question. The answer is founded on Borch’s mutuality principle (see section 2)
and on subsequent work on risk-sharing. Insurance and banking, like all financial
activities, are concerned with the transfer of money across the two-dimensional space
of time and states of nature. Insurance deals mainly—but not exclusively (see life
insurance)—with transfers across states that do not necessarily involve a change in
social wealth. In contrast, banking and financial markets perform transfers across
states which often involve a change in social wealth. In other words, insurance is con-
cerned with diversifiable risk; banks and finance companies (e.g., mutual funds) are
concerned with undiversifiable (social) risk.

This kind of distinction has been used before to draw a line between private and
public (social) insurance. According to this view, social insurance is called for when
the limits of private insurability are reached in the sense that the insured events are
positively correlated, so that diversifiability does not obtain: epidemic diseases, losses
from natural catastrophes, unemployment, etc.”> But, in the absence of redistributive
concerns or of market incompleteness due to moral hazard, it becomes more and more
obvious that financial markets are able to perform social insurance functions, in addi-
tion to their traditional function of sharing production risk.

A case in point is the evolution in the natural catastrophes branch of insurance.
As a matter of fact, since losses from natural catastrophes are correlated, they should
be excluded from the private insurance area. Nonetheless, private insurance compa-
nies used to cover this risk because geographical dispersion seemed possible using
the international reinsurance market. However, over the last years, the private insura-
bility of this risk has been challenged by various developments: an increased fre-
quency of hurricanes,* huge losses, and a concentration of insured values in selected
exposed areas of the globe: the USA (mainly California and Florida), Japan and
Western Europe (mainly the South). As a result, potential losses have exceeded the
financial capacity of the catastrophe reinsurance market (see Kielholz and Durrer,
1987). One possible solution to the insurability problem is the traditional recourse to

 Public insurance may also be justified on equity considerations, e.g., in medical insurance.

** It remains to be seen whether this increased frequency is due to permanent changes (due to global
warming of the atmosphere), or whether it represents a temporary phenomenon (with no departure from
randomness in the long run).
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government insurance using increased taxation. This is the solution which was adopted
in France (Magnan, 1995): a reserve fund financed by specific taxes on property-
liability insurance contracts indemnifies victims from natural catastrophes. Another
solution is the securitization of the risk using special purpose derivative markets. This
is the solution proposed by the Chicago Board of Trade with the catastrophe options
and futures contracts launched in December 1992: see D’ Arcy and France (1992) and
Cummins and Geman (1995) for an analysis of these contracts.®> A third solution
is the securitization of the risk using more familiar securities, such as coupon bonds,
issued by a finance company (on behalf of an insurer), or by a public agency (on behalf
of the State): see Briys (1997), and Loubergé, Kellezi and Gilli (1999) for a pre-
sentation and analysis of insurance-linked bonds. The marketing of these new
insurance-based securities is based on the huge pool of financial capacity provided by
worldwide capital markets and the prospects for risk diversification made available to
investors in these securities. It illustrates the increased integration of insurance and
investment banking, both activities performing a fundamental economic function, the
transfer of risks.

1.5 CONCLUSION

In the early seventies’, it was not clear what would be the development of risk and
insurance economics over the years to come. 25 years later, it is comforting to realize
that considerable developments have taken place: the length of the reference list below,
unconventionally divided in pre-1973 and post-1973 references gives an account of
the quantitative aspects of these developments.

As this paper shows, the developments have mainly taken place along three
avenues of research:

1. The theory of risk-taking behavior in the presence of multiple risks, which
encompasses the theory of optimal insurance coverage, the theory of optimal portfo-
lio investment, and the theory of optimal risk prevention.

2. The issues raised by asymmetric information for contracts design and market
equilibrium, a theme which extends beyond insurance economics and concerns all
contractual relations in the economy, e.g., on labour markets, products markets and
financial markets.

3. The applications of new financial paradigms, such as contingent claims analy-
sis, to the analysis of insurance firms, insurance markets and corporate risk manage-
ment, a development which links more closely insurance economics to financial
economics, and insurance to finance.

% The early options and futures on four narrow-based indices of natural catastrophes were replaced in
October 1995 by call spreads on nine broad-based indices. Lewis and Murdock (1996) propose to have the
same kind of contract supplied by Federal authorities, in order to complete the reinsurance market.
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Risk and insurance economics represents nowadays a major theme in general
economic theory. This does not mean that risk and insurance education, per se, has
become a predominant theme—although important developments took place also at
this level. But risk and insurance issues have become pervasive in economic educa-
tion, more particularly in microeconomics. To support this statement, one may verify
in the second section of the following list of references that many important papers
for the advancement of risk and insurance theory were published in general economic
and financial journals, and not only in the leading specialized reviews. Indeed, given
that this goal of the seventies’ was reached, it may be wondered whether an other
objective, the development of specialized risk and insurance education and research,
which had been given less importance then, should not be reevaluated today. From
the experience with the tremendous research activity we have witnessed in the study
of financial markets over the past years, we are allowed to infer that specialized
research in insurance economics would receive a major impulse from the creation of
complete, reliable and easily accessible insurance data bases.
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Abstract

This chapter uses the technique of “generalized expected utility analysis” to explore
the robustness of some of the basic results in classical insurance theory to departures
from the expected utility hypothesis on agents’ risk preferences. The areas explored
include individual demand for coinsurance and deductible insurance, the structure of
Pareto-efficient bilateral insurance contracts, the structure of Pareto-efficient multi-
lateral risk sharing agreements, and self-insurance vs. self-protection. Most, though
not all, of the basic results in this area are found to be quite robust to dropping the
expected utility hypothesis.

Keywords: Insurance, risk sharing, non-expected utility, expected utility.
JEL Classification Numbers: D8, G22.

2.1 INTRODUCTION

The purpose of this chapter is to explore what the classical theory of insurance and
non-expected utility theory might have to contribute to each other.

For the benefit of readers more familiar with insurance theory than with non-
expected utility, we begin by describing what non-expected utility risk preferences
are, along with some ways—both algebraic and graphical—to represent and analyze
them. The first point to be made is that non-expected utility is not an alternative to

* This chapter is an expanded version of Machina (1995), which was presented as the Geneva Risk
Lecture at the 21st Seminar of the European Group of Risk and Insurance Economists (“Geneva Associa-
tion”), Toulouse, France, 1994. I have benefited from the comments of Michael Carter, Georges Dionne,
Christian Gollier, Peter Hammond, Edi Karni, Mike McCosker, Garey Ramey, Suzanne Scotchmer, Joel
Sobel, Alan Woodfield and anonymous reviewers. Support from the National Science Foundation Eco-
nomics Program and Decision, Risk and Management Science Program (Grants SES 92-09012 and SBR-
9870894) is gratefully acknowledged.
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expected utility. Rather, it is a generalization of it, in the way that CES utility func-
tions over commodity bundles are generalizations of Cobb-Douglas utility functions,
or perhaps more aptly, in the way that general quasiconcave functions are general-
izations of Cobb-Douglas functions.

To set the stage, the reader is asked to think of the classical expected utility-based
theory of insurance as analogous to the situation of someone who has developed the
theory of consumer demand using only Cobb-Douglas utility functions. Such a Cobb-
Douglas scientist has an easy and tractable model to work with, and he or she is likely
to discover and prove many results, such as the Slutsky equation, or that income elas-
ticities are identically unity, or that cross-price elasticities are identically zero. But we
know that while the Slutsky equation is a general property of all utility functions over
commodity bundles, the two elasticity results are specific to the Cobb-Douglas func-
tional form, and most definitely not true of more general utility functions. It is hard
to see how our scientist could have known the robust results from the non-robust
results, unless he or she at least took a peek at more general “non-Cobb-Douglas”
preferences.

The goal of this chapter is to examine some of the classic theoretical results in
individual and market insurance theory from the more general non-expected utility
point of view, and determine which of these classic results are robust (like the Slutsky
equation) and which are not. As mentioned, this chapter is ultimately about what non-
expected utility theory and insurance theory can contribute to each other. The identi-
fication of the robust results can contribute to insurance theory, by determining which
theorems can be most heavily relied upon for further theoretical implications. The
identification of the non-robust results can contribute to non-expected utility theory,
by determining which parts of current insurance theory are in effect testable impli-
cations of the expected utility hypothesis. Since insurance provides the largest, most
systematic, and most intensive set of field data on both individual and market choices
under uncertainty, this would provide non-expected utility researchers with a very
useful opportunity to apply real-world data to the testing of the expected utility model,
and the calibration of more general models of choice under uncertainty.

The results examined in this chapter are selected for breadth rather than depth.
This reflects that fact that it is no longer possible to present all results in the theory
of insurance in a single paper (hence the need for the present volume). It also reflects
the fact that the more specific and sophisticated results often require more specialized
assumptions (such as convexity of marginal utility, or HARA utility functions), whose
natural generalizations to non-expected utility have yet to be fully worked out. But
most of all, I also feel we can learn most about robustness by starting out with an
examination of the most basic and fundamental results in each of the various branches
of insurance theory.

Section 2.2 of this chapter introduces the notion of non-expected utility prefer-
ences over lotteries, and describes how they can be represented and analyzed, both
graphically and algebraically. The next several sections use these tools to examine the
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robustness of classic results in insurance theory to these more general risk prefer-
ences. Section 2.3 covers the individual’s demand for insurance, taking the form of
the insurance contract (coinsurance or deductible) as given. Section 2.4 examines the
optimal form of insurance contract. Section 2.5 considers general conditions for
Pareto efficient risk sharing among many individuals. Section 2.6 examines self-
insurance versus self-protection. Section 2.7 explores non-differentiabilities (“kinks”)
in preferences over payoffs levels. Section 2.8 discusses both extensions and a spe-
cific limitation of the approach to robustness presented in this chapter. Finally, Section
2.9 illustrates how the insurability of some risks can actually induce non-expected
utility preferences over other risks. Section 2.10 concludes.

2.2 NON-EXPECTED UTILITY PREFERENCES AND
GENERALIZED EXPECTED UTILITY ANALYSIS

Non-expected utility theory typically works with the same objects of choice as stan-
dard insurance theory, namely lotteries over final wealth levels, which can be repre-
sented by discrete probability distributions of the form P = (x,, p; . . . ; X, p,), Or in
more general analyses, by cumulative distribution functions F(-).! Non-expected
utility theory also follows the standard approach by assuming—or positing axioms
sufficient to imply—that the individual’s preference relation > over such lotteries can
be represented by means of a preference function V(P) = V(x,, pi; . . . ; Xy, p»)- Just
as with preferences over commodity bundles, the preference function V() can be
analyzed both graphically, by means of its indifference curves, and algebraically.

When examining general non-expected utility preferences, it is useful to keep in
mind the “benchmark” special case of expected utility. Recall that under the expected
utility hypothesis, V() takes the specific form:

Vi, i %, pa) = 2, mU®) - p M

for some von Neumann-Morgenstern utility function U(").

The normative appeal of the expected utility axioms is well known. However, in
their capacity as descriptive economists, non-expected utility theorists wonder
whether restricting attention solely to the functional form (1) might not be like the
“Cobb-Douglas hypothesis” of the above scientist. They would like to determine
which results of classic risk and insurance theory follow because of that functional
form, and which might follow from the properties of risk aversion and/or first order
stochastic dominance preference in general, without requiring the functional form (1).
To do this, we begin by illustrating how one can analyze general non-expected utility
preference functions V(x, py; . . . ; X,, p,), and compare them to expected utility.

' Depending upon the context, the probabilities in these distributions can either be actuarially deter-
mined chances, or a decision-maker’s subjective probabilities over states of nature or events.
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2.2.1 Graphical Depictions of Non-Expected Utility Preferences

Two diagrams can illustrate the key similarities and differences between expected
utility and non-expected utility preferences, by depicting how preferences over prob-
ability distributions P = (x,, p,; . . . ; X, p,) depend upon (i) changes in the outcomes
{x,...,x,} for a fixed set of probabilities {p, . . ., P}, and (ii) changes in the prob-
abilities {p,, . .., p,} for a fixed set of outcomes {x,, ..., X,}.

Preferences over changes in the outcomes can be illustrated in the classic
“Hirshleifer-Yaari diagram” (Hirshleifer (1965, 1966), Yaari (1965, 1969), Hirshleifer
and Riley (1979, 1992)). Assume there are two states of nature, with fixed probabil-
ities (p,, p,) adding to one, so that we restrict attention to probability distributions of
the form (x,, py; x,, P2), which can be represented by points in the (x;, x,) plane, as in
Figure 1. A family of expected utility indifference curves in this diagram are the level
curves of some expected utility preference function V(P) = U(x,)*p, + U(x,) p,, with
slope (marginal rate of substitution) given by

U,(xl)'ﬁl

MRSEU(xlaxZ)E_ U'(x) B
2) P2

@

Besides indifference curves, Figure 1 also contains two other constructs. The 45°
line consists of all sure prospects (x, x), and is accordingly termed the certainty line.

X2 AN

0 X
Figure 1 Risk Averse Expected Utility Indifference Curves in the Hirshleifer-
Yaari Diagram
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The parallel dashed lines are loci of constant expected value x,-p, + x, - p,, with slope
accordingly given by (the negative of) the odds ratio p,/p,. In insurance theory these
lines are frequently termed “fair odds lines”—here we shall call them iso-expected
value lines.

Formula (2) can be shown to imply two very specific properties of expected utility
indifference curves in the Hirshleifer-Yaari diagram:

“MRS at certainty = odds ratio”: The MRS at every point (x, x) on the 45° line
equals (the negative of) the odds ratio p,/p,, and

“rectangle property”: Given the corner points (x¥, x¥), (x¥, x3*), (x3*, x%), (xF*,
x%*) of any rectangle in the diagram, the products of the MRS’s at diagonally
opposite pairs are equal®

Besides these two properties, the indifference curves in Figure 1 exhibit three
other features of risk preferences on the part of the underlying preference function
V() that generates them. The first feature is that they are downward sloping. To see
what this reflects, note that any north, east or northeast movement in the diagram will,
by raising x; and/or x,, lead to a first order stochastically dominating probability dis-
tribution. Accordingly, any set of indifference curves that is downward sloping is
reflecting first order stochastic dominance preference on the part of its underlying
preference function V(°). Of course, under expected utility, this is equivalent to the
condition that U(*) is an increasing function of x.

The second feature of these indifference curves is that they are steeper than the
iso-expected value lines in the region above the 45° line, and flatter than the iso-
expected value lines in the region below the 45° line. To see what this reflects, note
that, starting at any point (x,, x,) and moving along its iso-expected value line in a
direction away from the certainty line serves to further increase the larger outcome
of the probability distribution, and further decrease the smaller outcome, and does so
in a manner which preserves the expected value of the prospect. This is precisely a
mean preserving increase in risk.’ Thus, indifference curves that are steeper/flatter
than the iso-expected values lines in the region above/below the certainty line are
made worse off by all such increases in risk, and hence reflect the property of risk
aversion on the part of their underlying preference function V(). Under expected
utility, this property is equivalent to the condition that U(:) is a concave function
of x.

? An interpretive note: The rectangle property is essentially the condition that (smooth) expected utility
preferences are separable across mutually exclusive states of nature. Given the rectangle property, the MRS
at certainty property is equivalent to “state-independent” preferences, a property we shall assume through-
out this chapter. For important analyses of state-dependent preferences under both expected utility and
non-expected utility, see Karni (1985, 1987). For a specific application to insurance theory, see Cook and
Graham (1977).

* E.g., Rothschild and Stiglitz (1970, 1971).



42 Handbook of Insurance

The third feature of the indifference curves in Figure 1 is that they are “bowed-
in” toward the origin. This means that any convex combination (A-x, + (1 — A)-x*,
A-x; + (1 = 1) x*) of any two indifferent points (x,, x,) and (x*, x¥) will be preferred
to these points. Expressed more generally, we term this property outcome convexity:
namely, for any set of probabilities {p,, ..., p,}:

(-xla5l;~~-;xn,ﬁn)~(x>lka‘51;~~-;xfaﬁn)
:(}“xl +(1_>\’)x)lks ﬁlaax-xn +(1_}\')x:(’i5n)>(xl7ﬁl,7xn’[_7n) (3)

for all A € (0, 1).* This property of risk preferences has been examined, under various
names, by Tobin (1958), Debreu (1959, Ch. 7), Yaari (1965, 1969), Dekel (1989) and
Karni (1992). Under expected utility, it is equivalent to the condition that U(:) is
concave.

Note what these last two paragraphs imply: Since under expected utility the prop-
erties of risk aversion and outcome convexity are both equivalent to concavity of U(*),
it follows that expected utility indifference curves in the plane—and expected utility
preferences in general—will be risk averse if and only if they are outcome-convex.
We’ll see the implications of this below.

A family of non-expected utility indifference curves, on the other hand, consists
of the level curves of some general preference function V(P) = 'V(xl,ﬁl; X2, P2), With
slope therefore given by

AV(x,, pr; X2, r)/0x,

MRSv(x, x;) = - OV (x,, pi; X2, P)/0x;

“4)

Two such examples, derived from two different preference functions V(-) and V*(),
are illustrated in Figures 2a and 2b. In these figures, just as in Figure 1, the indiffer-
ence curves are generated by some underlying preference function W(-) defined over
the probability distributions implied by each (x;, x,) pair under the well-defined state
probabilities (p;, p,)—we refer to such preferences over (x,, x,) bundles as prob-
abilistically sophisticated.

Expected utility and non-expected utility preference functions, and hence their
respective indifference maps, have two features in common, and two important dif-
ferences. Their first common feature is first order stochastic dominance preference.
This property is the stochastic analogue of “more money is better,” and makes just as
much sense under non-expected utility as under expected utility. As we have seen, this
translates into downward sloping indifference curves in the Hirshleifer-Yaari diagram,
and is reflected in both Figure 2a and 2b.

The second common feature is the “MRS at certainty = odds ratio” condition, as
seen in Figures 2a and 2b. The non-expected utility version of this property, namely,

* An alternative term for property (3) is quasiconvexity in the outcomes.
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Figures 2a and 2b Risk Averse Non-Expected Utility Indifference Curves
(Outcome-Convex and Non-Outcome Convex)

that any sufficiently “smooth” non-expected utility preference function V() must
satisfy

IV(x;, D5 X2, ﬁz)/axl |

MRS (x, x) =~ oV(x,, pr; X2, P )/8x2|

=-& 5)
x1=x2=x )2

follows from an early result of Samuelson (1960, pp. 34-37, eq. 5). Note that it implies
that we can “recover” a non-expected utility (or expected utility) maximizer’s sub-
jective probabilities from their indifference curves over state-indexed outcomes in the
Hirshleifer-Yaari diagram.

The first of the two important differences between expected utility and non-
expected utility should not come as a surprise. Any departure from the additively-
separable expected utility form (1) means that the so-called “rectangle property” on
MRS’s will no longer hold. This is a well-known consequence of indifference curves
over any kind of commodities, once we drop the assumption of separability of the
preference function that generates them.

We come now to the second important difference between expected utility and
non-expected utility indifference curves—the one that will play a very important role
in our analysis. Note that while the non-expected utility indifference curves of Figure
2a needn’t satisfy the rectangle property for MRS’s, they do satisfy both risk aversion’
and outcome convexity—just like the expected utility indifference curves of Figure
1. However, the non-expected utility indifference curves of Figure 2b are risk averse
but not outcome convex. In other words, in the absence of the expected utility hypoth-

* As before, they satisfy risk aversion since they are steeper/flatter than the iso-expected value lines in
the region above/below the 45° line, so mean preserving increases in risk make them worse off.
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esis, risk aversion is no longer equivalent to outcome convexity, and as Dekel (1989)
has formally shown, it is quite possible for a preference function V(*) (and hence its
indifference curves) to be globally risk averse but not outcome-convex.®

On the other hand, Dekel has shown that if a non-expected utility V() is outcome-
convex then it must be risk averse. Although this is a formal result that applies to pref-
erences over general probability distributions, the graphical intvition can be seen from
Figure 2a: Recall that non-expected utility indifference curves must be tangent to the
iso-expected value lines. Thus, if they are also outcome-convex, they must be steeper
than these lines above the 45° line and flatter than them below the 45° line, which is
exactly the condition for risk aversion in the diagram.

Thus, in the absence of the expected utility, risk aversion is seen to be a logically
distinct—and weaker—property than outcome convexity. This means that when drop-
ping the expected utility hypothesis and examining the robustness of some insurance
result that “only requires risk aversion,” we’ll have to determine it really was “only
risk aversion” that had been driving the result in question, or whether it was risk
aversion plus outcome convexity that had been doing so.

Let’s now illustrate preferences over changes in the probabilities, for fixed
outcome values. Specifically, pick any three values X, < X, < X3, and consider the set
of all probability distributions of the form (x,, p;; X,, pa; X3, p3)- Since we must have
P> =1 — p, — p;, we can plot each of these distributions as a point (p,, p;) plane,
as in Figures 3a and 3b. Once again, a family of expected utility indifference curves
will consist of the level curves of some expected utility preference function V(P) =
U(x)) p1 + U(X,) py + U(X,) " ps, which, after substituting for p,, takes the form

UR)+[UG)-U®)]- ps - [UG)-U&)I- p Q)
with MRS accordingly given by

Ulx)-U)

MRSz (P, 1) = e 05

(M

and with the direction of increasing preference indicated by the arrows in the figures.

A family of non-expected utility indifference curves in the ( p,, p;) diagram consist
of the level curves of some general preference function V(X,, p\; X,, p; X3, ps), again
subject to p, = 1 — p; — p;. Substituting in to obtain the expression V(E 15 P13 X2, 1 —

¢ For an explicit example, based on the proof of Dekel’s Proposition 1, let V(P) = [EvVx; p, - 5)° +
8- [Zx;p; — 497. Since the cube function is strictly increasing over all positive and negative arguments,
this preference function is strictly increasing in each x; and satisfies strict first order stochastic dominance
preference. Since any mean preserving spread lowers the first bracketed term yet preserves the second,
V() is also strictly risk averse. Calculation reveals that V($100, '%; $0, '5) = V($49, '; $49, ') = 8 but
V($74.5, 'h; $24.5, ') = 6.74. But since the latter probability distribution is a 50: 50 outcome mixture of
the first two, V(°) is not outcome-convex.
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0 14 1 0

Figures 3a and 3b Risk Averse Indifference Curves in the Probability Triangle
Diagram (Expected Utility and Non-Expected Utility)

P1— P3; X3, p3), we have that the slope of these indifference curves at any point (p), p3)
is given by the formula

aV(P) ~ aV(P)

__op op:
ap3 ap2

P=(x1,p1;%2,1- p1 = p3:%3,p3)

Figure 3a highlights the single most significant feature of expected utility pref-
erences, namely the property of “linearity in the probabilities.” As the level curves of
a linear function (formula (1) or (6)), expected utility indifference curves in the prob-
ability diagram are parallel straight lines. This is the source of much of the predictive
power of the expected utility model, since it implies that knowledge of the indiffer-
ence curves in the neighborhood of any one point in the triangle implies knowledge
of them over the whole triangle.

As we did for the Hirshleifer-Yaari diagram, we can also ask what the properties
of first order stochastic dominance preference and risk aversion look like in the prob-
ability triangle. A pure northward movement in the triangle implies a rise in p;, along
(of course) with a matching drop in p,. This corresponds to shifting probability from
the outcome X, up to the higher outcome X;. A westward movement implies a drop in
p) with matching rise in p,. An exact (45°) northwestward movement implies a rise
in p; with equal drop in p, (no change in p,). All three of these movements shift prob-
ability mass from some lower outcome up to some higher outcome, and hence are sto-
chastically dominating shifts. Since the indifference curves in both Figures 3a and 3b

1 (b)
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are upward sloping, they prefer such shifts, and hence, reflect first order stochastic
dominance preference.

The property of risk aversion is once again illustrated by reference to iso-expected
value lines. In the probability triangle, they are the (dashed) level curves of the
formula

ip+ X% (=p=—p) + 5-py=%+[6-%] p -5 -] p )

and hence have slope [X, — X,)/[X; — X,]. Northeast movements along these lines
increase both of the outer (i.e., the “tail”) probabilities p, and p; at the expense of the
middle probability p,, in a manner which does not change the expected value, so they
represent the mean preserving spreads in the triangle. Since the indifference curves
in both Figures 3a and 3b are steeper than these lines, they are made worse off by
such increases in risk, and hence are risk averse.

Besides risk aversion per se, these diagrams can also illustrate comparative risk
aversion—i.e., the property that one individual is more risk averse than another. Arrow
(1965b) and Pratt (1964) have shown that the algebraic condition for comparative risk
aversion under expected utility is that a pair of utility functions U,() and U,(") satisfy
the equivalent conditions:

U,(x) = @U,(x)) for some increasing concave ¢(-) (10)
U'x) . Ux)

- > - for all x 11
Ui(x) U3 (x) (b
’, * ’ *

Uit Uit for all x* > x (12)

Ulx) ~ Ui(x)

Figures 4a and 4b illustrate the implications of these algebraic conditions for indif-
ference curves in the Hirshleifer-Yaari and the triangle diagrams. The indifference
curves of the more risk averse utility function U,(-) are solid; those of U,(-) are dotted.
In the Hirshleifer-Yaari diagram, the MRS formula (2) and inequality (12) imply that
the indifference curves of the more risk averse U\(-) are flatter than those of U,(*)
below the 45° line, and steeper than them above it. In the triangle diagram, the MRS
formula (7) and a bit of calculus applied to either (11) or (12) yields that the indif-
ference curves of the more risk averse U,(+) are steeper than those of U,(").
Comparing Figures 4a and 4b with Figures 1 and 3a reveals that in each case, the
relative slope conditions for comparative risk aversion are simply a generalization of
the slope conditions for risk aversion per se. This is such a natural result that we would
want to adopt it for non-expected utility indifference curves as well. In other words,
when we come to determine the algebraic condition for comparative risk aversion
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Figures 4a and 4b Comparative Risk Aversion for Expected Utility Indifference
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Figures 5a and 5b Comparative Risk Aversion for Non-Expected Utility Indiffer-
ence Curves

under non-expected utility, we would insist that it imply these same relative slope con-
ditions on indifference curves as in Figures 5a and Sb.
2.2.2 Algebraic Analysis of Non-Expected Utility Preferences

What about algebraic analysis in the absence of expected utility? Consider about
how we might reassure our Cobb-Douglas scientist, puzzled at how we could drop
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coefficient of prob(x;): derivative w.r.t. prob(x;):
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Figures 6a and 6b Expected Utility Probability Coefficients and Non-Expected
Utility Probability Derivatives Plotted Against Their Corre-
sponding Outcome Values

the well-structured formula ¢{' ... cy" for a shapeless general preference function

Ucy, - . .  Cm). We would say that we conduct our analysis in terms of the derivatives
oU(C dU(C
{ a( ), T ( )} of such general functions, and that conditions on these
C Cn

derivatives (and their ratios, etc.) give theorems about behavior.

One branch of non-expected utility theory—termed “generalized expected utility
analysis™’—proceeds similarly, by working with derivatives of the preference func-
tion “V(-), and it is here that much of the robustness of expected utility analysis reveals
itself. By way of motivation, recall some of the classical results of expected utility
theory. For purposes of this exercise, assume that the set of potential outcome values
x; <...<x,is fixed, so that only the probabilities {p,, . . ., p,} are independent vari-
ables. Now, given an expected utility preference function V(P) = i, U(x,) p;, don’t
think of U(x;) in its psychological role as the “utility of receiving outcome x;,” but
rather in its purely mathematical role as the coefficient of p; = prob(x;). If we plot these
probability coefficients against x;, as in Figure 6a, we can state the three most funda-
mental results of expected utility theory as follows:

First Order Stochastic Dominance Preference: V(-) exhibits first order stochas-

tic dominance preference if and only if its probability coefficients {U(x;)} form
an increasing sequence, as in Figure 6a.

7 E.g., Machina (1982, 1983).

(b)
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Risk Aversion: V(-) is risk averse if and only if its probability coefficients { U(x;)}
form a concave sequence,® as in Figure 6a.

Comparative Risk Aversion: V,(°) is at least as risk averse as V(") if and only if
the sequence of probability coefficients {U,(x;)} is at least as concave’ as the
sequence of probability coefficients {U,(x;)}.

Now consider a general non-expected utility preference function V(P) = V(xh J2R
... Xu Pn), and continue to treat the outcomes x, <. . . < x, as fixed and the probabil-
ities {py, . . ., p»} as independent variables. Since V() is not linear in the probabilities
(not expected utility), it won’t have probability coefficients. However, as long as V(-)

JdV(P) BV(P)}
opp T opa
at each distribution P, and calculus tells us that in many cases, theorems based on
the coefficients of a linear function will also apply to the derivatives of a nonlinear
Sfunction.

In fact, this is precisely the case with the above three results, and this extension
from probability coefficients to probability derivatives is the essence of generalized
expected utility analysis. In other words, for any non-expected utility preference func-
tion W), pick a distribution P, and plot the corresponding sequence of probability
dV(P) IV (P) . . )

w7 op }agamst X;, as in Figure 6b. If these form an increas-
ing sequence (as in the figure), then any infinitesimal stochastically dominating shift—
say an infinitesimal drop in p; and matching rise in p,,,—will clearly be preferred. If
the derivatives form a concave sequence (as in the figure), then any infinitesimal mean
preserving increase in risk—such as an infinitesimal drop in p; coupled with a mean
preserving rise in p;_, and p,,,—will make the individual worse off.

is differentiable, it will have a set of probability derivatives {

derivatives {

'V (P)
a 14

’

Of course, these results are “local,” since they link the derivatives {

V(P o e
., ( )} at a distribution P only to infinitesimal changes from P. However, we
'Pn
can take advantage of another feature of calculus, namely, that global conditions on

derivatives are frequently equivalent to global properties of a function. This is the case
dV(P) aV(P)}
op o op, S
seen to form an increasing and concave sequence at all such distributions P, then
global stochastically dominating shifts will always be preferred, and global increase
in risk will always make the individual worse off. Formally, we can prove:

with our three fundamental results. Thus, if the derivatives {

8 Algebraically, {U(x;)} forms a concave sequence if and only if its point-to-point slopes (U(x;) —
Ux)(x; = x1), (Ulx;) = U(x2))/(x3 — x,), etc. are successively nonincreasing.

? {Ui(x,)} is at least as concave than {U,(x,)} if and only if each ratio of adjacent point-to-point slopes
[(Uxir) = U/ (xiet = x)V[(U(x;) = U(xi-1))/(x; = x;1)] is no greater for {U)(x)} than for {Uy(x))}.
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First Order Stochastic Dominance Preference: A non-expected utility preference
function V() exhibits global first order stochastic dominance preference if and

JdV(P)

only if at each distribution P, its probability derivatives { 5
Di

} form an

increasing sequence, as in Figure 6b.
Risk Aversion: "V(*) is globally averse to all (small and large) mean preserving
aV(P)}

increases in risk if and only if at each P its probability derivatives {
Pi
form a concave sequence, as in Figure 6b.
Comparative Risk Aversion: V() is globally at least as risk averse as'® Vj(-) if
P)| .
and only if at each P, the sequence of probability derivatives {%} is at
X

v, (P)}
ox; J

least as concave as the sequence of probability derivatives {

In light of this correspondence between expected utility’s probability coefficients
V(P)

Xi

{U(x;)} and non-expected utility’s probability derivatives {a }, we adopt the

suggestive notation U(x; P) = igi(_P_)’ and call {U(x;; P)} the local utility index of

V() at P.
An important point. Do we really have to restrict ourselves just to changes in the
probabilities of the original outcomes {x,, ..., x,}? No. At any distribution P =

(x1, P15 - - - 5 Xn, pu), We can define the local utility index U(x; P) for any other outcome
level x, by observing that

P=0x, piss X, pa) =01, pis 5 X, Pas X, 0) (13)
so that we can define

. = aV(P) =av(xl9p1;---;xnapn;x7so)l
Ulx; P)= dprob(x) o (50=0 (14)

Thus, U(-; P) is really a local utility function over all outcome values x, and the iso-
lated dots in Figure 6b—Ilike the isolated utility values in Figure 6a—are really points
on an entire curve. In this more complete setting, the non-expected utility conditions
for first order stochastic dominance preference, risk aversion, and comparative risk
aversion are that at every P, the function U(x; P) must respectively be increasing in
x, concave in x, and more concave in x—just like the conditions on U(x) under
expected utility theory. See Machina (1982, 1983, 1989), Allen (1987), Chew, Epstein

' For the appropriate definition of “at least as risk averse as” under non-expected utility, see Machina
(1982, 1984).
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and Zilcha (1988), Karni (1987, 1989) and Wang (1993) for additional extensions and
applications of this kind of analysis.
Although the above suggests that the key to generalizing expected utility analy-
sis is to think in terms of the probability derivatives of the preference function V(P)
= V(x,, pi; . . . ; Xu Pu), it is clear that the analysis of insurance and risk sharing prob-
lems will involve its outcome derivatives as well. Fortunately, we can show that, as
V(P
oprob(x)
standard expected utility outcome derivative formula also generalizes to non-expected
IV(P)
dprob(x)

long as we continue to think of U(x; P) = as the “local utility function,” the

utility." That is to say, if the local utility function U(x; P) = is differentiable

in x at every distribution P, then

IV(®) _ V(i pis.. s X, pu) _ UG P)
ox, ox; T ox

Di EU'(xi;P)'pi (15)

This gives us an immediate generalization of the expected utility MRS formula for
non-expected utility indifference curves, namely

a‘\f(xl; ﬁl;XZ, ﬁZ)/axl _ U'(xl;le,xz)'ﬁl
aV(x, , DisX2, Da )/axz U'(xy; Px.,xz) 72

MRS~(x, x;)=— (16)

where P,,,., = (x;, p1; X2, p2) is the probability distribution corresponding to the point
(1, x2). It also gives us a generalization of the “marginal expected utility” formula,
namely

dv(xl +k9pl;'--;xn +k’ pn)l
dk o

=S Ui P) p, (17

i=l

It should come as no surprise that formulas like (15), (16) and (17) will come in handy
in checking the robustness of standard expected utility-based insurance theory.

A settling of accounts: If a non-expected utility preference function V,(:) is at least
as risk averse as another one V;(-), so that at each P its local utility function U,(-; P)
is at least as concave as U,('; P), then the Arrow-Pratt theorem and the MRS formula
(16) directly imply the relative slope condition illustrated in Figure 5a. Similarly, the
Arrow-Pratt theorem, MRS formula (8) and a little calculus imply the relative slope
condition illustrated in Figure 5b. Just as required!'

"' This follows from applying Machina (1982, eq. 8) to the path F(-; &) = (x,, pi; . - - ; Xi1, Piis O, Pis
Xiety Pists -+ 5 Xns Pn)-

' In some of our more formal analysis below (including the formal theorems), we use the natural exten-
sion of these ideas to the case of a preference function "V(F) over cumulative distribution functions £(-)
with local utility function U(-; F), including the smoothness notion of “Fréchet differentiability” (see
Machina (1982)).
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23 INDIVIDUAL DEMAND FOR INSURANCE

The previous section presented a set of tools—graphical and algebraic—for repre-
senting and analyzing non-expected utility risk preferences. It also showed that the
analysis of non-expected utility preferences is much closer to classical expected utility
theory than one might have thought. We now turn toward applying these tools to exam-
ining the robustness of standard insurance theory' in the absence of the expected
utility hypothesis.

For most of this chapter, we shall assume that risk preferences—expected utility
or otherwise—are differentiable both in the outcomes and in the probabilities.'* In
addition, since the results of insurance theory also almost all depend upon the prop-
erty of risk aversion, even under the expected utility hypothesis, there is no point in
dropping that assumption when undertaking our non-expected utility examination. But
as noted above, since risk aversion under expected utility also means outcome con-
vexity, we could never be sure whether the result in question was really driven by risk
aversion alone, or by outcome convexity as well.'* Thus, when examining insurance
theory in the absence of the expected utility hypothesis, our “robustness check” could
reveal each expected utility-based insurance result to be in one of the following
categories:

+ the result only requires the assumption of risk aversion, without either outcome
convexity or expected utility

» the result requires outcome convexity (and hence also risk aversion), but not
expected utility

* the result simply doesn t hold at all without the expected utility hypothesis

Naturally, when checking any given result, the higher up its category in this listing,
the nicer it would be for non-expected utility theorists. And since robustness is a
virtue, the nicer it would be for standard insurance theorists as well!

In the following, we assume that the individual possesses an initial wealth level
w and faces the prospect of a random loss ¢, with probability distribution (¢,, p;;
... €y, pn) (with each €, > 0). An insurance policy consists of an indemnity func-
tion /(-) such that the individual receives payment /(€) in the event of a loss of ¢, as
well as a premium of 7, which must be paid no matter what. Thus, the individual’s
random wealth upon taking a policy (or “contract”) (I(*), ) becomes'®

" The reader wishing self-contained treatments of the vast body of insurance results can do no better
than the excellent survey by Dionne and Harrington (1992, pp. 1-48) and volume by Eeckhoudt and Gollier
(1995). For more extensive treatments of specific topics, see the rest of the papers in Dionne and
Harrington (1992) as well as the papers in Dionne (1992) and the chapters in the present volume.

' We consider non-differentiabilities (“kinks”) in the outcomes and probabilities in Sections 2.7 and
2.8.

'* This point is nicely made by Karni (1992).

' Note that this framework abstracts from the problem of uninsurable “background risk,” as studied for
example by Doherty and Schlesinger (1983), Schlesinger and Doherty (1985), and Eeckhoudt and Kimball
(1992).
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w—m—1+1(7) (18)

Of course, different forms of insurance involve different classes {(/,("), o) | O €
A} of indemnity functions I,(-) and their corresponding premiums 7, from which the
individual may choose. In many cases, the premium for a given indemnity function
() takes the form = A - E[I(€)], where A > 1 is a loading factor. The results of stan-
dard insurance theory involve both characterization theorems and comparative statics
theorems concerning individual maximization, bilateral efficiency, and group effi-
ciency using the above framework.

For notational simplicity, we shall frequently work directly with random variables,
such as € or w — ¢, rather than with their probability distributions (£}, pi; . . . ; €., Pn)
or(w—{, pi;...;w—4%, p,). In other words, given a random variable x with prob-
ability distribution (x,, p; . . . ; X, p,), We shall use the term V(%) as shorthand for
VAx1, pi; - - . 5 X py). Thus, for example, V(w — 1 — ¢ + I(£)) denotes V(w — 1t — £,
+1€),p;...;w—mn—4€,+I(£,), p,).

2.3.1 Demand for Coinsurance

The very simplest results in insurance theory involve individual demand for a level o
of coinsurance, given a fixed loading factor A > 1. Formally, this setting consists of
the set of policies {(Z4(*), ®y) | & € [0, 1]}, with

Indemnity function: [,(¢) =o - ¢
ndemnity nc.lon «(£) ~ forae[0.1] (19)

Premium: 7, = A - 0E[/]
In the expected utility framework, the individual’s choice problem can therefore be
written as

maxE[Uw a-A-E[f]-7+0-7)] or
ael0,1]

max E[U(w =2 E[f]-(1-0)- (2 =1+ E[1))] (20)
Denote the optimal choice in this problem by a*. This setting was studied early on,
in classic papers by Borch (1961), Mossin (1968) and Smith (1968). From the right
side of (20) we see that marginal change in insurance coverage o adds/subtracts the
random variable (€ A-E[{€]) to/from the individual’s random wealth. Accordingly,
we can term the random variable (€ A E[€]) the marginal insurable risk variable.

The most basic analytical results for coinsurance are:

CO.1 The first order condition for an interior optimum—i.e., a necessary
condition for an interior global maximum—is that the expectation of the
marginal insurable risk variable times the marginal utility of wealth is
zero:
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E[(f-N-E[1)) U'(w—o-A-E[f]-T+a-)]=0 1)

and under risk aversion, this is a sufficient condition for a global optimum.

CO.2 If the individual is risk averse, then full insurance will be demanded
if and only if it is actuarially fair. In other words, o* = 1 if and only if
A=1.

CO.3 If two risk averse individuals face the same choice problem except that
the first is at least as risk averse as the second, then the first will demand
at least as much insurance as the second. In other words, if U\(*) is a
concave transformation of U,("), then o¥ > a%."’

Results CO.2 and CO.3 can both be illustrated in the Hirshleifer-Yaari diagram.'®
Consider Figure 7a, where the original uninsured position, point 4, lies off the 45°
line, its corresponding full insurance point would lie exactly on the 45° line, and the
coinsurance “budget line” connects the two points. The value o € [0, 1] corresponds
to the position along the budget line from the uninsured point to the fully insured
point. To see CO.2, note first that when insurance is actuarially fair, this budget cor-
responds to the (dashed) iso-expected value line emanating from 4, and from risk
aversion clearly implies that the optimal point on this line is its corresponding full
insurance point B. Next, note that when insurance is actuarially unfair, the budget line
from A is now flatter than the iso-expected value lines, so it is no longer tangent to
the indifference curve through the (new) full insurance point C. This implies that the
new optimal point, namely D, will involve less than full insurance. To see CO.3, con-
sider Figure 7b and recall from Figure 4a (or equations (2) and (12)) that for expected
utility maximizers, the (solid) indifference curves of the more risk averse person must
be flatter than the (dotted) indifference curves of the less risk averse one in the region
below the 45° line. This fact, coupled with the outcome-convexity property of risk
averse expected utility indifference curves, guarantees that, when both start from the
same uninsured point 4’, the more risk averse person will choose a greater level of
coinsurance—point F rather than point E.

How about non-expected utility maximizers? In this case, the coinsurance
problem becomes

max V(w-o-A-E[f]-f+0-7) or

ael0,1]

max V(w-A-E[f]-(1-0)- (=) E[7])) (22)

ael0,1]

"7 As demonstrated in Pratt (1964), further results which link increasing/decreasing absolute and/or
relative risk aversion to changes in a as an individual’s wealth changes can be derived as corollaries of
result CO.3.

'* So can result CO.1, if one calculates the slope of the budget lines in Figures 7a and 7b.
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Figures 7a and 7b Optimal Coinsurance and Effect of Greater Risk Aversion on
Coinsurance for Risk Averse Expected Utility Preferences

for some general non-expected utility preference function V(-). Do any of the above
expected utility-based results still hold? And if so, do they require just risk aversion,
or do they also need outcome convexity?

To examine the robustness of CO.1, write (22) as

max V(w-o A - E[¢]-¢, +0 4y, prs.. s w—0-A-E[0] -4, +0-4,, p) (23)

ael0,1]

Formula (15) allows us to differentiate with respect to o to get the non-expected utility
first order condition

dV(w—o - \-E[f]-t,+0 -4y, pi;...;w—0-A-E[l]-4, +a-4,, p,)
do
=Y (i =\-E[f)-U'lw=o A E[7] -4, +o £;;B) - p;

i=l

=E[(l-1-E[7))-U'(w—a-A-E[f]-7+0.-7;P,)] =0

24)

where P, denotes the wealth distribution w — a%'E[z’] ~t+a-t arising from the
purchase of a coinsurance. This is precisely the analogue of the expected utility first
order condition (21) with the von Neumann-Morgenstern utility function U(") replaced
by the local utility function U(; P,) at the wealth distribution P,,' where

Po=w—o -\ E[f]-I+a-7 (25)

' This close correspondence of expected utility and non-expected utility first order conditions will come
as no surprise to those who have read Chew, Epstein and Zilcha (1988). We’ll come to this again below.

(b)
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Note that the necessity of condition (24) does not even require risk aversion, just
differentiability. However, it should be clear from the Hirshleifer-Yaari diagram that
it will only be sufficient under full outcome convexity. Otherwise, an indifference
curve could be tangent to the budget line from below, and the point of tangency would
be a (local or global) minimum.

Extending result CO.2 to the non-expected utility case is straightforward, and
doesn’t require outcome convexity at all. When insurance is actuarially fair (A = 1),
we have that for any o < 1, the random wealth

w-o - E[f]-t+o-?=w-E[f]-(1-a) (7 - E[?) (26)

differs from the full insurance (o = 1) wealth of w — E[E] by the addition of a zero-
mean random variable. Accordingly, risk aversion alone implies that when coinsur-
ance is actuarially fair, full coverage is optimal. Similarly, when insurance is unfair
(A > 1), we have that

dV(w-o-\ E[(]-1+o-7)|
dou

=E[(l-A-E[?)-U'(w-\- E[)};P)]

lu:l

=(1-A)-E[f]-U'(w-\-E[(};P) < 0 27

where P, is the degenerate distribution of the full insurance wealth level w — X-E[é].
Thus, there will be values o < 1 that are strictly preferred to the full insurance posi-
tion e = 1. This is all illustrated in Figure 8a, where indifference curves are risk averse
but not outcome convex.”

It would seem that if any coinsurance result depended crucially on the assump-
tion of outcome convexity, it would be result CO.3, which links greater risk aversion
to greater coinsurance. This type of global comparative statics theorem is precisely
the type of result we would expect to depend upon the proper curvature of indiffer-
ence curves, and a glance at Figure 7b would seem to reinforce this view. However,
one of the most important points of this chapter, which will appear a few times, is
that even for a result like this, outcome-convexity is not needed.

The essence of this argument can be gleaned from Figure 8b. Recall that if pref-
erences are risk averse but not outcome-convex, then there is the possibility of mul-

% A NorE ON BELIEFS: Although CO.2 accordingly survives dropping the assumption of expected utility
risk preferences, it does not survive dropping the assumption that the individual’s subjective probabilities
exactly match those of the “market,” that is, the probabilities by which an insurance policy is judged to be
actuarially fair or unfair. If—for reasons of moral hazard, adverse selection or simply personal history—
the individual assigns a higher probability to state 2 than does the market, then the indifference curves in
Figure 7a will be flatter than and cut the dashed lines at all certainty points, and an individual with a smooth
(differentiable) U(-) may well select point C on an actuarially unfair budget line like 4-C. How far must
beliefs diverge for this to happen? Consider earthquake insurance priced on the basis of an actuarial prob-
ability of .0008 and a loading factor of 25%. Every smooth risk averter with a subjective probability greater
than .001 will buy full insurance.
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Figures 8a and 8b Optimal Coinsurance and Effect of Greater Risk Aversion on
Coinsurance for Non-Expected Utility Preferences that are Risk

Averse But Not Outcome-Convex

tiple global optima, as with the indifference curve in the figure. However, the essence
of the comparative statics result CO.3 is not that each individual must have a unique
solution, but that the less risk averse individual must a/ways buy less insurance than

the more risk averse individual.

To see that this still holds under non-expected utility, recall (from (12) and (16)
or Fig. 5a) that the non-expected utility condition for comparative risk aversion is that
at each point below the 45° line, the indifference curves of the more risk averse person
are flatter than those of the less risk averse person. This means that any southeast
movement along one of the Jess risk averse person’s indifference curves must lower

the preference function of the more risk averse person.

Now, to see that every optimum of the less risk averse person involves less insur-
ance than every optimum of the more risk averse person, consider point E in Figure
8b, which is that optimum for the less risk averse person that involves the most insur-
ance for them, and consider their indifference curve through E (call it /-7). Of course,
I-I must lie everywhere on or above the insurance budget line. By the previous para-
graph, any more risk averse person would prefer £ to each point on /-/ lying south-
east of F, and hence (by the previous sentence) prefer E to every point on the budget
line lying southeast of E. This then establishes that the very least amount of coinsur-
ance this more risk averse person would buy is at E. If the more risk averse person is
in fact strictly more risk averse, the two persons’ indifference curves cannot both be
tangent to the budget line at E. Rather, the indifference curve of the more risk averse
person will be flatter at that point, which implies that the least insurance they would
ever buy is strictly more than the most insurance that the less risk averse person would

(b)
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ever buy (namely, E). Risk aversion (and comparative risk aversion) alone ensure this
result, and outcome convexity is not needed at all.?'

A formal algebraic statement of this result, which includes general probability
distributions and allows for a corner solution (at zero insurance), is:

Theorem 1. Let wy > 0 be base wealth, ¢ >0 a random loss, and A > 1 a loading
factor, such that wy — € and wy — A- E] [é] are both nonnegative. Assume that the non-
expected utility preference functions V,(-) and V;(:) are twice continuously Fréchet
differentiable (see Note 12), strictly risk averse, and that V,(°) is strictly more risk
averse than V(°) in the sense that — U/'(x; F)/U)(x; F) > — U5 (x; F)/Us(x; F) for all
x and F(-). Consider the problem:

rn[%)f]V,v(wo—oc‘}»-E[Z]—?+a-Z’) i=1,2 (28)
If ot is the smallest solution to this problem for V(-), and oc* is the largest solu-

tion for V;(°), then o* > 0%, with strict inequality unless o* = 0.
Proof in Appendix

In other words, regardless of the possible multiplicity of optima due to non-
outcome convexity, we will never observe the more risk averse first individual pur-
chasing a smaller amount of insurance than the second individual, and the only time
they would ever purchase the same amount is if the terms are so unattractive that zero
insurance is an optimum even for the first individual, in which case it is the only
optimum for the second individual.

To sum up our robustness check on coinsurance: except for the additional status
of the necessary condition (21) as a sufficient condition as well (which also requires
outcome-convexity), all three of the coinsurance results CO.1, CO.2 and CO.3 gen-
eralize to non-expected utility preferences under the assumption of simple risk aver-
sion alone. In other words, at least at this most basic level, the standard theory of
demand for coinsurance is very robust.

2.3.2 Demand for Deductible Insurance

A second type of insurance contract, distinct from the coinsurance contract consid-
ered above, is deductible insurance. Given a fixed actuarial loading factor A > 1, this
setting consists of the set of contracts {(/("), T,) | & € [0, M]}, where M is the largest
possible value of the loss ¢, and

*' Readers will recognize this argument (and its formalization in the proofs of the theorems) as an appli-
cation of the well-known “single-crossing property” argument from incentive theory, as in Mirrlees (1971),
Spence (1974) and Guesnerie and Laffont (1984), and generalized and extended by Milgrom and Shannon
(1994).
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Indemnity func?ion: I, (¢) = max{¢ —fx, 0} for o € [0, M] (29)

Premium: 7, = A - E[I,(¢)]
In the expected utility framework, the individual’s choice problem can therefore be
written as

urelflgi(”E[U(w ~A-E[I4(?)] -7+ max{f-a,0})] or
max]E[U(w -\ E[max{? -a, 0}] - min{?, o})] (30)

ae(0,M
Denote the optimal choice by o*. This problem has been studied by, among others,
Mossin (1968), Gould (1969), Pashigian, Schkade and Menefee (1966), Moffet
(1977), Schlesinger (1981), Dréze (1981), Karni (1983, 1985) and Eeckhoudt, Gollier
and Schlesinger (1991).

The insurance budget line for this problem in the case of two states is illustrated
in Figure 9. Given an initial (pre-loss) wealth point W = (w, w), the uninsured point
A reflects a small loss ¢, in state 1 and a larger loss ¢, in state 2. The thick line in the
figure represents the kinked insurance budget line when insurance is actuarially unfair
(otherwise, is it simply the dashed iso-expected value line through A4). Starting at the
deductible level a = ¢, (i.e., no insurance) each unit drop in o lowers wealth in state
1 by the premium A - p,, and raises wealth in state 2 by 1 — A-p,, while lowering the
overall expected value of wealth. This generates a linear budget line from point 4 to

X2

0 X\

Figure 9 Insurance Budget Line for Deductible Insurance



60 Handbook of Insurance

the certainty line at point B, where o has dropped by (€, — €;) (so now o = ¢;), and
the individual’s wealth is equal to w — €, — AP, (£, — €,) in each state. Note that
while a still smaller deductible a < €, is possible, this is basically further insuring
what is now a sure prospect, and doing so at actuarially unfair rates, so it would move
the individual down the 45° line. In the limit, when o = 0, wealth in each state would
be w—A-(p, €, + p,-£,) (i.e., point C).

The point of presenting Figure 9 is to show that, for the two-state case, the budget
line for deductible insurance (at least the relevant part A-B) is so similar to the budget
line for coinsurance that all of the graphical intuition obtained from Figures 7a,b and
8a,b concerning coinsurance will carry over to Figure 9 and to deductible insurance.
But given the fact that most of the “action” of the deductible problem (30) occurs in
the case of a multitude (or continuum) of states, we do not repeat the graphical analy-
ses of Figures 7a,b and 8a,b here.

Rather, we proceed directly to our algebraic robustness check. To avoid the types
of “kinks” that occur as o crosses the value of some discrete (i.e., positive probabil-
ity) loss value ¢;, we assume that the random variable € has a continuous cumulative
distribution function F(-) with support [0, M]. We consider the corresponding basic
results for deductible insurance:

DE.1 The first order condition for an interior optimum (i.e., the necessary con-
dition for an interior global maximum) is:

E[[A-(-F()- sgn(max{? - o, 0})] - U’(w - A - E[max{? - a1, 0}]
-min{/, a})] =0 (D)

where sgn(z) = +1/0/ — 1 as z > /=/ < 0.2

DE.2 1If the individual is risk averse, then full insurance will be demanded if
and only if it is actuarially fair. In other words, a* = 0 if and only if
A=1.

DE.3 If two risk averse individuals face the same choice problem except that
the first is at least as risk averse as the second, then the first will demand
at least as much insurance as (i.e., have a lower deductible than) the
second. In other words, if U,(") is a concave transformation of U,(-), then
o*< ox?

The non-expected utility version of the deductible problem (30) is

0er{lguﬁ(”‘V(w —\- E[I4(?)]-7+max{/ —a,0}) or
max_V(w -\ - E[max{/ - o, 0}] - min{7, o}) (32)

ae(0,M]

2 Thus, sgn(max{€ — &, 0}) equals 1 when € > o and equals 0 when € < a.
» This was shown by Schlesinger (1981) and Karni (1983).
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Formula (15) allows us to differentiate these objective functions with respect to o, to
get the non-expected utility first order condition:

LM [A-(1- F() - sgn(max{? —a, 0})] - U’(w - A - E[max{? —a, 0}]
—-min{/,0}; F,)-dF({)=0 (33)

where Fy(-) is the distribution of the random variable w — K’E[max{(? -a, 0}] -
min{¥¢, o}. This is once again seen to be equivalent to the expected utility first order
condition (30), with the von Neumann-Morgenstern utility function U(") replaced by
the local utility function U(-; F,) at the distribution F(-) implied by the optimal
choice. Thus, DE.1 generalizes to non-expected utility.

The “if” part of result DE.2, namely full insurance under actuarial fairness,
follows immediately from risk aversion without outcome convexity, just as it did in
the case of coinsurance. To see that the “only if” part does not require outcome con-
vexity either, consider the case A > 1 and evaluate the left hand side of (33) at the full
insurance point o = 0, to obtain

dV(w =\ E[max{? - o, 0}] - min{?, a})|

- =[A-1]-U'(w=A-E[l]; F})>0

=0

(34

where Fy(') is the degenerate distribution of the full-insurance wealth level w — A
E[£]. Thus, in this case there will be values o > 1 which are strictly preferred to the
full insurance level o = 0.

Finally, we turn to the comparative statics result DE.3: As it turns out, the argu-
ment behind Figure 8b and Theorem 1 applies to the case of deductible insurance as
well:

Theorem 2. Let w, > 0 be base wealth, let ¢ be a random loss with support [0, M]
(M < wy) and continuous cumulative distribution function Fi(*), and let A > 1 be a
loading factor. Assume that the non-expected utility preference functions V;(-) and
V() are twice continuously Fréchet differentiable, strictly risk averse, and that V(")
is strictly more risk averse than V;(*) in the sense that —U7(x; F)/Uj(x; F) > =U3(x;
F)/Us(x; F) for all x and F(-). Consider the problem:

max IV“(W‘) —\- E[max{/-a,0}]-7+max{/-0,0}) i=1,2 (35)
oell,
If o is the largest solution to this problem for V(-), and a* is the smallest solu-
tion for V,(*), then o* < ¥, with strict inequality unless a* = M.
Proof in Appendix
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That is, regardless of the possible multiplicity of optima due to non-outcome con-
vexity, we will never observe the more risk averse first individual choosing a higher
level of deductible (i.e., less insurance) than the second, and the only time they would
choose the same level is if the terms are so unattractive that no insurance (0. = M) is
an optimum even for the first individual, in which case it is the only optimum for the
second. In a similar vein, Karni (1992) has shown that without expected utility, but
with outcome convexity, one individual’s optimal level of deductible for a conditional
risk is greater than another’s if and only if the former is more risk averse.

Perhaps surprisingly, or perhaps not, our robustness findings for at least the most
basic aspects of deductible insurance parallel those of coinsurance: except for the
additional status of condition (30) as a sufficient condition (which requires outcome-
convexity), the deductible results DE.1, DE.2 and DE.3 generalize to the case of non-
expected utility preferences.

24 PARETO-EFFICIENT BILATERAL INSURANCE CONTRACTS

The results of the previous section have examined the customer’s optimal amount of
insurance, taking the form of the insurance contract (either coinsurance or deductible)
as given. However, an important set of results in insurance theory attempts to deter-
mine the optimal (i.e., Pareto efficient) form of insurance contract, given the nature
of the insurer’s costs and risk preferences. Will these results be robust to dropping the
expected utility hypothesis?

The basic theorems on Pareto efficient bilateral insurance contracts concern the
case where the insurer possesses an increasing cost function C(/) for indemnity pay-
ments /> 0. These costs include the indemnity payment itself plus any additional pro-
cessing or transactions costs. In the expected utility case, a Pareto efficient contract
(I(*), ™) can be represented as the solution to:

E[U;(w, + 1= C(1(2)))] = Us (w,)

[RT?E[UI(Wl_n_g-*-I(())] St { 010t

(36)

where U, (") is the concave utility function of the insured, U,(*) is the utility function
of thg insurer, and w, and w, are their respective initial wealth levels. The loss vari-
able € is assumed to have a continuous cumulative distribution function F(-) over some
interval [0, M].

Arrow (1963, Appendix)* considered the simplest case where the cost function
takes the linear form C(I) = A+ I (for A > 1), and the insurer is risk neutral. Under these
assumptions, the upper constraint in (36) directly implies the standard loading formula

2 See also the related work in Arrow (1965c, 1974), the subsequent work by Raviv (1979) (discussed
below), Blazenko (1985), Gollier (1987) and Marshall (1992), and the survey by Gollier (1992, Sect.2).
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n=\-E[1(7)] (37)

and Arrow showed that the Pareto efficient indemnity function /(-) must take the
deductible form

I1(¢)= min{¢ - o, 0} (38)

Needless to say, this forms an important justification for studying the individual’s
demand for insurance under the deductible structure, as we did in Section 2.3.2.

This result has been extended in a few directions by Raviv (1979), so that we can
now consider the set of expected utility-based results:

PE.1 Given risk neutrality of the insurer and a linear cost function (with A > 1),
the Pareto efficient bilateral insurance contract must take the deductible
form (38), for a positive deductible a.

PE.2 Given strict risk aversion of the insurer and a linear cost function (with
A > 1), the Pareto efficient bilateral insurance contract must take the form
of coinsurance above a nonnegative deductible a, i.e.

I10)=0 for/<a
0<I(W)<t forl>a
0<I'(®)<1 forl>o (39)

PE.3 Given risk neutrality of the insurer and a strictly convex cost function C(*)
(i.e., C”(*) > 0), the Pareto efficient bilateral insurance contract must again
take the form of coinsurance above a deductible, as in (39), where the
deductible « is strictly positive.

Just as Arrow’s original result (PE.1) gave a justification for the study of deductibles,
the results PE.2 and PE.3 provide a justification for the study of the demand for coin-
surance as we undertook in Section 2.3.1.%

Do these results extend to non-expected utility maximizers, and if so, is risk aver-
sion sufficient to obtain them, or do we also need to assume outcome convexity? Under
non-expected utility, the Pareto efficient contracts are characterized by the solutions
to

(40)

max Vi(w -~ 7+1(0)) s {V(WZ +=CU@) = Valws)

0<I()<¢

% Note, however, that derivative I’(€) in PE.2 or PE.3 need not be constant, but as Raviv (1979, pp. 90,
91) has shown, depends upon each party’s levels of risk aversion, as well as marginal indemnity cost C'(/).
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Concerning PE.1, note that under its assumptions, the standard loading formula (37)
continues to follow from the constraint in (40). In such a case, Karni (1992) has proven
that, given differentiability of V,(-), risk aversion alone ensures that any Pareto effi-
cient insurance contract must continue to take the pure deductible form (38). Gollier
and Schlesinger (1996) have also provided an ingenious proof of PE.1 based solely
on first and second order stochastic dominance preference, and hence similarly inde-
pendent of the expected utility hypothesis.

The robustness of PE.2 and PE.3 to non-expected utility can be demonstrated by
using the same type of proof that Karni used to generalize PE.1. We present an infor-
mal sketch here. Let (7*(-), *) be a Pareto efficient insurance contract between V,(*)
(which is risk averse) and Vi(*), under the assumptions of either PE.2 or PE.3.% In
such a case, no joint differential change?” (AI(-), A) from (/*(-), T*) that continues
to satisfy the conditions Vy(w, + m — C(I(?))) = Vy(w,) and 0 < I(€) < ¢ should
be able to raise the value of V,(w, — © — € + I(£)). However, from the cumulative
distribution function version of (15), the effect of any such differential change
(AI("), Am) from (I*(-), m*) upon the value of V(w, — Tt — 0+ I(€)) is given by the
expression

jOMU,'(w. 50+ T* (0 Fyy o ropn) - [AI(0) = AT] - dF, (0) 41)

and similarly, the effect of any differential change (A/(-), An) from (7*(-), ©*) upon
the value of Vi(w, + m — C(I({))) is given by

M
.[) Ui(wy + * =CI*(0); Fynecrny) - [AT = C(1*(0)) - AI(0)] - dF; (£) (42)
Thus, any solution (/*(*), ©*) to (40) must satisfy the following property:

“No differential change (AI(-), Ar) that makes (42) equal to zero can make (41)
positive.”

However, this is precisely the statement that the contract (/*(-), n*) satisfies the
first order conditions for the expected utility problem (36), for the fixed von Neumann-
Morgenstern utility functions U,() = U,(*; F,, —x=—z+r+) (Which is concave) and U,(-)
= Uy(*; Fuynr-cur@y) (Which under PE.2 is also concave), and we know from the
expected utility versions of PE.2 and PE.3 that any pair (/(-), 7) that satisfies these
first order conditions, including therefore the pair (I*(-), ©*), must satisfy the “coin-
surance above a deductible” condition (39). Furthermore, under the assumptions of

* Thus, (I*(), n*) is a solution to problem (40) for some given w, and w,, though it needn’t be a unique
solution.

7 By way of clarification, note that A is a differential change in the scalar m, while AI() is a differen-
tial change in the entire function I(-), in the sense being some differential change A/(€) in I({) for every
value of €.
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PE.3, they must satisfy the additional property that the deductible is positive. Note
that, like Karni, we needed to assume risk aversion of V|(~) (and also of 'Vz(-) for
PE.2), but not outcome convexity.zx

Thus, another set of basic results in insurance theory seem to be quite robust to
dropping the expected utility hypothesis.

2.5 PARETO-EFFICIENT MULTILATERAL RISK SHARING

An important part of the theory of insurance is the joint risk sharing behavior of a
group of individuals. Research in this area was first initiated by Borch (1960, 1961,
1962) and Wilson (1968), and the modern theory of insurance markets can truly be
said to stem from these papers.?’

Under expected utility, this framework consists of a set {0} of states of nature,
and m individuals, each with von Neumann-Morgenstern utility function Ug(-) and
random endowment w,(8). In this chapter, we consider the special case where there
are a finite number of states {0, ..., 67}, and where agents agree® on their proba-
bilities {prob(0,), . . ., prob(67)} (all positive). A risk sharing rule is then a set of
functions {s(") | i =1, ..., m} that determines person i’s allocation as a function of
the state of nature 6,. Under such a rule, person i’s expected utility is given by

T
Y Ui(56,)- prob(®)) 43)

A sharing rule {s,(") [i=1,..., m} is feasible if it satisfies the constraint:

9, 4

Y s0)=Y w®,) (44)
i=1 i=1

and it is Pareto-efficient if there exists no other feasible rule which preserves or
increases the expected utility of each member, with a strict increase for at least one
member. Finally, define the risk tolerance measure’' of a utility function U(") by

P (x) == U/@)/U/"(x) (45)

3 Readers intrigued by this type of argument are referred to Chew, Epstein and Zilcha (1988) who, under
slightly different assumptions (namely, uniqueness of maxima) demonstrate its surprising generality.

¥ See also Gerber (1978), Moffet (1979), Bithlman and Jewell (1979) and Eliashberg and Winkler (1981)
for important subsequent contributions, and Lemaire (1990) and Gollier (1992, Sect.1) for insightful
surveys.

% The case of differing beliefs, though clearly more realistic, is beyond the scope of this chapter.

*' We say risk tolerance since pi(x) is the reciprocal of the standard Arrow-Pratt measure of absolute
risk aversion.



66 Handbook of Insurance

In this framework, the three most basic analytical results for Pareto-efficient risk
sharing are:

RS.1 A necessary condition for a risk sharing rule {s,(") |i=1,..., m} to be
Pareto-efficient is that there exist nonnegative weights {A,, ..., A,} such
that
A ULs®D) =R, Usls,0) iy j=1,...,m (46)

and under risk aversion, this is a sufficient condition.

RS.2  Any Pareto-efficient risk sharing rule will satisfy the mutuality principle
(e.g., Gollier (1992, p. 7)), namely, that the share 5,(6,) depends upon the
state of nature 6, only through the total group endowment w(8,) = X2, wy(6,)

in state 0,. In other words, there exist functions {x,(‘) |i=1, ..., m} such
that
5 @) =x(w®)) i=1..;m (47)

RS.3 In the case of a continuum of states of nature, members’ incremental
shares {x/(w)} will be proportional to their respective risk tolerances, eval-
uated along the optimal sharing rule:

x{(w)sM)l-— i=1...,m (48)
v 2 1P (i (W)

Do these results extend to non-expected utility? To check, take a set of m non-
expected utility maximizers with preference functions { Vi(-),..., V,()}. The
natural generalization of condition (46) would be that there exists a set of nonnega-
tive weights {A,, . .., A,,} such that

A -U/(s:(8,); P;")eslj Uj(s;0,),PF) i,j=1,....m (49)

where Ug(-; P) and U(; P) are the local utility functions of V() and 1/;(-), and P¥*
and P* are the probability distributions of the variables s,(8,) and s(6,) respectively.
To check the robustness of RS.1, assume (49) did not hold, so that there are some
states 0,, 6, and individuals i, j such that

U/(s0,); P¥)  U/(s;(8,); PF)
Ui(s:(8,); P:k) U;(sj ©,); P;k)

(50)
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and hence

Ul(56.); PT) prob@®,) , Uj(s;8.); P}) prob®,) 1)
U/(s:(05); PY) prob(6,) U/(s;(6,); P}) prob(6,)
But from the n-state version of the MRS formula (16),* this would mean that the two
individuals’ marginal rates of substitution between consumption in states 6, and 6,
are strictly unequal, so they would have an opportunity for mutually beneficial trade.
Thus, the original sharing rule was not Pareto-efficient. This establishes that (49) is
indeed a necessary condition for Pareto-efficiency. A standard Edgeworth box argu-
ment will establish that is also a sufficient condition provided outcome convexity
holds, though not otherwise.
To check result RS.2, observe that if it did not hold, there would be two states 0,
0, and an individual i such that X2, w(6,) = Z;2,w«(6,), but s(8,) > 5/(6;). But by the
feasibility condition (44), this means that there must exist some other individual j
such that 5(0,) < s,(6,). By risk aversion (concavity of local utility functions), this
would imply

Ul(s;®.); P¥) prob®.) _ prob®,) _ Uj(s;6.); P}) prob(®.)
U/(s;8,); P¥) prob(®,) prob®,) U/(s;®,);P)) prob(®,)

(52)

so that, as before, the two individuals have different marginal rates of substitution
between consumption in states 0, and 6,, so the original sharing rule could not have
been Pareto-efficient. Thus, the mutuality principle (RS.2) and the formula (47) also
hold for non-expected utility risk sharers in this same setting. Observe that only risk
aversion, and not outcome convexity, is needed for this result.

Finally, to show that the continuum-state-space result RS.3 also generalizes,
combine (47) and (49) (which both continue to hold with a continuum of states) to
write

where F¥(-) and F¥(-) are the cumulative distribution functions of the (continuous)
random variables s,(0) and s/0) (see note 12). Differentiating (53) with respect to w
and then dividing by (53) yields

Ur’”(xi(w); F u* )

=U;'(XJ(W);FT). ’ ..
Ulle, o), FF) ——L= L. x(w) i,j=1...,m (54)

xi(w)= Uj(x;(w), F¥) ™

32 Like the 2-state formula (16), its n-state equivalent follows immediately from equation (15).
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and hence

p,(;w) F) .
—————.x/W)=x/(w) i, j=1,...,m (55)
Pf(xi(W); F.*) w

where pi(x; F) = -Ujx; F)/U/(x; F) is the risk tolerance measure of the local
utility function U(:; F). Summing over j = 1, ..., m, noting that feasibility implies
Zj.ix/(w) = 1, and solving gives

, pi (x;(w); F ) .
i = = 1,..., 56
%) v E k=1Pk (xk (w); Fl:k) : " (%6)

In other words, each member’s incremental share is proportional to their local risk tol-
erance, evaluated along the optimal sharing rule. (Recall that since F¥(*), ..., F(")
are the distributions of s,(0), . . ., 5,(0), they are determined directly by the optimal
sharing rule.)

What does this all imply? It is true that we need outcome-convexity to guarantee
the sufficiency of the Pareto-efficiency condition (49). However, it remains a neces-
sary property of any Pareto-efficient allocation even without outcome-convexity.
Otherwise, risk aversion alone (and sometimes not even that) suffices to generalize
the basic risk sharing results RS.1, RS.2 and RS.3 to the case of non-expected utility
maximizers.

2.6 SELF-INSURANCE VERSUS SELF-PROTECTION

This topic stems from the seminal article of Ehrlich and Becker (1972), who exam-
ined two important non-market risk reduction activities, namely self-insurance,
where resources are expended to reduce the magnitude of a possible loss, and self-
protection, where resources are expended to reduce the probability of that loss. In a
two-state framework (the one they considered), the individual’s initial position can be
represented as the probability distribution (w — €, p; w, 1 — p), that is to say, base
wealth w with a p chance of a loss of ¢.

The technology of self-insurance can be represented by function €(-) of an expen-
diture variable o € [0, M], such that the first state loss becomes €(ct), where €’(at) <
0. In that case, an expected utility maximizer’s decision problem is:

ug}g%[p Uw—lo)-a)+(1-p)-Uw-a)] (57)
The technology of self-protection can be represented by function p(-) of an expendi-
ture variable B e [0, M], such that the probability of the loss becomes p(B), where
P'(B) < 0. In that case, an expected utility maximizer’s decision problem is:
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|3rer[lg'ig;l[p(ﬁ) Uw—0-B)+1-p@)-Uw-P) (58)
Needless to say, these activities could be studies in conjunction with each other,
as well as in conjunction with market insurance, and Ehrlich and Becker do precisely
that. Since then, the self-insurance/self-protection framework (with or without market
insurance) has been extensively studied—see, for example, Boyer and Dionne (1983,
1989), Dionne and Eeckhoudt (1985), Chang and Ehrlich (1985), Hibert (1989), Briys
and Schlesinger (1990), Briys, Schlesinger and Schulenburg (1991) and Sweeney and
Beard (1992).

Konrad and Skaperdas (1993) examine self-insurance and self-protection in the
case of a specific non-expected utility model, namely the “rank-dependent” form
examined in Section 2.8 below. They find that most (though not all) of the expected
utility-based results on self-insurance generalize to this non-expected utility model,
whereas the generally ambiguous results on self-protection®® must, of necessity,
remain ambiguous in this more general setting.

A treatment anywhere near as extensive as Konrad and Skaperdas’ analysis is
beyond the scope of this chapter. However, we do examine what is probably the most
“basic” theorem of self-insurance, namely that greater risk aversion leads to greater
self-insurance, which was proven by Dionne and Eeckhoudt (1985) for expected utility
and Konrad and Skaperdas (Proposition 1) for the non-expected utility rank-dependent
form. Here we formally show that this comparative statics result extends to all smooth
risk averse non-expected utility maximizers, whether or not they are outcome-convex:

Theorem 3. Assume that there are two states of nature with fixed positive pro-
babilities p and (1 — p). Let w, > 0 be base wealth, a € [0, M] expenditure on self-
insurance, and €(o) > 0 be the loss in the first state, where €’(0)) < 0 and M < w,,.
Assume that the non-expected utility preference functions V,(-) and Vj(-) are twice
continuously Fréchet differentiable, strictly risk averse, and that V() is strictly more
risk averse than V;() in the sense that U/ (x; F)/U|(x; F) > =U3(x; F)/Ux; F) for
all x and F(-). Consider the problem:

max V(w, — o) -, p;wy—a, 1= p) i=1,2 (59)
ael0,M]
If o* is the smallest solution to this problem for V,(:), and o* is the largest solu-
tion for Vi(*), then o* > o%, with strict inequality unless o* = 0 or a* = M.
Proof in Appendix

In other words, regardless of the possible multiplicity of optima due to non-
outcome convexity, we will never observe the more risk averse first individual choos-

33 Dionne and Eeckhoudt (1985), for example, show that greater risk aversion can lead to either more
or less self-protection.
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ing less self-insurance than the second individual, and the only time they would ever
choose the same level is if the productivity of self-insurance is so weak that zero is
an optimum even for the first individual (in which case it is the only optimum for the
second) or else the productivity is so strong that full self-insurance (o0 = M) is an
optimum even for the second individual (in which case it is the only optimum for the
first).

2.7 OUTCOME KINKS AND FIRST ORDER RISK AVERSION

Although the expected utility axioms neither require nor imply that preferences be
differentiable in the outcome levels, the classical theory of insurance has followed the
standard theory of risk aversion in usually assuming that U(*) is once (or twice) dif-
ferentiable in wealth. But this needn’t always be the case, and in this section we present
some of the classical insurance model’s results concerning kinked utility functions,
and explore their robustness.

There are several situations where an expected utility maximizer’s utility
function—that is, the utility function they apply to their insurance decisions—
might exhibit outcome kinks, even though their underlying risk preferences
may be smooth in the payoffs. The simplest and probably most pervasive are piece-
wise linear income tax schedules, which imply that the utility of before-tax income
will have kinks at the boundaries of each tax bracket. However, other cases where the
marginal utility of money may discontinuously change include bankruptcy, and cases
where a certain minimum level of wealth is needed for the acquisition of some
indivisible good.

Figures 10a and 10b illustrate a risk averse von Neumann-Morgenstern utility
function U(-) with a kink at x = 100, and its indifference curves in the Hirshleifer-
Yaari diagram for fixed state probabilities p,, p,. Since MRSg(x), x2) = —(U'(x))"
P)/(U'(x2)*pa) (€q.(2)), these indifference curves will be smooth and tangent to the
iso-expected value lines* at all certainty points (x, x) except the point (100, 100),
where there will be a convex (bowed toward the origin) kink. The curves will also be
smooth at all uncertainty points (x,, x,) except where x, or x, equals 100 (i.e., along
the vertical and horizontal dotted lines), where they will again have convex kinks. But
even at these kinks we have a version of the MRS formula (2), this time between the
left/right derivatives of U(-) and what may be called the left/right marginal rates of
substitution:

U[(Xl)'ﬁl
Uir(x2)- pa

Ulg(xl)'ﬁl

MRSEU,L (1, x%) =~ MRSEU,R (xi, Xz) =—7 —
U/ (xz)'Pz

(60)

** For clarity, the iso-expected values lines are not shown in Figure 10b, but do appear in Figure 11a.
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100 X 0 100 x (b)

Figures 10a and 10b A Kinked von Neumann-Morgenstern Utility Function and
Its Indifference Curves

Besides (60), the directional outcome derivatives also satisfy more general prop-
erties. For example, even at its kink points (x;, 100), (100, x,) or (100, 100), we obtain
the standard formulas linking the directional fotal derivatives and directional partial
derivatives, for example

dVey(xi+0-t, ;X +B -1, 23]

dt® o
—a. aVEU(xla lil;xz,l’z) +B- aVEU(xla PRI; xz,Pz) o, B>0 (61)
ax1 ax2

Similarly, even when integrating along a line of kink points, say from (50, 100) to
(150, 100), the fundamental theorem of calculus continues to link the global change
in the preference function with its directional partial derivatives along the path, e.g.

_ _ _ _ 150 9 Vg (xy, py; 100, p,)
Veu (150, 513100, 52) — Ve (50, 513100, B2) = | w0, 2100 P2) g,

50 oxf
(62)

That is, even if U(") has a kink (or several kinks), the outcome kinks of the expected
utility preference function Vi(x,, pi; X2, p2) = U(x)) Py + U(x,) P, (and its general
form Viy(xy, pi; - . . 3 Xm pr) = Zi U(x,) - pi) are seen to be “well-behaved,” in that they
satisfy the above local and global properties of what is sometimes called the calcu-
lus of directional derivatives.

On the other hand, such expected utility maximizers do not satisfy result CO.2 of
Section 2.3.1—that is, they may purchase full insurance even when it is actuarially
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unfair. This is illustrated in Figure 11a, where an individual with an uninsured posi-
tion at point C, and facing an actuarially unfair budget line, maximizes expected utility
by choosing the fully insured point (100, 100). However, if U(-) only has a single kink
(or isolated kinks), this will be a knife-edge phenomenon: It is true that it can occur
for any uninsured point C lying above the iso-expected value line through (100, 100)
and below the subtangents of the indifference curve at that point. However, from any
such C there is exactly one loading factor that will lead the individual to choose full
insurance. Any greater or lesser loading factor from C leads to a partial insurance
optimum on a higher or lower indifference curve than the one through (100, 100), and
off of the certainty line.

Figure 11b illustrates another implication of kinked utility which is not a knife
edge phenomenon. The uninsured positions 4, B, C, D, E lie along a line of slope one,
that is, they differ from each other only in the addition/subtraction of some sure
amount of wealth. As such wealth increases raise the initial position from A4 to E, the
optimal point first moves straight upward to (100, 100), then straight rightward. In
other words, as wealth grows, the amount of loss insured rises to completeness and
then starts to drop, so the Engle curve for insurance is first rising, then falling. To see
that this is not a knife-edge implication, observe that since the optimal points are all
convex kinks, this can occur for a range of loading factor values.

Segal and Spivak (1990) have defined and characterized the general behavior
property corresponding to outcome kinks at certainty, and the sense in which risk pref-
erences about such kinks are qualitatively different from smooth preferences about
certainty points. Given an initial wealth x* and a nondegenerate zero-mean risk &€, let
7(¢) denote the individual’s risk premium for the additive risk ¢- €, so the individual is

xX2| . N X2

1
e : .
: A
0 100 X 0 100 Xi

Figures 11a and 11b  Full Purchase of Actuarially Unfair Insurance; Wealth Effects
on the Demand for Coinsurance

(b)
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indifferent between the sure wealth x* — mt(¢) and the risky wealth x* + ¢-€. Note that
7(0) = 0. Segal and Spivak define a risk averter as exhibiting

first order risk aversion at x* if 7’(0)20
second order risk aversion at x* if 7w’(0)=0 butn”(0)=0

Segal and Spivak show that if an individual (expected utility or otherwise) exhibits
first order risk aversion at wealth level x*, then for small enough positive k, they will
strictly prefer x* over the random variable x* + ¢ (k + €) for all sufficiently small

¢t > 0. This can be seen in Figure 11a, with x* = 100, x* + 1-(k + £) being the pre-
insurance point C (with greater risk and greater expected value than x*), and where
the property “x* > x* + ¢+ (k + €) for small enough #” is seen by the fact that the sure
point (100, 100) is strictly preferred to nearby points on the insurance budget line.
Segal and Spivak (1990) provide the following expected utility results linking prop-
erties of a utility function to its order of risk aversion about wealth x*:

SS.1  If a risk averse von Neumann-Morgenstern utility function U(*) is not dif-
ferentiable at x* but has well-defined and distinct left and right derivatives
at x*, then the individual exhibits first order risk aversion at x*

§S.2  If a risk averse von Neumann-Morgenstern utility function U(*) is twice
differentiable at x* with U”(x) # 0, then the individual exhibits second
order risk aversion at x*

Segal and Spivak’s ideas, and their relevance to insurance, are not limited to pref-
erences about complete certainty. An individual with the utility function as in Figure
10a, with a kink at x*, will also exhibit conditional first order risk aversion about
wealth level x*: Consider any risk of the form [p chance of x* + ¢-&: (1 — p) chance
of x]. Such distributions can arise in cases of uninsured states, such as war or certain
“acts of God,” in which no insurance indemnity is paid. Many (most?) insurance con-
tracts explicitly specify such states, and usually retain the premium payment if they
occur. The risk premium 7(¢) in such cases solves

p-E[UG*+t-8)+(1-p)- E[lUR)]=p - Ulx*-n(1))+(1-p)- E[UE -n(t))] (63)

For contracts that refund the premium if an uninsured state occurs, the final term in
this equation becomes (1 — p)- E[U(X)]. In either case, we will again get m(0) = 0 and
'(0) # 0.

3 Can Figures 11a and 11b also be used to illustrate the demand for conditional insurance in states 1
and 2 when states 3, . . ., n are uninsured? Only when the insurance contract refunds the premium in every
uninsured state. If the premium is retained in every state, then moving along the coinsurance budget line
in the figure also changes the outcomes in states 3, . . ., n, so the x,, x, indifference curves in the figure
will shift.
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Are these expected utility results robust when linearity in the probabilities is
relaxed to smoothness in the probabilities? Segal and Spivak (1990, 1997) have
already generalized SS.1 and SS.2 from von Neumann-Morgenstern utility to local
utility functions: Given a risk averse non-expected utility V{(-), if its local utility func-
tion U(x; P¥) at the degenerate distribution P*= (x*, 1) has a kink at x = x*, then V)
will exhibit first order risk aversion at x*. Similarly, if V(-)’s local utility functions
are all twice differentiable (and U(x; P), U'(x; P), U"(x; P) are all continuous in P),
then V() will exhibit second order risk aversion at all wealth levels. Their robust-
ness proofs can also be extended to cover conditional first and second order risk
aversion.

The above diagrammatic and comparative statics analysis is also robust to the
case of smoothness in the probabilities. For example, let 0(x) denote the after-tax
income corresponding to a pre-tax income of x, and let ¢(°) have a kink (with left/right
derivatives) at x = 100. Given any underlying preference function V() over proba-
bility distributions of after tax income that is outcome-smooth (i.e., satisfies (15)), the
individual’s preferences over probability distributions of pre-fax income are given by
the preference function V(P)= V(x,, pi; .. .5 X, pa) = VO, pis . . . 3 0(X,), pa) =
V(¢(P)), where ¢(P) denotes the probability distribution (0(x,), pi; - . . ; ®(x,), Pn)-
V(-)’s outcome kinks can be shown to be “well-behaved” in the sense described above,
and V() has local utility function and regular/directional outcome derivatives

V1, Pi5 -3 Xns Pn) _ IV O, pis - - 0Cxa), Pa)

Ulx; P)= 0 prob(x) B 0 prob(¢(x))

= U(0(x); 9(P) (64)
IV®) V@), pis...; 00) p) .,
xR 9(x;) O5iuia ) ©)

where “B/L/R” denotes either the regular (“Bi-directional”) derivative if it exists, or
otherwise the appropriate left/right derivative. Together, (64), (65) and outcome-
smoothness of V() imply the regular/directional derivative version of the key gen-
eralized expected utility formula (15):

aa;:l:/(Ll/,l)e = [j[;/L/R (6Cx:); &(P)) - p; - ¢;?/L/R ()= Ul;/L/R xi;P)- pu (66)

This again yields the MRS formula MRS(x,, x,) = —(U'(x}; Py, ) DU (x2; Py, o)
D>) at all smoothness points (where x, # 100 # x,), and the left/right MRS formulas

U[(xl; Pn,xz) : ﬁl
Uk (x2; PXI.XZ) " D2

Ul’((xl; le,xz) : [_)l

MRS~ (x;,x,) =~ UG Pw) P
L\X2, Ky x,) " P2

MRS~ ¢ (xl s xz) =
(67)
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when x, and/or x, equals 100. Thus, "V(*)’s indifference curves are again smooth except
for kinks at (100, 100) and on the vertical/horizontal lines x, = 100 and x, = 100.
Finally, if preferences are also outcome-convex, then W(-)’s indifference curves will
look almost exactly like those in Figure 10b, except that they will generally not satisfy
the rectangle property of Section 2.2.1. This implies that both the full insurance
phenomenon and “increasing then decreasing absolute risk aversion” phenomenon
of payoff-kinked expected utility preferences will continue to hold.* In other words,
these expected utility implications of non-differentiabilities in the outcomes
(“outcome-kinks”) are robust to dropping linearity in the probabilities.

A few specific non-expected utility functional forms for Wixy, D15+ Xns Dn)s
and researchers who have studied them, are:

moments of utility g(3v(x,)p;, Zv(x) pi, ZLv(x) p;) Hagen (1989)
quadratic in probabilities’” X v(x;)p; +[ ,f;,l((x,-)-p,-]2 Machina (1982)
weighted utility [X70(x))p;]/[Zrt(x;)p;] Chew (1983)

These forms all share the flexibility of expected utility, in that they can be used to
represent outcome-smooth preferences, by choosing smooth constituent functions g(-),
v(+), x(-) and/or 7(-), or used to represent preferences with fixed-location outcome-
kinks as in Figure 10b, by choosing continuous constituent functions with kinks at
those outcome values (or by the method of the previous paragraph). In the latter case,
these forms will still: have local utility functions; satisfy the standard generalized
expected utility properties concerning risk aversion, etc.; have what we have called
well-behaved outcome kinks; satisfy the directional outcome derivative formula (66);
and exhibit the first order and conditional first order risk aversion properties described
above.

2.8 EXTENSIONS AND LIMITS OF ROBUSTNESS™

No theory can be robust to dropping all of its structure. We have seen that much of
the classical theory of insurance, derived under the assumption that preferences are
linear in the probabilities, extends to preferences that are smoothly rnonlinear in the
probabilities. At this point, it is natural to ask if this robustness extends any further,
and if so, how far.

% Since the kinks generated here are convex kinks, this may occur even without full outcome
convexity.

%7 This form is a special case of the more general quadratic form Z7_, Z7.,K(x;, x,)* p;* p; studied by Chew,
Epstein and Segal (1991). Those researchers have shown that when the function K(x;, x;) is not smooth but
rather takes the Leontief form K(x;, x;) = min{x;, x;}, then preferences will not satisfy all the generalized
expected utility robustness results. This type of issue is addressed in the following section.

% The material in this section, adapted from Machina (2000), owes much to the insightful comments in
Karni (1995) and to subsequent discussions with Edi Karni, who is not responsible for its content.
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By way of further Extensions, we have seen in the previous section how calculus
can also be used for the exact analysis of non-differentiable functions, as long as they
are not foo non-differentiable. Consider the most basic result linking a function and
its derivatives, namely the Fundamental Theorem of Calculus, which states that any
globally smooth f{*): R' — R' can be completely and exactly characterized in terms
of its derivatives, via the formula fx) = f{0) + [; f"(®)- dw. Global differentiability is
not required for this formula to be exact: A continuous f{*) can have a finite or even
countably infinite number of isolated kinks and the formula will still hold—we simply
“integrate over the kinks.” We have seen how this feature also holds in multivariate
calculus: Provided the kinks in a multivariate function are “well-behaved,” the Fun-
damental Theorem still links global changes in the function to line integrals and path
integrals involving its partial derivatives. To get the total derivative of a function when
its variables change, we simply paid attention to the directions in which they change,
and used the appropriate left/right partial derivatives.

The application of these ideas in Section 2.7 involved kinks and directional deriv-
atives in the outcomes. However, the mathematics applies equally well to changes in
the probabilities, which we have seen to be the key independent variables of gener-
alized expected utility analysis. Since a good proportion of generalized expected
utility robustness results are obtained by use of line or path integrals over probabil-
ity distributions, they will similarly extend to preferences with sufficiently well-
behaved kinks in the probabilities, by the appropriate use of directional probability
derivatives (“directional local utility functions”).

But by way of Limits, we know that there also exist functions whose kinks are
too nondifferentiable, even for the calculus of directional derivatives. The standard
example of this in economics is the Leontief function L(z,, z;) = min{z,, z,}, which
fails to satisfy the standard relationship between total and partial derivatives at any of
its kink points, even when directions are taken into account, for example

dL(z+o.-t,z+B-1)| dL(z, z) 0L(z,z)
o " #0 327 +B 32F o,pB>0 (68)
and hence (fora=f=1)
dL(z,z) JL(z,z) N dL(z, z) (69)

dz® ozk oz

It turns out that one of the most important non-expected utility functional forms
has Leontief-like outcome kinks that make it only partially amenable to generalized
expected utility analysis. This form, first proposed by Quiggin (1982),* is now known
as the “expected utility with rank-dependent probabilities” or simply rank dependent

* See also Weymark (1981) and Yaari (1987), who each independently proposed a special case of this
functional form (the former in the context of inequality measurement), and Allais (1988).
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form. In our setting of arbitrary finite-outcome distributions P = (x,, pi; . . . X, P,
it takes the form

V(xi, pis.. o5 Xas Pa)
=v(x) - G(p)
+0(5,) - [G(py + p2) - G(p))]
+0(x3) - [G(py + p2 + p3) = G(p) + p2)]

+0(X,) [G(Pr+ -+ Do) = G(PL + ...+ Pua)]
+0(x,) - [GM)=G(py + ...+ p,y)]
=2 &) [GQ -5 -G 2] (70)

where X, p, denotes the lowest outcome in the set {x,, . . ., x,} and its associated prob-
ability, X,, p, denotes the second lowest outcome in {x,, ..., x,} and its probability,
etc. When two or more x; values are equal, ties in defining the variables (X, p,), . . .,
(X, D) can be broken in any manner.

Provided G(-) is differentiable, the rank-dependent form is differentiable in the
probabilities at any P = (x, py; . . . ; X,, p,), and as shown by Chew, Karni and Safra
(1987) (or by equation (14)), has local utility function*

U(x; P)=v(x)- G’( lj‘:li’j)"'z Fau(x;) - [G’(z ij=li’j) _G,(z ;_JIIA’/)]
x €[ X, Xpa] (71)

U(; P) is seen to consist of “piecewise affine transformations” of the function v(-),
over the successive intervals [%;, %), ..., [£ %w1),..." The rank dependent form
exhibits first order stochastic dominance preference if and only if v(-) is an increas-
ing function, which from (71) is equivalent to the condition that U(; P) is increasing
in x at all P. Chew, Karni and Safra (1987) showed that the form is globally averse
to mean preserving spreads if and only if v(-) and G(-) are concave, which is equiv-
alent to U(-; P) being concave in x at all P.*? They also showed that one rank depen-
dent preference function V*(-) is more risk averse than another one W(-) if and only
V*(*) and G*(-) are concave transformations of v(-) and G(-), which is equivalent to
the condition that at each P, is U*(-; P) is some concave transformation of U(*; P).*?

“ For the following equation, define %, (resp. X,,;) as any value lower (resp. higher) than all of the out-
comes in P.

' Le., U(; P) = a;,-0() + by over [%, %..), where a, = G'(ZL,p) and by = . 0(%) [GC'ELp) - G
(Z1p)] are constant over each interval [&, Xi,).

2 From Note 41, v(-) concave is necessary and sufficient for U(; P) to be concave within each interval
[%4, Xis1), in which case G(-) concave (hence G’(+) decreasing) is necessary and sufficient for U(-; P) to be
concave across these intervals.

# Again from Note 41, comparative concavity of V*(-) and v(-) is necessary and sufficient for compar-
ative concavity of U*(-; P) and U(-; P) within each interval [x;, x;,;), in which case comparative concavity

of G*(*) and G(-) (G*'(*) decreasing proportionately faster than G'(")) is necessary and sufficient for com-
parative concavity of U*(-; P) and U(-; P) across these intervals.
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Thus, many of the basic results of generalized expected utility analysis from Section
2.2.2 do apply to the rank dependent form.

However, neither the important relationship @ V(P)/dx; = U'(x;; P)-p; (eq. (15))
linking the local utility function to the outcome derivatives, nor its directional gener-
alization (66), hold for the rank dependent form, even when v(*) and G(-) are fully
(even infinitely) differentiable. The failure of (15)/(66) can be verified by deriving
0 V(P)/dx; from (70), deriving U’(x;; P) (which has distinct left and right derivatives)
from (71), and observing they do not satisfy either (15) or (66). At this point—that
is, in the analyses of rank dependent outcome changes—the calculus of generalized
expected utility analysis finally breaks down.*

It is worth noting that the breakdown of (15)/(66) is not so much due to difficul-
ties with the probability derivatives of the rank dependent form (recall the discussion
following (71)), but rather to difficulties with its outcome derivatives, which exhibit
the kind of Leontief-style kinks that exhibit the failures (68) and (69). For example,
at any distribution P=(...;x;, p5 .. .;x,p5 ... )=( ..5X%ps ... ;% p;...) whose
outcomes x; and x; have a common value, the rank dependent formula (70) will imply

dV(.;x,pis...iX pjs...)
dx®
BV(...;x,p,-;...;x,p,-;...)+aV(...;x,pi;...;x,pj;...)
oxf oxf

#

(72)

that is, the marginal benefit of increasing the common wealth level on the two-state
event {i, j} is not the sum of the marginal benefits in the individual states. For non-
linear G(-), this breakdown of the total derivative formula is generic, and can be shown
to extend to constant-wealth events involving any number of states.*’ In other words,
the calculus of directional outcome changes—and with it the generalized expected
utility formulas (15)/(66)—breaks down for the rank dependent form.*

Should this be interpreted as a fundamental incompatibility between generalized
expected utility analysis and the rank dependent functional form, so that insurance
researchers must abandon either one or the other? No. Recall from the discussion fol-
lowing equation (71) that the two are in large part compatible. In addition, the rank

* For a discussion of this breakdown in the case of general probability distributions F(-), see Chew,
Karni and Safra (1987) and Chew, Epstein and Segal (1991).

* This breakdown occurs in even the simplest of cases: the rank dependent formula (70) implies d V(x,
oy x, "h)dx® = 0'(x) # V'(x) [1 = G('h)] + V(%) [1 = G('h)) = @ VAx, 'h; x, "h)oxf + 3 Vx, 'h; x, 'h)/oxE.

“ One might argue that inequality (72) cannot be a reason for difficulty with the term @ V(P)/dx; in (15),
since for given P there will typically not be any other outcome with the same value as x;, so @ V(P)/ox;
will typically not represent any partial derivative on the right side of (72). But since V(°) treats the dis-
tributions (. .. ; x, p;; .. .) and (. . . ; x;, p/2; x;, p/2; . . ) as identical, every term @ V(P)/ox; =90 V(. . . ; x;,
i ox=d V(.. . x,, pi2; xi, pi2; . . )ldx; always corresponds to the total derivative on the left side of
(72). Although the expression U'(x;; P)- p; from (15) and its directional analog in (66) are both seen to be
additive with respect to such a division and partial shifting of the mass at x;, (72) shows that 9 V(P)/ox;
cannot be.
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dependent form has proven to be very analytically useful,’ and for many questions,
the presence/absence of outcome kinks will have no bearing on the results. When it
does have bearing,*® the choice between using an outcome-smooth preference func-
tion or the rank dependent form is no different than similar choices in other branches
of economics, which treats both calculus and Leontief-type functional forms as indis-
pensable tools.

29 INSURANCE AS A SOURCE OF NON-EXPECTED
UTILITY PREFERENCES

Throughout this chapter, we have explored how the extension from expected utility
to more general non-expected utility preferences does, or does not, affect the
classical theory of insurance. As final topic, we consider the opposite direction
of influence—namely, how an individual’s opportunity to insure against some
risks will generally induce non-expected utility preferences over the other risks they
face.”

The theory of insurance in the presence of uninsurable risks has been well-studied
in the literature.® Consider an individual whose final wealth w = x + y consists of
a foreground risk variable x and an independent background risk variable y, with
respective distributions P = (x, py; ... ; x,, p,) and Q =1, 415 - - - ; Ym»> qm)- The dis-
tribution of w is thus given by the additive convolution P ® Q of these two distrib-
utions, that is, by the distribution

POQ=(x+y,p-qi..Xi+Y; 0G5 X0+ Vs Pn*Gm) (73)

We assume that the individual’s underlying preference function V() takes the
expected utility form, with von Neumann-Morgenstern utility function U(:). The
expected utility of wealth w= X + y can then be written as

47 See, for example, Réell (1987), Quiggin (1982,1993), Ritzenberger (1996) and Bleichrodt and
Quiggin (1997).

* The rank dependent form is sometimes justified on the grounds that its outcome kinks at certainty are
needed to explain the fact that many individuals purchase complete insurance even though it is actuarially
unfair. But from Note 20, we have seen that full insurance is also purchased by all risk averters with smooth
preferences whose personal subjective probabilities are sufficiently more pessimistic than those of the
insurer.

4 The following is an example of the general observation of Markowitz (1959, Ch.11), Mossin (1969),
Spence and Zeckhauser (1972) and others that induced risk preferences are generally not expected utility
maximizing.

% E.g., Alarie, Dionne and Eeckhoudt (1992), Gollier and Pratt (1996), Mayers and Smith (1983),
Nachman (1982), Pratt (1988), Pratt and Zeckhauser (1987), and the chapter by Gollier and Eeckhoudt
(2000) in this volume.
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VroQ=3 Ulxi+y,)-pi-q;= i[iU(xf +y/)-q_f]' pi

i=l j= =l L j=I

1]

Up(x)- p (74)

i=l

where for any distribution Q = (1, ¢1; . . . ; Yu» g), the utility function Ug(+) is defined
by

def m

Up(x) =D Ux+y,)q, (75)

J=1

Note that for any background risk variable y, with fixed distribution Q,, the individ-
ual’s preferences over alternative foreground risks x—that is, their preferences over
P distributions—are given by the expected utility preference function

Vo, (B) = V@ Q)= Y.Up, (x) 7, (76)

Equation (76) is a very important result in the standard expected utility theory of
insurance. It states that as long as the background risk y, is independent and has
a fixed distribution Q,, the individual’s preferences over alternative foreground risks
x will inherit the expected utility form, with Q, influencing the shape, but not the
existence, of the induced von Neumann-Morgenstern Ug(). In other words, fixed-
distribution background risk does not lead to departures from expected utility prefer-
ences over foreground risk variables. Since virtually all real-world insurance policies
leave at least some background risk, equation (76) a provides a crucial justification
for the assumption of expected utility preferences in the analysis of real-world insur-
ance problems.’!

However, say the background variable y constitutes some insurable form of risk.
That is, say the individual has the option of purchasing some form and/or level of
insurance on y, such as full or partial coinsurance, or full or partial deductible. In the
most general terms, we can represent this by saying that the individual can select a
particular variable y,, with distribution

Qm =(yl,maql,m;~-~;ym,maqm,m) (77)

out of some set {J, | ® € Q}, where the index w € Q represents the forms and/or
levels of insurance available to the individual. (Note that not only do the payoffs y;
and probabilities g;,., depend upon ®, but so can the number of different outcomes m,.

' See Pratt (1964, Thm.5), Kreps and Porteus (1979), and Nachman (1982) for analyses of

how various properties of the underlying utility function U(-) do/do not carry over to the derived utility
function Ug(").
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This reflects the fact that insurance can sometimes affect the number of different pos-
sible outcomes faced.)

Given this, the individual’s preferences over foreground risks x (i.e., P distribu-
tions) are represented by the induced preference function

def n
V*(P) = I;Iuleaé( V(P ® Q(x)) = ‘V(P ® Qu)(l’)) = ZUqup)(xi) Pi (78)
i=l
where
def
®(P) = argmax V(P®Q,) (79)
weQ

Observe how the “insurable background risk™ preference function V*(-) from (78)
differs from the “fixed background risk” function Vg,(-) from (76). Since the choice
of P can now affect the background risk distribution Qp, and hence the function
Uq,,»\("), the preference function V*(-) over foreground risk distributions P no longer
takes the expected utility form, even though the individual’s underlying preferences
over wealth distributions are expected utility.

Such preferences depart from linearity in the probabilities in a very specific direc-
tion. Any induced preference function V*() from (78) must be quasiconvex in the
probabilities: that is, if the distributions P = (x,, p; . . . ; x,, p,) and P* = (x*, p*;
... x%, pk) satisfy V¥(P) = V*(P*), then

V*A-P+(1-1)-P¥<V*P)= V*(P* forallAe[0,1] (80)
where the A:(1 — A) probability mixture of P and P* is defined by™

7&~P+(1—?»)~P*d§(xl,7vp1;-.-;xn,l-pn;xf“,(l—l)pi*;--.;xf*,(l—l)ﬁii)
(81)

To see that V*(-) will be quasiconvex in the probabilities, note that since W) is
linear in the probabilities, we have V(AP + (1 —A) - P¥)=A- V(P)+(1 —A) - V(P¥)),
so that

V*-P+(1-1)-PH="V(A-P+(1-1)-P*)® Quurrsi-rp")
=1 V(P ®Quinrsi-nps) + 1 =1) - V(P*® Quirprii-nps)
<A ngV(Pcan)m —7L)~r£ag'\/(P*®Qm)
=A-V*P)+(1-L)- V*(P*
=V*(P)= V*(P* (82)

%2 Thus, A+ P + (1 — 1) P* is the single-stage equivalent of a coin flip that yields probability A of winning
the distribution P and probability (1 — A) of winning P*.
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In other words, the insurability (even partial insurability) of background risk induces
preferences over foreground risks that depart from expected utility by exhibiting
a weak (and what could well be strict) preference against probability mixtures of
indifferent lotteries.

In those situations where the distribution Q,, is smoothly indexed by ® (e.g., coin-
surance), and when the optimal choice ®(P) varies smoothly in P, induced prefer-
ences will turn out to be smooth in the probabilities. In such cases, the special structure
of (78) allows us to apply the envelope theorem to obtain a class of very powerful
results. Since the first order condition for the maximization problem (79) is

= P —
0="VP®Qupriw)— V(P ®Que) for all do such that

= ZUQw(P)nﬂn o) pi— ZUQW»(X:') p oP)+doeQ
i=1 i=1

(83)
it follows from (78) that the local utility function U*(-; P) of "V*(*) is given by
U*(x;P)= OV*®) _ dz;Ume(xf)'Pf
7% 9prob(x) d prob(x)
=U, (x) + dz,:l UQu: (X,-) : pl‘ . am(P)
=~ G dw | dprob(x)
w=0(P)
= Ugop ()= QU +y,(0) - ¢;(0) (84)

J=1

This implies, for example, that concavity of U(-) will be inherited by the local utility
function U*(; P) at every P, so that risk averse underlying preferences will imply
a risk averse preference function V*(-) over foreground risks. Similarly, the property
of third order stochastic dominance preference (positive third derivative of U(:))” is
inherited by the local utility functions U*(-; P), and hence by V*(-). Thus, although
the property of expected utility maximization is not robust to the existence of
insurable background risk, properties such as risk aversion and third order stochas-
tic dominance preference can be robust. Further analyses of such induced preferences
can be found in Kreps and Porteus (1979), Machina (1984) and Kelsey and Milne
(1999).

2.10 CONCLUSION

Although the reader was warned that this robustness check would be more “broad”
than “deep,” even so, it is of incomplete breadth. There are several other important

3 E.g., Whitmore (1970).
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topics in the theory of insurance that remain unexamined. One is the effect of changes
in risk (as opposed to risk aversion) upon the demand for insurance. This has been
studied in the expected utility framework by Alarie, Dionne and Eeckhoudt (1992).
The results of Machina (1989) on the robustness of the classic Rothschild-Stiglitz
(1971) comparative statics analysis suggests that this might be another area in which
standard expected utility-based results would generally extend.

Another potentially huge area is that of insurance under asymmetric information.
This has already played an important role in the motivation of much of insurance
theory, as for example, in the theory of adverse selection (e.g., Akerlof (1970), Pauly
(1974), Rothschild and Stiglitz (1976)), and the theory of moral hazard (e.g., Arrow
(1963,1968), Pauly (1968), Dréze (1986), Shavell (1979)).>* Although this work has
been primarily built on the basis of individual expected utility maximization, many
of its classic results do not depend upon the expected utility property and hence can
be expected to be robust. For example, the classic “lemons problem” of Akerlof (1970)
derives from the effect of adverse selection on beliefs (i.e., actuarial or subjective
probabilities) and hence is presumably quite robust to whether risk preferences are or
are not expected utility. Similarly, the well-known Rothschild and Stiglitz (1976)
analysis of pooling versus separating equilibria in insurance markets is conducted
in the Hirschleifer-Yaari diagram, and although they do assume expected utility max-
imization, their results can be seen to follow from risk aversion and outcome-
convexity of indifference curves.”

A final area is that of insurance under ambiguity, i.e., the absence of well-defined
subjective probabilities. Although formal research on ambiguity and insurance has
already begun (e.g., Hogarth and Kunreuther (1989,1992a,1992b)), the nature of many
non-expected utility models of choice under ambiguity®® departs sufficiently from
classic expected utility theory that the robustness of standard insurance results to
ambiguity is still very much an open question.

Important papers on non-expected utility and insurance, from various perspec-
tives, include Cohen (1995), Doherty and Eeckhoudt (1995), Gollier (2000), Karni
(1992, 1995), Konrad and Skaperdas (1993), Schlesinger (1997), Schmidt (1996),
Schlee (1995) and Viscusi (1995). Non-expected utility researchers have been, and
will continue to be, beholden to the fundamental contributions of expected utility the-
orists in the study of insurance. For the most part, the increased analytical and empir-
ical power that non-expected utility models and analysis can contribute to insurance
theory will not require that we abandon or the many fundamental and foundational
insights we have received from the expected utility model.

% See also the chapters by Winter (2000) and Dionne, Doherty and Fombaron (2000) in this volume.

%5 The expected utility property only enters the Rothschild-Stiglitz analysis in their eq. (4) (p. 645),
which gives conditions for an optimal insurance contract. As in the above analyses, these first order con-
ditions will continue to hold for general (risk averse, outcome-convex) non-expected utility preferences,
with individuals’ von Neumann-Morgenstern utility functions replaced by their local utility functions.

% See, for example, the survey of Camerer and Weber (1992).
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APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 1. For notational simplicity, we can equivalently rewrite (28) as

m[%)l(]'\/,'-(co+p~z~) i=1,2 (A.1)
pelo,

where ¢, = wo — A+ E[], p=(l-0a),andz = A-E[€] - ¢ with cumulative distribution
function F3(*). Proving the theorem is then equivalent to proving that if p* is the largest
solution to (A.1) for V(*), and p* is the smallest solution for Vy(*), then p* < p?%,
with strict inequality unless p* =

For all p € [0, 1] and ¢ 2 ¢, define the preference functions

¢i(pa C) = “/i(F'c+p~z‘) i= 1, 2 (A2)

where F.,,:(*) is the cumulative distribution function of the random variable ¢ + p -Z.
By construction, each function ¢(p, ¢) is continuously differentiable and possesses
indifference curves over the set {(p, ¢) | p € [0, 1], ¢ 2 ¢} which are “inherited” from
Vi(*), as in Figure A.1. Since first order stochastic dominance preference ensures that
00,p, ¢)/dc > 0, these indifference curves cannot be either “backward bending” or
“forward bending,” although they can be either upward and/or downward sloping.
Note that the horizontal line ¢ = ¢, in the figure corresponds to the one-dimensional
feasible set in the maximization problem (A.1). In other words, ¢,(p, ¢,) equals the
objective function in (A.1), so p* and p* are the largest and the smallest global maxima
of ¢,(p, ¢) and da(p, co), respectively.

We first show that, at any point in the set {(p, ¢) | p € (0, 1), ¢ = ¢,}, the marginal
rates of substitution for the preference functions ¢,(p, ¢) and ¢,(p, ¢) must satisfy:

- _ aq)l (P» C)/ap _ 8‘1)2 (p’ C)/ap =
MRS, (p, c)= 20,0, 0)/ac > 30,0, /30 = MRS, (p, c) (A3)

To demonstrate this inequality, assume it is false, so that at some such point (p, c) we
had”’

_90:p,0)/op _, . 9%:(p,0)/3p

<k< A4
30:(p, c)/ac 30, (p, 0)/dc (A4)

for some value k. Since k could have any sign, ¢ — p -k could be either negative or
nonnegative.

If ¢ — p-k < 0: In this case, ¢ + p-z > 0*® implies p-z + p-k > 0 and hence z + k> 0,
which implies
%7 From here until the end of the paragraph following (A.8), all equations and discussion refer to this

point (p, ¢). . . . N ~
¥ Sincec+p-z2cotpz=wo—ME[]+p-(AE[€]-€)=p-(wo—€)+ (1 —p)-(wy— A E[€]), non-
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0< [@+k) Ui(c+p - z; Frups) - dF. (2) (A.5)
(A.5), (15) and (A.2) then imply

[z Ullc+p-2Foips)-dF:(2)  9Vi(c4p-2)fop  0a(p, )/dp

- JUsc+p -z Frup:)-dFi(z) T Vi(c+p Dfac s (p, o)foc
(A.6)

k>

which is a contradiction, since it violates (A.4).
If ¢ — p-k 2 0: In this case, (A.4), (A.2) and (15) imply

OVi(Fopp:)fdp [ Ullc+p -z Fops)- dF:(2)

k>- .
IVi(Fup:)f0c [Ullc+p -2 Frup:) - dF:(2)

(A.7)

so that we have

Ulc+p-z; Fc+p-5)
Ul'(C—P -k Fc+p-.-‘)
[ epy Ut 5 Fon)

z4k>0 e=p-k; E‘*P'f)
Ullc+p-z; Fip:)
Ullc—p-k; Foip:)

Us(c+p-z; Fesp:)
Uilc—p ks Foupz)
Uy(c+p-z; Foups:)
U(c—p-k; Fc+p-5)

Uj(c+p-z; Fopz)
Ui(c=p-k; Frup:)

o$j(2+k)-

-dF:(z)

-dF: (z)

+ [ G+ -dF.(2)

z+k<0

< I (z+k)

z+k>0

+ j (z+k)-

-dF:(2)

-dF: (2)

= j (z+k) -dF.(2) (A-8)

where the strict inequality for the “z + k& > 0” integrals follows since in this case we
have ¢ + p-z > ¢ — p-k, so comparative risk aversion implies 0 < Uj(c + p-z;
Fop)Ul(c = prk; Fripz) < Uxc + pz; Frps)/Uc — p-k; Foip2). Strict inequality for
the “z + k < 0” integrals follows since in this case we have ¢ + p-z < ¢ — p-k, so the
comparative risk aversion condition implies Uj(c + p-z; Fo.(p2)/Ui(c — p ks Feipz) >
Uic + p-z; Fop)/Uyc — p-k; Foipz) > 0, but these ratios are each multiplied by the
negative quantity (z + k). This once again implies (A.5) and hence (A.6) and a con-
tradiction. This then establishes inequality (A.3).

negativity of ¢ + p-z on the set {(p, ¢) | p € [0, 1], ¢ = ¢,} follows from nonnegativity of w, — ¢ and w, —
A-E[£). Note that since ¢ 2 ¢, > 0, the condition ¢ — p-k < 0 also implies that p must be nonzero, and
hence positive.
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Inequality (A.3) implies that, throughout the entire region {(p, ¢) | p € (0, 1),
¢ 2 ¢y}, leftward movements along any ¢,(p, ¢) indifference curve must strictly lower
0,(p, ¢), and rightward movements along any ¢,(p, ¢) indifference curve must strictly
lower ¢,(p, c).

Assume p% < p*, as illustrated in Figure A.1. In this case, consider the point (p%,
¢o). As we move rightward along the ¢,(p, ¢) indifference curve that passes through
this point, the value of ¢,(p, c) must strictly drop, so that ¢,(p, c) strictly prefers the
point (p%, ¢,) to every point on the curve that lies o the right of (p%, co). But since
(p%, co) is a global optimum for ¢,(p, c), this indifference curve must lie everywhere
on or above the horizontal line ¢ = ¢,. Since dd,(p, ¢)/dc > 0, this implies that ¢,(p,
c) strictly prefers the point (p%, cy) to every point on the line ¢ = ¢, that lies to the
right of (p%, ¢,), which contradicts the assumption that there is a global maximum p*
which exceeds (i.e., lies to the right of) p*. This, then, establishes that p* < p*.

To complete the proof, we must rule out p* = p% unless p* = 1. In the case p* <
1,CO.2 and A > 1 imply p% < 1 so we would have 0 < p% = p* < 1. However this case
of identical interior optima would imply that both individuals’ indifference curves had
zero slope at the interior point (p*, ¢) = (p%, ¢;), which violates (A.3). Q.ED.

Proof of Theorem 2. For notational simplicity, define

A - E[max{¢ - o, 0}] + £ — max{¢ — o, 0}

1

ne, o)

k~jM(e—a)~dF7(e)+a if¢2o
={ (A.9)
7L~L (e-a)-dFy(e)+¢ ift{<o

This implies n(¢, o) = n(c, &) if € 2 o, and N(¢, &) < N(a, @) if € < 0. We also have

an(f,a): —X-J:l-dF7(e)+1=—l-[1—F7(oc)]+1 if¢{>a
da —k-JaMl-dF?(s) =A[I-F@ iff<a

Co \\ _/\/.\
0 p% — pt

p

(A.10)

Figure A.1 Indifference Curve for the Preference Function ¢,(p, ¢)
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For all o € [0, M] and w = wy, let F,,(-) denote the cumulative distribution function
of the random variable

w—\ - E[max{? —a, 0}] - 7 + max{? -, 0} = w—(/, o) (A.11)
and define the preference functions
(o, w)=Vi(F,,) i=1,2 (A.12)

By construction, each function ¢(c, w) is continuously differentiable and possesses
indifference curves over the set {(a, w) | o € [0, M], w = wy} which are “inherited”
from V,-(~), as in Figure A.2. Since first order stochastic dominance preference ensures
that d,(ct, w)/ow > 0, these indifference curves cannot be either “backward bending”
or “forward bending,” although they can be either upward and/or downward sloping.
Note that the horizontal line w = wy in the figure corresponds to the one-dimensional
feasible set in the problem (35). In other words, ¢, w,) equals the objective func-
tion in (35), so o* and a% are the largest and the smallest global maxima of ¢,(o, wy)
and (0, wy), respectively.

We first show that, at any point in the set {(a, w) | € (0, M), w = wy}, the mar-
ginal rates of substitution for the preference functions ¢,(a, w) and (0, w) must
satisfy:

99, (o, w)/oa 99, (ct, w)/ oo,

MRS, (o, w)=— 30, (0, w)/ow >~ 00, (a, w)/ow

= MRS, (at, w) (A.13)

To demonstrate this inequality, assume it is false, so that at some such point (¢, w)
we had®

a¢l (a’ W)/aw a¢2 (a5 W)/aW
for some k. Since k could have any sign, & + A-[1 — F(at)] could be either nonposi-
tive or positive.

Ifk+ A-[1 = F(a)] < 0: In this case, note from (A.10) that at the point (o, w), a dif-
ferential increase in o of do. combined with a differential change in w of dw = —A-
[1 — Fi(ot)]- do has zero differential effect on w —n(€, o) for each € < a, and a strictly
negative differential effect on w — n({, ) for each ¢ > o. Since a € (0, M) so that
prob(€ > o) > 0, this implies a strictly negative differential effect on V,(F,,.). Hence,
the value of dw necessary to have zero differential effect on V,(Fa,w), must be greater

% From here until (A.18), all equations and discussion refer to this point (o, w).
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than —A-[1 — Fi(a)] - do, and hence greater than k- do. This implies that MRS, (o, w)
> k, which is a contradiction since it violates (A.14).

If k+ A-[1 = Fi(o)] > 0: From (A.10), this implies that £ — oan(€, a)/da. > 0 for
¢ < a. (A.14), (A.12) and (15) imply

_ Vi (Fy,)/00. B J(- an;i;a)) Uitw = (e, o) For) - A5 ) (A15)
 ViEL)ow Jutow=m(e, 0 F)-dFi (0) '
so that
o[k e Hior o 7 40
() e
) Bt
[ S o
(o) e
e e
(1) e
) e
i) Gt
-l (k ) anéﬁa)j ' ILJJz2 ((:vv - Rfiz)) ?)) A0 (A.16)

Note that the “€ > o integrals in the fourth and sixth lines of (A.16) are exactly equal.
The strict inequality in (A.16) derives from the “¢ < o integrals in these two lines,
since for these integrals we have: (i) w — n({, o) > w — (0., ct), so the comparative
risk aversion condition implies U¥w — n(€, o))/ U w — n(a, o)) > Ui(w — n(¢,
o))/ Ui(w — n(a, o)) > 0; (ii) the term (k — an(€, o)/dav) is positive; and (iii) since o
€ (0, M), the distribution Fi(-) assigns positive probability to the range € € [0, ).
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From (A.16) we have

(e, ,
0<] [k - —“%) Ulw=n(t, 0); Fo) - dF5 (0) (A.17)
and hence
‘s J- anéf;a) : UZ,(W - T](E, (X), Fu.w) ‘ dE (f) ~ a‘\/z(Fu‘w)/aa o a¢2(a’ W)/a(x
[Usw=m(t,a); Fon)-dF, (1) 9 Va(Fuu)/dw  30:(ct, w)/ow

(A.18)

which is a contradiction since it violates (A.14). This then establishes inequality
(A.13).

Inequality (A.13) implies that, throughout the entire region {(a, w) | o € (0, M),
w 2w, }, leftward movements along any ¢,(a., w) indifference curve must strictly lower
0,(0, w), and rightward movements along any ¢,(a., w) indifference curve must strictly
lower ¢,(o, w).

Assume o} < %, as illustrated in Figure A.2. In this case, consider the point (ot%,
wy). As we move rightward along the ¢,(o, w) indifference curve that passes through
this point, the value of ¢,(o, w) must strictly drop, so that ¢,(c, w) strictly prefers the
point (%, wy) to every point on the curve that lies to the right of (a%, w,). But since
(a%, wy) is a global optimum for ¢,(at, wy), this indifference curve must lie everywhere
on or above the horizontal line w = w,. Since d¢,(ct, w)/ow > 0, this implies that
0,(0, w) strictly prefers the point (0%, wy) to every point on the line w = w, that lies
to the right of (a*, wy), which contradicts the assumption that there is a global
maximum o} which exceeds (i.e., lies to the right of) a¥. This, then, establishes that
ot < ak

To complete the proof, we must rule out o* = o% unless a* = M. In the case o*
<M, DE.2 and A > 1 imply a% > 0, so that equality of a* and o% would imply 0 <

d

Figure A.2 Indifference Curve for the Preference Function ¢,(c., w)
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o} = o¥ < M. However, this case of identical interior optima would imply that both
individuals’ indifference curves had zero slope at the interior point (a*, wy) = (0¥,
wy), which violates (A.13). Q.E.D.

Proof of Theorem 3. For all o € [0, M] and w > w,, define the probability
distribution

P(x,wE(WO_Z(a)—aaﬁ;WO—ayl—ﬁ) (Alg)
and define the preference functions
o0, w)=Vi(Ry,) i=1,2 (A.20)

By construction, each function ¢,(ct, w) is continuously differentiable and possesses
indifference curves over the set {(a, w) | o € [0, M], w = w,} which are “inherited”
from V"), as in Figure A.3. Since first order stochastic dominance preference ensures
that d,(0,, w)/dw > 0, these indifference curves cannot be either “backward bending”
or “forward bending,” although they can be either upward and/or downward sloping.
Note that the horizontal line w = wy, in the figure corresponds to the one-dimensional
feasible set in the problem (59). In other words, ¢, wy) equals the objective func-
tion in (59), so a* and o} are the smallest and largest global maxima of ¢,(c, wy) and
(0L, wy), respectively.

We first show that, at any point in the set {(a, w) | & € (0, M), w = w,}, the mar-
ginal rates of substitution for the preference functions ¢,(ct, w) and (0, w) must
satisfy:

90, (0, w)/oar 90, (ct, w)/do

MRS, (o, w)=— 30,0, w)/aw <= a0, (a, w)/aw

= MRS, (a, w) (A.21)

From (A.20) and (15), we have

991 (o, w)/oar  (1+£°()) - Ul(w — &) — ot; Py) - p+ Ui (w—04; By) - (1- P)

00,0, w)/ow Ul(w—£(e)—0; Py,) - §+U{(w—0;Py,,) - (1- p)
_ (o)
i +( Uiw—; Pu) ),(1—5)
Uw-{a)-a;P,,) D
<l+ )

Uiw-ao;P,,) l-p
+(U;(w—e(a)—a;Pa,w))'( P )

__9%(a, w)/do,
T 00,(cn, w)/ow (A22)



The Robustness of the Classical Insurance Paradigm 91

0 of «—> o M
a
Figure A.3 Indifference Curve for the Preference Function ¢,(c, w)

where the strict inequality follows since (i) w — o > w — €(at) — o so the comparative
risk aversion condition implies U; (w — a; Pg,, )/ U5 (w — €(a) — o; Py,,) > Ui(w — o
P..)/Ui(w — €(a) — o; Pg,) > 0; (ii) these ratios occurs in denominators; and (iii)
(o) <0.

Inequality (A.21) implies that, throughout the entire region {(o, w) | & € (0, M),
w = wy}, rightward movements along any ¢,(c, w) indifference curve must strictly
lower ¢,(0, w), and leftward movements along any ¢,(o, w) indifference curve must
strictly lower ¢,(o, w).

Assume a¥ < o%, as illustrated in Figure A.3. In this case, consider the point (o¥,
wp). As we move rightward along the ¢,(at, w) indifference curve that passes through
this point, the value of ¢,(o, w) must strictly drop, so that ¢,(ct, w) strictly prefers the
point (0¥, wy) to every point on the curve that lies to the right of (a*, w,). But since
(0%, wp) is a global optimum for ¢,(a, wy), this indifference curve must lie everywhere
on or above the horizontal line w = w;. Since dd,(a, w)/ow > 0, this implies that ¢,(ct,
w) strictly prefers the point (a*, wy) to every point on the line w = w; that lies to the
right of (0¥, wy), which contradicts the assumption that there is a global maximum
o% which exceeds (i.e., lies to the right of ) a*. This, then, establishes that o < o

To complete the proof, we must rule out o* = o% unless either o* = 0 or o = M.
If neither of these cases hold, we have a* > 0 and o% < M, so that equality of o* and
o would imply 0 < a* = a¥ < M. However, this case of identical interior optima
would imply that both individuals’ indifference curves had zero slope at the interior
point (o, wo) = (a¥, w,), which violates (A.21). Q.E.D.
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3 Optimal Insurance Design:
What Can We Do With and
Without Expected Utility?*

Christian Gollier

University of Toulouse

Abstract

This paper provides a survey on optimal insurance when insurers and policyholders
have symmetric information about the distribution of potential damages. When trans-
action costs are proportional to transfers, it is shown that 1) there is at least one state
of the world where no indemnity is paid, 2) the indemnity schedule is deterministic,
implying in particular that umbrella policies are optimal, and 3) the optimal contract
contains a straight deductible. This is proven without assuming expected utility. The
use of expected utility generates additional results, e.g., in the case of nonlinear
transaction costs.

Keywords: Optional insurance, symmetric information, transaction costs, expected
utility, non expected utility.
JEL Classification Numbers: D80, G22.

3.1 INTRODUCTION

A well-known result is that it is socially efficient for a risk neutral agent to fully insure
other risk-averse agents in the economy. This optimal risk-sharing arrangement allows
for the elimination of costly risk premia that would have been borne by some risk-
averse agents otherwise. In competitive markets for risks, that would be an equili-
brium allocation if all parties would have the same information about the distribution
of existing risks and if there would not be any transaction costs. This last hypothesis
is clearly unrealistic, as insurance companies usually bear costs that amount up to
30% of their cash flows on lines as standard as automobile insurance or homeowner

* 1 am grateful to Louis Eeckhoudt and Harris Schlesinger not only for their useful comments
on this chapter, but also for their continuing efforts to push me in this field.
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insurance. Marketing costs, management costs and costs to audit claims are the three
main sources of expenses for insurers.

Because these costs depend upon the type of contracts linking the insurer to
its customers, it is not clear anymore that the optimal arrangement is full insurance.
A reduction in indemnity paid in some states of the world has now the additional
benefit to reduce transaction costs, which in turn generates a reduction in the
insurance premium. The main problem that is addressed in the literature on optimal
insurance is to determine the states of nature under which it is best to reduce
indemnities. Symmetrically, starting from no insurance, one can address the question
of which would be the states of the world that agents would like to insure first?
Insurance indemnities are the most desirable, at the margin, where the wealth level
is the smallest, if marginal utility is decreasing. Thus, when the marginal cost of
insurance is constant, agents who are seeking for costly insurance should select a
policy in which large losses are better indemnified than smaller losses, in absolute
terms. This is the intuition behind the optimality of a straight deductible, a result
first proven by Arrow (1963, 1971, 1974). A straight deductible is the insurance
clause that maximizes the minimum final wealth level with a given insurance budget.
It organizes a best compromise between the benefits of insurance coverage for
risk-averse policyholders, and the willingness to limit (proportional) transaction
costs.

Under expected utility (EU), the inverse relationship between marginal utility and
wealth explains why it is better to cover the largest loss first.! But Zilcha and Chew
(1990), Karni (1992), Schlesinger (1997) and Gollier and Schlesinger (1996) have
shown that the Arrow’s result is robust to any non-expected utility decision model that
satisfies the second-degree stochastic dominance property. The objective of this paper
is to show how several results that exist in this literature can be obtained under con-
ditions that are much weaker than EU. As an example, when an agent faces several
sources of risk, we know from Gollier and Schlesinger (1995) that it is optimal under
EU to cover them through an “umbrella policy”, i.e., a policy in which the indemnity
is a function of the aggregate loss alone. We show in this paper that this remains true
when EU is replaced by second-order stochastic dominance.

The results described above just rely on the concept of risk aversion, not on its
measurement or intensity. However, a specific decision model is required when one
turns to the question of the size of the optimal deductible. Clearly, it depends upon
the degree of risk aversion of the policyholder. Depending upon how we model risk
aversion, we will obtain different answers to this question. Other limits of a model-
free analysis are when the insurer is risk-averse, or when one examines the optimal
insurance contract with transaction costs that depend upon the size of the indemnity
in a nonlinear way. In any of these cases, a more precise description of preferences
must be made. Because of its long anteriority, most of the existing researches in this

' Eeckhoudt and Gollier (1995) provide a complete analysis of the insurance problem under EU.
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field have been performed by using the expected utility model. We will cover this
literature in this survey. More recently, new progresses have been made by extending
the analysis to non-expected utility models.” These progresses are too recent to be
surveyed.

3.2 THE BASIC FRAMEWORK
3.2.1 The Model

There isaset {0, . . ., 67} of potential states of the world in the economy.* The uncer-
tainty is represented by a vector of probabilities (,, . . . , T7) where &, = Prob[é =0]
>0, and Zm, = 1. All agents in the economy agree on these probabilities. Finally, the
realization of  is perfectly observable.

A risk-averse agent faces a risk of aggregate loss x(é) to his initial wealth w. The
market provides insurance contracts for this risk. A contract is characterized by a
premium P and indemnity schedule I(é). By selling this contract, the insurer gets P
ex ante, and he promises to pay /(8,) if state 6, occurs ex post, t=1,..., T.

Insurers are all identical and risk-neutral. They face a deadweight loss ¢(/) when-
ever an indemnity 7 is paid. Function c¢ is nondecreasing and is not a constant. We
assume perfect competition on the insurance market. Therefore, the insurance tariff
is given by the following equation:

P=E[1(8)+c(1(8))] )
The final wealth w, of the policyholder purchasing policy (P, I) is
w;(8)=wy —x(8)+1(8)- P, @

in state 0.

Finally, one generally assumes that insurance markets are constrained to provide
policies with nonnegative indemnity schedules: 7(6) > 0 for all 8. In other words,
ex-post increases in premium are prohibited, since a negative indemnity can be seen
as an ex-post premium. There is a technical justification for imposing this constraint.
Indeed, the condition ¢’ > 0 is not realistic when the indemnity is negative. In this
case, an increase in the transfer would reduces transaction costs!*

% See for example Eeckhoudt and Doherty (1995) and Chateauneuf, Dana and Tallon (1997).

3 For simplicity, we assume a finite number of states. All results remain true under continuous or mixed
distribution functions.

4 Gollier (1987a) allows for negative indemnities by assuming that transaction costs depend upon the
absolute value of the indemnity. Surprisingly enough, in most cases, removing the constraint on the non-
negativity of claims has no effect on the optimal contract.
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3.2.2 The Concepts of Risk Aversion

The attitude towards risk of the policyholder is characterized by a real-valued prefer-
ence funct10nal V(w( 6)) This means that risk w,,(e) is preferred to risk w,z(e) if and
only if V(w,l(e)) is larger than V(w,z(e)) If V is linear in probabilities—a condition
that can be derived from the independence axiom—, the model simplifies to EU.

In most of this paper, two basic assumptions will be made on the attitude towards
risk of the policyholder. First, we assume that it satisfies first-degree stochastic dom-
inance (FSD). That is, if ﬁ/(é) dominates w(é) in the sense of FSD, then the policy-
holder prefers w(6) to w(8): ¥(W(6)) > V(w(B)). A FSD deterioration in risk is obtained
by transferring probability masses from higher wealth states to lower wealth states. It
can also be obtained by reducing wealth in any state of the world. Under EU, the FSD
property holds if and only if utility is increasing in wealth.

The second assumption on the preference functional ¥ is that if one risk w(e) is
a mean-preserving contraction (MPC) of another risk w(G) then the agent prefers the
first to the second: V(w(e)) > V(w(@)) Risk w(9) dominates risk w(G) in the sense of
a MPC if w is obtained from w by adding a white noise to it:

w(0) =, w(6)+€(6),

where E| [e(é) | w( é) =z] = 0, for all z. Thus, the MPC property means that the agent
dislikes any zero-mean lottery that would be added to his final wealth. This is a strong
notion of risk aversion. It is a generalization of weak risk aversion, which is meant as
the preference of the expectation EX over the random variable X. The strong and the
weak notion of risk aversion are equivalent in the EU model. They are both equivalent
to the concavity of the utility function. But they are in general two separate concepts
for more general preferences functionals. In order to derive results on optimal insur-
ance policies, we will need to rely on the strong concept of risk aversion.’

3.23 On the Optimality of Partial Insurance

Before going to the specific analysis of the optimal insurance policy design, it is
noteworthy that it is never optimal to get a positive indemnity in all states, because
of the presence of transaction costs. More precisely, combining FSD with ¢’ > 0 yields
the following result:

Proposition 1. Suppose that ¢’ is positive. If the preference functional V satisfies the
first-degree stochastic dominance property, then there exists at least one state of nature
in which no indemnity is paid to the policyholder.

5 Cohen (1995) provides an excellent analysis of the various definitions of risk aversion and their con-
nexions to each others.
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Proof. Suppose by contradiction that /(8) > 0 for all 6. Consider an alternative con-
tract with (8, k) = I(8) — k for all 6. The premium to pay for this new contract is

P(k) = E[1(8, k)+c(I(6, k)]
Observe that
P'(0)=-1-E[c’(1(8))].

The final wealth with the new contract is W (8, k) = wy — x(6) + 1(6, k) — P(k) in state
0. Differentiating with respect to k yields

Bl 5(0) = Ele/(1(B
S = -1-P'0)= E[(1@)],

which is positive by assumption. Since this is true for every 6, we proved that raising
k from zero improves the distribution of final wealth in the sense of FSD. This
concludes the proof. ]

Because indemnities generate deadweight losses, a uniform reduction in them
across states has no other effect than to reduce these costs. The reduction in the indem-
nity in each state is entirely offset by the parallel reduction in premium. This uniform
reduction will thus be done as long as it does not violate the constraint on the non-
negativity of indemnities. In conclusion, this constraint will be binding in a subset of
states of positive measure.

33 THE CASE OF LINEAR TRANSACTION COSTS

In this section, we assume that costs are linear with respect to the level of the indem-
nity: ¢(I) = ¢y + Al It implies that the insurance tariff is linear in the actuarial value
of the policy:

P=c,+(1+\)E[1(8)]

Parameter ¢, can be seen as an entry fee for the policyholder. It has no other effect
on the optimal insurance contract than the one generated by the induced reduction in
wealth, which in turn affects the attitude towards risk. Notice also that if ¢, is too
large, the agent may prefer not to buy coverage at all. Two main results are obtained
in this framework: the inefficiency of random indemnity schedules, and the efficiency
of deductible policies among deterministic schedules.
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3.3.1 Deterministic Indemnity Schedule

Insurance is a device to reduce risk. Therefore, it is not a surprise that insurers will
always pay a non-random indemnity in each state of nature. This is the substance of
the following result:

Proposition 2. Consider the case of linear costs. Suppose that the policyholder is
risk-averse in the sense that V satisfies the MPC property. Then the optimal indem-
nity depends upon the state of nature only through the aggregate loss suffered by the
policyholder in that state: [x(8,) = x(6,) = 1(0,) = I(6,)].

Proof. Suppose by contradlctlon that x(8,) = x(0,), but 1(6,) < I(8,). Consider another
policy (P I) where I(G) 1(0) for all 6 # 6,, 6,, and

m,1(8, )+n21(62)
w+ T,

16,)=1(6,)=

It implies that the actuarial value of the policy is unchanged. Therefore, P equals P.
Let wA(8) be the final wealth with the new contract. Let also W denote w/(0,) =
W/(6,). We now prove that the risk w,((-)) is a MPC of risk wf(e) To do this, let us
show that wf(e) is obtained from wf(e) by adding a white noise 8(9) to it. Using this
condition as a definition for €, we obtain that

o g(6) | W) = W is degenerated at zero; and

. e(é) | W/(é) =W takes value e, with probability , and value e, with

T + T,
probability , With
T, + 7,
T
€ =- : (1(92)—1(9l)),
T+ T,
and
T
€ 1 (1(92)—1(91))~
1+ T,

Observe that the expectation of s(é) conditional to any realization of W,((:))
is zero. Therefore w,(6) dominates w,(6) in the sense of MPC. Thus, all risk-
averse policyholders dislike the old contract, which may not be efficient. |
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This Proposition means that the indemnity is a deterministic function of the aggre-
gate loss. Adding noise to it would be detrimental to risk-averse policyholders,
without increasing profits for insurers. If there are two states in which the aggregate
losses are the same, but the indemnities differ, then there exists another contract that
dominates the first in the sense of MPC. Consequently, only the aggregate loss suf-
fered by the policyholder matters to determine the indemnity to be paid. This princi-
ple is usually violated in the real world. Indeed, it implies that the agent should not
separately insure each risk that he faces. Rather, an “umbrella” policy is optimal, as
shown by Gollier and Schlesinger (1995) in the specific case of expected utility. This
result is obvious when the different risks faced by the agent are correlated. In parti-
cular, negative correlation allows for an homemade insurance that saves on external
insurance costs.

To illustrate the benefit of an umbrella policy in the case of independent risks, let
us consider the following numerical example. The agent faces two risks of loss, X,
and X,. These random variables are independent and identically distributed. They take
value 0, 50 and 100 with equal probabilities. Observe that there are 9 states of nature
in this economy. Let us also assume that ¢, = 0 and A = 0.5. Consider first the strat-
egy to purchase two separate contracts, one for each risk. Consider in particular sep-
arate contracts with a straight deductible of 50. This means that an indemnity of 50
is paid on a contract only if the worst loss occurs for the corresponding risk. The actu-
arial value of the contract is 50/3, the premium is 25, and the total insurance expense
is 50. The distribution of final wealth is represented in Figure la. With probability
1/9, the agent incurs no loss, and he finishes with wealth w, — 50, the initial wealth
minus the insurance expense. With probability 4/9, he suffers two losses of at least
50, ending up with wealth wy, — 150, taking into account of the premiums paid, and
the retained loss (50) on each risk. Finally, with probability 4/9, he suffers a loss on
one risk, and no loss on the other risk, yielding final wealth w, — 100. By Proposition
1, this insurance strategy may not be optimal. Indeed, there are four states in which
the aggregate losses are the same, but the aggregate indemnities differ. In particular,
an aggregate loss of 100 may result from two partial losses of 50, or from a single
loss of 100. In the former case, no indemnity at all is paid, whereas an indemnity of
50 is paid in the latter case.

Consider alternatively an umbrella policy with a deductible on the aggregate loss
amounting to D = 500/6. One can verify that the premium for such a contract is 50,
and that the distribution of final wealth is as in Figure 1b. With probability 2/9, the
aggregate loss is 50, yielding final wealth equaling w, minus the premium (50), and
minus the retained loss (50). With probability 6/9, the aggregate loss exceeds Di100,
generating a final wealth w, minus the premium and the deductible D.

¢ It has been proven by Eeckhoudt, Bauwens, Briys and Scarmure (1991) for the specific case of a
binomila distribution.
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Wy — 50 Wy — 50
1/9 1/9
w, :; Z we — 100 W 2;2 wo — 100
200
13,76
w, — 150 wo - (> ¢
2/3 °\\ _10
6
Figure 1a Separate Contracts Figure 1b Umbrella Policy with
with Deductibles a Deductible D =
Equal to 50 500/6

Observe that the distribution in Figure 1a can be obtained from the one in Figure
1b by adding a zero-mean noise €= (?, 1/3; - g, 2/ 3) to its worst realization. This
explains why no risk-averse agent, EU-maximizer or not, will purchase separate
contracts, even when risks are independent. Explaining why separate contracts exists
in reality is an important challenge for further research in this field.

We hereafter assume without loss of generality that x(6) = 0 for all ©.
3.3.2 Optimality of a Deductible Policy

In this section, we prove the Arrow’s result on the optimality of a straight deductible,
without using expected utility. Arrow (1971) used basic tools of variational calculus
to get the result. Raviv (1979) used dynamic optimization techniques. More recently,
Spaeter and Roger (1997) introduced a topological concept named the angular norm
to prove the optimality of a straight deductible. But Zilcha and Chew (1990), Karni
(1992) and Gollier and Schlesinger (1996) showed that this result is not dependent
upon a decision model as specific as EU. Our proof is in the vein of Gollier and
Schlesinger (1996) and Schiesinger (1997), who used the integral condition of
Rothschild and Stiglitz (1970) to define a MPC. We do it here with the notion of
transferring probability masses from the center of the distribution to its tails. From
our point of view, this makes the proof shorter and more intuitive.

Proposition 3. Consider the case of linear costs. Suppose that the policyholder is
risk-averse in the sense that ¥ satisfies the MPC property. Then the optimal contract
contains a straight deductible D: I(x) = max(0, x — D).

Proof. A deductible policy is characterized by the property that once a positive
indemnity is paid in a state x,, any marginal increase in the loss is fully indemnified.

7 Zilcha and Chew (1990) and Karni (1992) used the restriction of Frechet differentiability, whereas
Gollier and Schlesinger (1996) did not make any restriction on the model.
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Suppose by contradiction that there exist two levels of loss, x; and x,, with x; < x,,
such that /(x;) > 0 and I(x,) < I(x,) + x, — x,. The latter inequality is equivalent to

wo—xy +1(x;)—P<wy—x,+1(x,)-P,

or wy(x;) < ws(x;). Now, consider an alternative indemnity schedule I , which is
unchanged with respect to /, except in case of loss x; or x,. Take

[(x)=1(x)~e¢,

and
1) = I(xy) + e,
T,

Observe that, by construction, this change has no effect on the premium, as the actu-
arial value of the policy is not affected. If € is positive but small, the constraint on the
nonnegativity of claims is not violated. This change affects the distribution of final
wealth in the following way:

W) <we(x) and  w,(x)>w,(x).

The expected final wealth is unchanged, but the larger final wealth level is reduced,
whereas the smaller one is increased. This is a MPC.® No risk-averse agent would thus
select the initial contract, which is inefficient. A symmetric proof can be done when
I(x;) > 0 and I(x,) > I(x)) + x; — x\. |

To illustrate, let us consider again the case of risk X, which takes value 0, 50 or
100 with equal probabilities. Assuming ¢, = 0 and A = 0.5, a contract with a pure coin-
surance rate of 50%, i.e., with I(x) = x/2, can be purchased for a premium P = 37.5.
The distribution of final wealth in this case is represented in Figure 2a. Consider alter-
natively a contract with a straight deductible D = 37.5. The premium for this contract
is also equal to 37.5. The final wealth is distributed as in Figure 2b if such a contract
is purchased.

Observe that the distribution in Figure 2a can be obtained by adding a noise
€=(+12.5, 1/2; —12.5, 1/2) to the worse realization of the random variable in Figure
2b. Since this noise has a zero mean, the distribution in Figure 2b is less risky in the
sense of a MPC. We conclude that a contract with a 50% coinsurance rate will never
be purchased, as it is dominated by a contract with a straight deductible. Proposition

¥ The equivalence between this characterization of an MPC and the definition using white noises is in
Rothschild and Siglitz (1970).
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w, - 37,5 w, - 37,5
1/9 1/3
wy :g w, — 62,5 Wy 23
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12\ 125
Figure 2a Ix) =% Figure 2b I(x) = max(0, x — 37,5)

3 shows that this technique can be extended to any contract that is not a straight
deductible.

The intuition of this result has been presented in the introduction. In short, as it
is apparent in Figure 2, a straight deductible efficiently concentrates the effort of
indemnification on large losses. On the contrary, a contract with a constant coinsur-
ance rate for example provides an inefficiently large amount of money when losses
are small, and an inefficiently small amount when losses are large. The optimality of
a straight deductible is the expression of the relevance of insurance for large risks.
Small risks, i.e., risks whose largest potential loss is less than the optimal deductible
should not be insured. I am willing to purchase insurance against the important risk
for my kids and unemployed wife in case of my premature death. I am willing to pur-
chase insurance for my house, which is my largest asset at this time. Given the cost
of insurance, I am not willing to purchase insurance against the risk of broken glasses,
or even against damages to my old car. I would be ready to bear the risk of paying
for standard medical care, but I would like to get a large indemnity from my insurer
in case of a costly surgical procedure. This is exactly what a policy with straight
deductible provides!

333 Optimal Deductible

To sum up, under linear transaction costs, efficient indemnity schedules are deter-
ministic functions of the loss, and they take the form of policies with a straight
deductible. This has been obtained by assuming risk aversion alone, with no reference
to any specific decision model. We now turn to the problem of the selection of the
optimal deductible D.

Notice that adding the assumption of FSD for the preference functional implies
that D is nonnegative. Otherwise, the indemnity would always be positive. This may
not be optimal, as proven in Proposition 1. When the loading factor A is zero, the
optimal deductible vanishes. This corresponds to the optimality of full insurance. This
is a trivial result, as a marginal increase in coverage would not change final wealth in
expectation, whereas it would reduce its variability in the sense of a MPC.
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The analysis is more complex when the loading factor A is positive, as shown by
Schlesinger (1981). In that case, a marginal increase in coverage, that is obtained by
a reduction of D, reduces the expected final wealth. The agent must weight the benefit
of insurance—which is to reduce the variability of wealth—with the cost of insur-
ance. Let us consider the strategy of moving D from some small positive value to
zero. Let X be 0 with probability 7, and y with probability 1 — 7,. Parameter 1 — T,
is the probability of an accident, and y is the severity of the loss, that can be a random
variable. The increase in the actuarial value of the full insurance policy D can be
approximated as (1 — my)D. It implies that the reduction in expected wealth by select-
ing full insurance rather than contract D is A(1 — p)D. This is the marginal net cost
of insurance. The marginal cost of the last dollar of coverage or deductible is thus
M1 - m,), which is strictly positive.

The benefit of reducing D to zero is the risk premium associated to the retained
risk under policy D. The retained risk is Dz, where Z takes value 0 with probability
o, and value 1 otherwise. D is thus the size of the retained risk. Now remember that,
in the EU model with a smooth utility function, the risk premium is approximately
proportional to the variance of the retained risk, which is itself proportional to D
Thus, the marginal benefit of reducing D to zero is zero. Since we have shown that
the marginal cost of the last dollar of deductible is positive, it may not be optimal to
purchase it. This result is in Mossin (1968).

Proposition 4. Consider the case of linear costs in the expected utility framework.
Suppose that the policyholder is risk-averse in the sense that ¥ satisfies the MPC prop-
erty. If A = 0, then the optimal deductible is zero. If A > 0, then the optimal deductible
is positive.

Schlesinger (1997) provides a detailed analysis of this Proposition. This result has
been generalized by Karni (1992) and Machina (1995) for non-expected utility models
satisfying Frechet differentiability. Observe that the proof of this Proposition relies
on the assumption that the risk premium is proportional to the variance of the retained
risk, at least when the risk is small. This assumption holds for other models than the
EU one. It is called second order risk aversion.” When risk aversion is of order 1, that
is, when the risk aversion is approximately proportional to the standard deviation of
the random variable, as in the EURDP model, the policyholder could optimally select
full insurance even if A is positive. This is because he has a positive benefit to the last
dollar of coverage. Doherty and Eeckhoudt (1995) describes the case of the Yaari’s
dual model, where risk aversion is of the first order.

Some authors tried to quantify the optimal level of the deductible when A is
positive, using the EU model. The decision problem is to maximize H(D) = Eu(w, —
min(x, D) — P(D)) where P(D) = (1 + A)E max(0, ¥ — D). The first-order condition
is written as

° For the definition of the order of risk aversion, see Segal and Spivak (1990).
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H'(D) =(1- F(D))[(1+A)Eu’(w, —min(x, D) - P(D))—u’(w, — D- P(D))] =0,
3)

where F is the cumulative distribution of the random loss x. Dréze (1981) and Gollier
(1992), using a Taylor approximation for this fist-order condition of the deductible
selection problem, obtained the following conditions:

At D At
< < , 4
I+A W()—'D—P TC0(1+7»)

where m, is the probability of no loss, and ¢ is the index of relative tolerance,
=~ ' (wo _,,D_P) . When &, = 1, as for many insurance lines, we see
! (wo — D - P)u”(wy—D—P)
that the optimal deductible of the umbrella policy, expressed as a fraction of total
wealth, can be approximated by the product of the loading factor and the relative risk
tolerance. A realistic value of A is 0.3. The debate on realistic values for ¢ is still open,
but an acceptable interval would be ¢ € [0.2, 0.5]. This gives us an optimal deductible
around 5 to 15% of total wealth.
We now turn to the comparative statics analysis of the optimal deductible in the
EU model:

*  We know from Mossin (1968) that an increase in risk aversion reduces the optimal
D." This is simple to understand from the observation that an increase in risk
aversion raises the marginal benefit of reducing the deductible. This can be easily
shown by using the first-order condition (3).

*  This result directly implies that an increase in w, increases D under decreasing
absolute risk aversion. Indeed, an increase in wealth is equivalent to a reduction
in risk aversion when absolute risk aversion is decreasing.

* As usual, a change in A has an ambiguous effect because of the presence of a
wealth effect: an increase in A makes self-insurance more desirable, but it also
makes policyholders poorer. Under decreasing absolute risk aversion, this has a
positive impact on insurance demand, which implies that the global effect is
ambiguous.

* The analysis of the effect of a change in the distribution of the loss is more
complex. The best result has been obtained by Jang and Hadar (1995), who have
shown that an increase in the probability of an accident of a deterministic sever-
ity has a positive effect on D."" Finally, Eeckhoudt, Gollier and Schlesinger (1991)
obtain results for the effect of an increase in risk of the distribution of damage

10 Machina (1995) extends this result to non-expected utility models with Frechet differentiability.
"' Eeckhoudt and Gollier (1999) extend this result to non-expected utility models with second-order risk
aversion.
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severity. Observe that when the change in distribution is a MPC that is concen-
trated in loss states x above the optimal deductible, the effect is obviously null.
Indeed, the risk-neutral insurer absorbs 100% of the increase in risk without
changing the premium. The policyholder is not affected by the change.

34 NONLINEAR TRANSACTION COSTS

To our knowledge, no econometric analysis has been performed to test for the lin-
earity of transaction costs on insurance markets. In this section, we examine the case
of nonlinear transaction costs.

34.1 Stochastic Indemnity Schedule

In the previous section, we have shown that the indemnity must be a deterministic
function of the loss in the case of linear costs. When the transaction cost is a concave
function of the indemnity, this may not be true. Indeed, randomizing indemnities gen-
erates a reduction in the expected transaction cost. If risk aversion is not too large, a
random indemnity schedule may be optimal.

An interesting particular case of concave cost functions is due to the presence of
a fixed cost per claim: when there is no claim at all the cost is zero, but even a small
claim generates fixed costs for the insurer, as an audit cost, or processing the payment
of the indemnity. There is an upward jump in cost at zero, which introduces a con-
cavity to the cost function. Gollier (1987b) characterizes the best deterministic con-
tract in that case. It exhibits a straight deductible, but with a clause that no indemnity
would be paid if the loss is just slightly over the deductible. That clause eliminates
“nuisance claims”, i.e., claims that are too small with respect to the fixed auditing
costs. More recent works in the literature on optimal audits show that stochastic audits
and indemnities are optimal."

34.2 No Overinsurance

In most models on optimal insurance, constraint /(x) < x is imposed: no overinsur-
ance is allowed. We know from Propositions 1 and 3 that this constraint is never
binding in the case of linear costs. Huberman, Mayers and Smith (1983) claim that
this constraint may be binding in the case of nonlinear costs. This is not true, as long
as the policyholder is risk-averse.

2 See Mookherjee and Png (1989) for a first result on this topic. The literature on optimal auditing is
not covered in this survey. This is because our basic assumption is symmetric information, ex ante and
ex post.
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Proposition 5. Suppose that V satisfies the FSD property and the MPC property.
Then, constraint /(x) < x is never binding.

Proof. Suppose by contradiction that 0 < max, I(x) — x. Let y be the argument of the
maximum, and © = Prob[x = y]. It implies that this is in loss state y that the final
wealth is the largest. Let also define I (x) =I(x) if x # y and I O=I1y)—-¢€,€>0.
Suppose first that the new premium is 13. = P — ne. Purchasing this new contract gen-
erates a MPC to the distribution of final wealth. Indeed, we reduce the largest poten-
tial wealth level, whereas we translate the distribution to the right to preserve the
mean.

But in fact, the premium to pay for the new contract is not 131, but P = 13, -
(c({(y)) — c(I(y) — €)). This is smaller than f’.. Taking into account this additional
reduction in premium yields an additional increase in V if it satisfies FSD. Thus, the
initial contract is not efficient. |

The intuition is that overinsurance generates two effects that are detrimental to
the welfare of the policyholder. First, a marginal increase of indemnity over the size
of the loss yields an additional cost of insurance, which is detrimental to any V sat-
isfying FSD. Second, this marginal change in indemnity generates a MPC to final
wealth. Indeed, we know from Proposition 1, that there exists a x < 0 for which
I(x) = 0. In consequence, the marginal change increases the wealth level at the right
of the distribution of w;. The net effect is thus a MPC.

Notice that the combination of Proposition 1 and Proposition 5 implies that
1(0) = 0.

343 Optimal Design of the Indemnity Schedule

An interesting problem is to characterize the optimal policy when transaction costs
are not linear. Under the EU model, Raviv (1979) showed that if ¢(.) is increasing and
convex, then

c"(1(x))

=00 ) T(wo —x+1(x)— P)} 5)

I'(x) =[1+

when I(x) > 0. T(z) is the absolute risk tolerance measured at z, i.e., 7(z) = —u/(z)/u”(z).
When ¢” > 0, the marginal indemnity is less than unity. The intuition is that large
indemnities are relatively more costly. One can use the above formula when c is
concave, provided the second-order condition of the decision problem is satisfied. In
this case, the marginal indemnity is larger than 1. The extreme case is the presence
of a fixed cost per claim, which generates an upward discontinuity to the indemnity
function.
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Spaeter (1997) examines whether the indemnity function is concave or convex
with respect to the loss. She shows that if ¢ is quadratic, then I” is positive if and only
if the policyholder is prudent. Prudence means that the third derivative of the utility
function is positive.

35 OTHER REASONS FOR PARTIAL INSURANCE

This paper focussed on the existence of transaction costs to explain why partial insur-
ance may be an equilibrium. Several other reasons can justify different forms of risk
retention by the policyholder. The presence of asymmetric information between the
two parties is a well-known argument which is examined at length in the literature.
In the case of an adverse selection problem, accepting a positive risk retention (I’ <
1 or D > 0) is a way for the policyholder to signal a low risk. When there is a moral
hazard problem, imposing a retention of risk gives an incentive to policyholder to
invest in prevention. Holmstrom (1978) characterizes the optimal insurance design
under a moral hazard problem. We now discuss two other arguments: the existence of
a random error in observing losses, and the risk aversion of the insurer.

3.5.1 Errors in Observation

Insurers often face the difficulty to estimate the size of damages. Gollier (1996)
assumes that the insurer can indemnify the policyholder only on the basis of a proxy
¥ | x of the actual loss x. If the actual loss x equals the estimated loss y plus an inde-
pendent white noise, then the optimal contract contains a straight deductible. The
optimal deductible is negatively affected by the error if u is “risk vulnerable”, a con-
dition introduced by Gollier and Pratt (1996)." The existence of an error in estimat-
ing the loss reduces the quality of an insurance contract to cover the basic risk. Indeed,
the insurance adds an additional indemnity risk to the wealth of the policyholder.
Under risk vulnerability, this reduction in the quality of insurance reduces the demand
for it. Only when u is not risk vulnerable, errors in estimating the loss generate an
increase in risk retention at equilibrium. Indeed, in this case, the deterioration in the
quality of the insurance product will be compensated for by an increase in its
purchase.

A more realistic assumption is that the risk of error is increasing with the esti-
mated loss. Gollier (1996) shows that under prudence (" > 0), the optimal insurance
contains a disappearing deductible in that case: I(y) = max(0, J(»)), with J'(y) > 1.
The increase in expected wealth as the loss increases is used to forearm against the
increased risk of error in the indemnity paid by the insurer.

'3 Risk vulnerability is linked to the third and the fourth derivative of the utility function. All familiar
utility (exponential, power, logarithmic) functions satisfy this property.
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3.5.2 Risk Aversion of the Insurer

We assumed in this paper that insurers are risk-neutral. This means that the minimum
premium that is acceptable to them equals the expected indemnity plus the expected
cost of insurance. This is a realistic assumption when individual risks are not corre-
lated with the “market risk”. It implies that individual risks are fully diversifiable by
shareholders of insurance companies. Therefore, at equilibrium, they will not get any
extra risk premium to bear individual risks. On the contrary, when risks are correlated
with the market risk, the equilibrium insurance tariff must contain a risk premium for
shareholders to accept to bear these risks. This is a relevant problem for catastrophic
risks and some risks that are economic in nature (e.g., unemployment).

The general problem is to determine efficient risk-sharing arrangements in an
economy of risk-averse agents. In fact, this problem is not different from the problem
of the characterization of an equilibrium on financial markets. The link with the lit-
erature of finance is here very strong. The main difference between the theory of
finance and the economics of insurance is the existence of much larger transaction
costs (= 30%) in insurance than in finance (= 2%)."

Arrow (1953) provides the general framework for the analysis of the allocation
of risks in an economy with no transaction costs. Borch (1960, 1962) examines
optimal risk-sharing rules in a general EU framework. Wilson (1968), Buhlman and
Jewell (1979), Raviv (1979), Eliashberg and Winkler (1981) and Blazenko (1985) con-
sidered the specific problem of a risk-averse insurer with utility function v who can
insure a risk initially borne by a policyholder with utility function u. They obtain that

T.(R-I(x)+P)

O = LRI+ P Lo+ 10— P’

(6

where R is the wealth of the insurer. The marginal indemnity equals absolute risk tol-
erance of the insurer expressed as a percentage of the group’s absolute risk tolerance.
The smaller the insurer’s risk tolerance, the larger the risk transfer, and the larger the
risk retention by the policyholder. It is interesting to observe that there is a simple
way to obtain this rule in the case of a small risk with variance 2. If the risk is small,
the use of the Arrow-Pratt approximation yields that the sum of the risk premiums
supported by the policyholder and the insurer is written as

(1_1/)20.2 +l 1/262

. |
2 T, 2 T,

'* The analogies are numerous. For example, the fact that A = 0 implies that D = 0 is equivalent in finance
to the fact that risk-averse investors will not invest in the risky asset if its expected return does not exceed
the riskfree rate.
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where I’ = I'(0) and T, = T,(w,) and T, = T,(R). We look for the risk-sharing arrange-
ment which minimizes the sum of risk premiums in the economy: min, I1. Solving
the first-order condition of this problem directly yields I” = T./(T, + T,).

Leland (1980) examined the sign of I”. In our context, the convexity of / would
mean a contract similar to a deductible policy, whereas the concavity of / would cor-
respond to a contract with a cap on indemnities. Leland shows that the sign of I”
depends upon which of the two functions u and v decreases at the fastest rate.

3.6 CONCLUSION

Most breakthroughs in the theory of optimal insurance have been made before the
development of decision models alternative to expected utility. We are now realizing
that many of these results can be extended at no cost to non-expected utility models.
Arrow’s result is the most striking example of this phenomenon. Arrow (1971) proved
that a deductible insurance is optimal for a risk-averse expected-utility maximizer if
transaction costs are linear. The complexity of the proofs of this result by Arrow and
others has obscured our understanding of the optimality of deductibles in insurance
for a long time. In fact, the literature has only recently recognized that this result is
a direct consequence of the very general notions of strong risk aversion and of an
increase in risk. Thus Arrow’s result is robust to any decision model that satisfies this
property. This conclusion is useful not only because it extends the initial proposition,
but also because it provides a simple intuition for the optimality of a deductible policy.
However, various other results in insurance economics require a more precise
modeling of risk preferences. And there, the expected utility model is still unbeatable
to produce simple useful and testable properties of the optimal behavior under risk.
The insurance market is likely to be a good candidate for testing those models."®
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Abstract

We examine an important class of decision problems under uncertainty that entails
the standard portfolio problem and the demand for coinsurance. The agent faces a
controllable risk—his demand for a risky asset for example—and a background risk.
We determine how a change in the distribution in one of these two risks affects the
optimal exposure to the controllable risk. Restrictions on first order and second order
stochastic dominance orders are in general necessary to yield an unambiguous com-
parative statics property. We also review another line of research in which restrictions
are made on preferences rather than on stochastic dominance orders.

Keywords: Comparative statics under uncertainty, increase in risk, background risk,
portfolio decision, insurance demand.
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4.1 INTRODUCTION

To start this survey, we present two problems that look very different at first glance.
Consider an investor who has to allocate a given amount of money (w,) between a
safe asset paying a return (i) and a risky one paying a random return (x). If the math-
ematical expectation of X exceeds i, it is optimal for an investor who obeys the axioms
of expected utility to invest a strictly positive amount in the risky asset. Assume now
that because of some good news, the prospects of the risky asset become “better” in
the sense of improving the welfare of its holder. Intuition suggests that a rational
investor should invest more in the risky asset because it has become relatively more
attractive.

* We thank two referees for their useful comments on a preliminary version of the chapter.
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We now turn to the second problem. We consider the case of an insured whose
wealth wy, may be reduced by a random damage . To protect himself against this
damage he can buy insurance that is sold with a positive and proportional loading by
an insurance company. The company and the insured have identical information about
the initial risk . It is well-known that in this case, expected-utility maximizers should
buy less than full insurance. Now assume that the insured receives a private infor-
mation indicating that his risk deteriorates. Intuition suggests again that the insured
should now demand more coverage to compensate for the deterioration in risk.

The examples of portfolio and insurance decisions illustrate a more general
problem that is the topics of this survey: how do changes in risk affect risk taking
(e.g., portfolio) or risk avoidance (e.g., insurance) by a decision-maker? We basically
show that unless specific restrictions are made on the change in risk and/or on the
shape of the utility function, a risk-averse decision-maker may very well decide to
increase his exposure to a risk whose distribution deteriorates.

While they have the same formal structure, the two examples just described share
another important feature: the decision-maker faces only one risk and by his single
decision about this risk, he optimally controls the total risk he will assume. An impor-
tant part of this survey will be devoted to a more realistic case recently developed in
the literature under the general heading of “background risk”. In this problem two
risks are involved: one is exogenous and is not subject to transformations by the deci-
sion maker while the other one is endogenous and can be controlled in the way
described in each of the two examples. The exogenous risk can be for example a risk
related to labour income that is traditionally not insurable through standard insurance
markets. The question raised in this new framework can be described as follows: how
does the background risk affect the optimal decisions about the endogenous one? Is
it true that e.g., a deterioration in the background risk will always reduce risk taking
vis a vis the other risk?

Before turning to this question, we present our basic model in section 4.2 and we
state some basic results about it. Section 4.3 is devoted to a presentation of the stan-
dard stochastic orders. In section 4.4, we survey results about the impact of a change
in the distribution of the endogenous/controllable risk. As indicated earlier, the role
and impact of background risk are examined in section 4.5. Some extensions and a
concluding remark are provided respectively in sections 4.6 and 4.7.

4.2 A SIMPLE MODEL

The two problems presented in the introduction can be written in the following
compact manner:'

! For more details, see Dionne-Eeckhoudt-Gollier (1993) and more especially pages 315-317. See also
Eeckhoudt-Gollier (1995) and more specifically page 183, exercise 10.1. The reader who is interested in
an insurance interpretation of some results in this survey may also refer to Alarie, Dionne and Eeckhoudt
(1992).
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max Eu(w +0X +€) (1)

where o is the decision variable, the value of which measures the extent of risk taking.
The random variable € stands for the background risk. The utility function u is
assumed to be increasing and concave. By assumption € is independent of x, the
endogenous/controllable risk.’

Notice finally that for the problem to make sense the random variable X must take
negative and positive values otherwise the optimal a would be either —eo or +oo. The
absolute value of o expresses the exposure to risk x. Its optimal level—denoted o*—
has two properties that can be stated as follows:

if the mathematical expectation of x is strictly positive, so will be o*. This prop-
erty which was shown to be true in the absence of background risk remains valid
in its presence (for a proof in an insurance context, see Doherty-Schlesinger
(1983)).

* in the absence of background risk an increase in risk aversion decreases o* (see
Pratt (1964)). However as shown by Kihlstrom, Romer, Williams (1981), this rela-
tionship does not extend when an independent background risk is added to initial
wealth. This result illustrates the importance of background risk the presence of
which may invalidate results that hold true in its absence.

4.3 DETRIMENTAL CHANGES IN RISK

Suppose that random variable ¥ undergoes an exogenous change in distribution. The
initial cumulative distribution function is denoted F, whereas the final one is denoted
G. Economists usually consider two specific subsets of changes in risk: first order or
second order stochastic dominance (respectively FSD and SSD). In order to define
these stochastic dominance orders, one looks at the effect of a change in risk on a
specific class of agents.

4.3.1 First Order Stochastic Dominance (FSD)

F dominates G in the sense of FSD if the expected utility under F is larger than under
G for any increasing utility function:

[u0dF@) 2 [u(0)dG(x) Vuincreasing. )

Observe that among the set of increasing functions, we have the standard “step” (or
indicator) function, which takes value 0 if x is less than a given y, otherwise it takes

? Gollier and Schlee (1997) examine the more general problem with a correlated background risk. Notice
also that many results reviewed in this paper also hold when final wealth is a concave function of o and %.
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value 1. Thus, applying the above definition to this function yields the necessary con-
dition 1 — F(y) 2 1 — G(y), or F(y) < G(y). Notice also that any increasing function
can be obtained by a convex combination of step functions, i.e., the set of step func-
tions is a basis of the set of increasing functions. Observe finally that the expectation
operator is linear, i.e., if ¥, and u, satisfy condition (2), then Au, + (1 — A)u, also sat-
isfies (2). All this implies that requiring F(y) < G(y) for all y is not only necessary,
but also sufficient to guarantee that (2) holds. In conclusion, F dominates G in the
sense of FSD if and only if

F(x)>G(x) Vx. (3)

Among other properties,’ it is worth remembering that after an FSD deterioration the
mathematical expectation of a random variable necessarily decreases while the con-
verse is not necessarily true.

4.3.2 Second Order Stochastic Dominance (SSD)

Whereas this notion was already known in the statistical literature for a long time,* it
became popular in the economics and finance literature after the publication of Hadar
and Russell’s paper (1969). Distribution F dominates distribution G in the sense of
SSD if all risk-averse agents prefer F to G. This is less demanding than FSD, since
SSD requires F to be preferred to G just for increasing and concave utility functions,
not for all increasing functions.

Observe that the set of “min” functions—u(x) = min(x, y)—are increasing and
concave. Thus a necessary condition for SSD is obtained by requiring condition (2)
to hold for such functions. It yields

[ xdFG)+ y(= F(y) 2 [ xdGo + y1 -Gy,
or, integrating by parts,
[ Fodx <[ G, 4)

Notice that any increasing and concave function can be obtained by a convex combi-
nation of “min” functions. Thus, using the same argument as before, it is true that
condition (4) is not only necessary, but is also sufficient for F' to dominate G in the
sense of SSD.

If F dominates G in the sense of SSD and if F and G have the same mean, then
G is said to be an increase in risk (IR). Rothschild and Stiglitz (1970) showed that

3 For an excellent survey on stochastic dominance, see H. Levy (1992).
¢ See Hardy, Littlewood and Polya (1929).



The Effects of Changes in Risk on Risk Taking: A Survey 121

any increase in risk can be obtained either by adding noise to the initial random vari-
able, or by a sequence of mean-preserving spreads (MPS) of probabilities. A noise is
obtained by adding a zero-mean lottery to any outcome of the initial random variable.
A MPS is obtained by taking some probability mass from the initial density and by
transfering it to the tails in a way that preserves the mean.

Finally, notice that any SSD deterioration in risk can be obtained by the combi-
nation of a FSD deterioration combined with an increase in risk.

44 THE COMPARATIVE STATICS OF CHANGES IN
THE CONTROLLABLE RISK

In this section, we assume that some information is obtained that allows agents to
revise the distribution of x, but € remains unaffected. The literature devoted to this
topic was mostly developed under the assumption that there is no background risk.
Most often, this is without loss of generality. Indeed, for every increasing and concave
u, define the indirect utility function v as follows:

v(z) = Eu(z +€). 5

This allows us to rewrite the initial problem (1) as

max Ev(w, +0x). (6)

Observe now that 4", i.e., the nth derivative of u, and ") have the same sign, for any
integer n. In particular v is increasing and concave. As long as no restriction on the
utility function other than those on the sign of some of its derivatives is imposed,
(1)and (6) are qualitatively the same problems.

As mentioned above, stochastic orders have been defined on the basis of how
changes in distribution affect the welfare of some well-defined set of agents in the
economy. In this section, we examine the effect of a disliked change in the distribu-
tion of X on the optimal exposure o* to this risk. For a while many researchers natu-
rally extended the results about the agent’s welfare to his optimal degree of risk taking.
It turns out however that such an extension may not be correct.

The first-order condition on o* under distribution F is written as:

un’(wo +0*x)dF(x)=0. @)

Given the concavity of the objective function with respect to the decision variable,
the change in risk from F to G reduces the optimal exposure to risk if

jxu'(w0 +a* x)dG(x) < 0. ®)
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It happens that F' dominating G in the sense of FSD or SSD is neither necessary nor
sufficient for o* to be reduced, i.e., for condition (8) to be satisfied whenever (7) is
satisfied. It is stricking that a FSD deterioration in risk x or an increase in risk x can
induce some risk-averse agents to increase the size a* of their exposure to it! As
counter-examples, let us examine the standard utility function u(z) = z""¥/(1 — v). Con-
sider in particular the case of a constant relative risk aversion y = 3, which is within
the range of degrees of risk aversion observed in the real world. Finally, take w, = 2
and an initial distribution of x = (-1, 0.1; +4, 0.9). In this case, one can compute
o* = 0.6305.

Suppose now that ¥ undergoes a FSD-deterioration with a new distribution (-1,
0.1; +2, 0.9). Contrary to the intuition, the agent reacts by increasing his exposure to
o* = 0.7015! Alternatively, suppose that x undergoes an increase in risk to the new
distribution (-1, 0.1; 43, 0.45, +5, 0.45). Again, it is a puzzle that the agent reacts to
this increase in risk by increasing his exposure to a* = 0.6328.

From examples such as these, researchers tried to restrict the model in order to
exclude the possibility of such puzzles. Two directions of research have been followed.
One can either restrict preference functionals, or one can restrict the set of changes
in risk. We hereafter examine these two lines of research separately.

44.1 Restrictions on the Utility Function

This line of research has been explored by Rothschild and Stiglitz (1971), Fishburn
and Porter (1976), Cheng, Magill and Shafer (1987) and Hadar and Seo (1990).
All their findings rely on the following observation. Define the function ¢(x; wy) =
xu’(wy + 0*x), where a* is the optimal exposure under F. We hereafter normalize it
to unity. Combining conditions (7) and (8), the change in risk reduces the optimal
exposure o* if

[ 00 wo)dF () 2 [ o0riwo)dG ). ©)
44.1.1 Conditions for FSD Shifts
Suppose first that F' dominates G in the sense of FSD. Which condition is required on

¢ to guarantee that (9) holds? Comparing this condition to condition (2) directly pro-
vides the answer to this question: ¢ must be an increasing function. Because

20 Oc;wo) =u'(wg + x)+ xu”(wy + x),

ox
¢ is increasing if

A" (wy+x)—=wodlwy +x) <1 Vx, (10)
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where A(z) = —u"(z)/u’(z) and A’(z) = zA(z) are respectively the absolute and the rel-
ative degree of risk aversion measured at z. In conclusion, an FSD deterioration in X
always reduces the optimal exposure to it if relative risk aversion is uniformly less
than unity. If condition (10) is not satisfied for some x, it is always possible to build
a counter-example, as we have done above.

44.1.2 Conditions for Increases in Risk

The same argument can be used for increases in risk, which require ¢ to be concave
in x. After some computations, we get that the second derivative of ¢ with respect to
x is negative if and only if

P (wy+x)—woP(wy+x)<2 Vx, (11)

where P(z) = —u"(z)/u"(z) and P'(z) = zP(z) are respectively the absolute and the rel-
ative degree of prudence measured at z. In conclusion, an increase in risk X always
reduces the optimal exposure to it if relative prudence is positive and less than 2.
Notice that we built the counter-example above on the basis of P(z) =y+ 1 = 4.

44.2 Restrictions on the Change in Risk

4.4.2.1  First-order Stochastically Dominated Shifis
In this section, we present some restrictions on FSD in order to guarantee that all risk-
averse agents reduce their exposure after the shift in distribution.

A first step in this direction was made in a slightly different context by Milgrom
(1981) and later on by Landsberger and Meilijson (1990) and Ormiston and Schlee
(1993). We say that F dominates G in the sense of the Monotone Likelihood Ratio
order (MLR) if, crudely said, y(x) = G'(x)/F’(x) is decreasing.’ It is easy to verify that
MLR is a particular case of FSD. If F dominates G in the sense of MLR, we obtain
that

[ (wo + 0)dG(x) =[x’ (wo + IYOAF () SO [ 3’ Owo + )AF () =0, (12)

The inequality is due to the fact that xy(x) is always less than xy(0). The last
equality is the first-order condition on o* = 1 under F. In consequence, a MLR-
deterioration in risk reduces the optimal exposure to it for all risk-averse agents.
Since the FSD condition is already rather restrictive, the MLR property is even
more so. Hence it is worth trying to extend the result we have just stated. First, observe
that one can replace the monotonicity of y by a weaker single-crossing condition:

5 See Athey (1997) and Gollier and Schlee (1997) for a more formal definition. MLR plays a crucial
role in information theory, or in modern industrial economics. When there is no information whether a
random variable is distributed as F or G, the MLR condition means that the larger the outcome x, the more
likely the distribution F.
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y(x) must single-cross the horizontal line at y(0) from above. This is indeed the only
thing that has been used in the proof (12). This single-crossing condition is much
weaker than MLR.

Second, Eeckhoudt and Gollier (1995a) considered the ratio of the cumulative
G(x)

distributions, that is and coined the term “monotone probability ratio” (MPR)

x
when this expression is non decreasing in x. As one can guess:

MLR = MPR = FSD

MPR is weaker than MLR, but is still a subset of FSD. It can be shown that the same
comparative statics property holds under MPR. Hence the MPR condition is clearly
an improvement on the MLR one.

4.4.2.2  Increases in Risk

Eeckhoudt and Hansen (1980) obtained a restriction on an increase in risk that yields
the desired comparative statics property. They defined the notion of a “squeeze” of a
density. This notion has been extended by Meyer and Ormiston (1985) who defined
a strong increase in risk (SIR). A SIR is obtained when some probability weight is
taken from the initial density of X and sent either at its boundaries or outside the initial
support. Meyer and Ormiston showed that all risk-averse agents reduce their expo-
sure to a risk that undergoes a SIR.

In two subsequent papers, Black and Bulkley (1989) and Dionne, Eeckhoudt and
Gollier (1993) weakened the notion of a SIR. Contrary to a SIR, these restrictions
allow for transfering probability masses inside the initial support of the distribution
of x. However, to maintain the desired comparative statics result, they had to make
assumptions about the behavior of the likelihood ratio between the initial and the final
densities.

Another sufficient condition for an increase in risk to have an unambiguous effect
on o* is the notion of a simple increase in risk, introduced by Dionne and Gollier
(1992). A simple increase in risk is an IR such that F single-crosses G at x = 0.

To conclude this quick review, let us mention that much of this research resulted
from A. Sandmo’s discussion (1971) of the impact of the “stretching” of a random
variable. A stretching of X is obtained from its linear transformation into y with § =
tx + (1 — H)E(%) and ¢ > 1. This transformation is mean-preserving since E(j) = E(X).
This intuitive notion was later on generalized by Meyer and Ormiston (1989) under
the terminology of the “deterministic transformation” of a random variable. However
to obtain intuitive comparative statics results with such transformation the assump-
tion of decreasing absolute risk aversion is required.

All the papers dealing with special cases of either FSD or IR that we have sur-
veyed so far share a common trend: one starts with rather restrictive sufficient con-
ditions to yield the desired comparative statics result and then one progressively
relaxes them. The endpoint of these successive improvements is given by a set of nec-
essary and sufficient conditions that we now present.
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4.4.2.3 The Necessary and Sufficient Condition
Gollier (1995)and Gollier (1997) proposed a reversal in the agenda of research. Rather
than trying to restrict the existing stochastic orders in order to obtain an unambigu-
ous comparative statics property, one should solve the following problem: what is the
stochastic order such that all risk-averse agents reduce their exposure to the risk that
undergoes such a change in distribution? He coined the term “Central Dominance”
(CR) for it.

Rothschild and Stiglitz (1971) already tried to solve this question, but their solu-
tion was wrong. Their argument went as follows: under which condition can we guar-
antee that

jxu’(wo +x)dG(x) < Ixu'(wo + x)dF (x) (13)

for all increasing and concave utility functions? Using the basis approach developed
earlier in this paper, the condition is that (replace u by any “min” function):

[ xdGeo < [ xdF ()

for all y. Contrary to the claim of Rothschild and Stiglitz (1971), this condition is suf-
ficient, but not necessary for CR. Indeed, condition (13) is sufficient but not neces-
sary for the comparative statics property. The correct necessary and sufficient
condition is that the LHS of (13) be negative whenever the RHS is zero. Basing the
analysis on this observation, Gollier (1995) obtained a correct characterization of CR,
which is

ImeR: Vy: jy xdG(x) < mr xdF(x) (14)

All sufficient conditions mentioned above are particular cases of CR. Interest-
ingly enough, strong and simple increases in risk satisfy condition (14) with m = 1,
which was the condition proposed by Rothschild and Stiglitz (1971). But conditions
like MLR, MPR and the weakenings of SIR by Black and Bukley (1987) and others
satisfy the condition with m # 1. Besides, whereas we already know that SSD is not
sufficient for CR (see the numerical counter-examples), it also appears that SSD is
not necessary. That is, it can be the case that all risk-averse agents reduce their o*
after a change which is not a SSD.

4.5 THE COMPARATIVE STATICS OF BACKGROUND RISK

In the previous section, we explained why the presence of a background risk is unim-
portant to determine the sign of the impact of a change in the distribution of the con-
trollable risk. However, the background risk has an impact on the optimal value of
the exposure to x.
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In this section, we do the comparative statics analysis that is symmetric to the one
performed in the previous section. We take the distribution of x as given and we per-
turbate the distribution of background risk €. Up to now, the literature focused mostly
on the effect of introducing a background risk in the analysis. One compares the solu-
tion to program (6) to the solution of

max Eu(w, + ox).
o

Remember that, as shown by Pratt (1964), the necessary and sufficient condition for
an unambiguous comparison, independent of w, and the distribution of X, is that v be
more risk-averse than u. In this case, the introduction of a background risk reduces
the optimal exposure to x. Thus, the problem simplifies to determining whether

_ Eu"(z+€) o u"(z)
Ev(z+8) u'(2)

s

for all z. If € is degenerated at a negative value, this condition is just decreasing
absolute risk aversion (DARA). But it is logical to concentrate the analysis on the
introduction of a pure background risk, viz. E€ = 0.

The intuition that the introduction of a pure background risk should reduce the
optimal exposure to other independent risks corresponds to the common wisdom that
independent risks are substitutes. This intuition requires additional restrictions to the
model, as shown by the following counter-example. Take u(z) = min(z, 50 + 0.5z),
wo = 101 and x = (=1, 0.5; +1.9, 0.5). Without background risk, one can compute
o* = 1. But if pure background risk € = (20, 0.5; 420, 0.5) is added to wealth w,,
the agent increases his optimal exposure to o* = 10.53!

Several authors tried to find conditions on u that implies that a pure background
risk reduces o*. If € is small, one can use second-order Taylor expansions of the
numerator and denominator of the LHS of (15) to check that

Eu"(z+€) _ e ,
EuI(Z+§) =A(Z)+0.50€[A (Z)—2A (Z)A(Z)] (16)

Thus, a necessary and sufficient condition for any pure small background risk to
reduce the optimal exposure to other risks is:

A"(2)224'(2)A(z) Vz. 17)
Absolute risk aversion may not be too concave. But what is necessary and sufficient

for small risk is just necessary if one wants the comparative statics property to hold
for any risk. Gollier and Scarmure (1994) proved that a sufficient condition is that
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absolute risk aversion be decreasing and convex. The proof of this result is immedi-
ate. Indeed, let us define A(f) = u/(z + t)/Eu’(z + €). It yields

Eu"(z+¢€) - -
—m =Eh(€)A(z+¢€)
=EA(z+€)+ Eh(€) -1 A(z+€)
> A(z + E€) + cov(h(§), Az +§))

> A(z). (18)

The first inequality is a direct application of Jensen’s inequality, and 4” > 0. The
second inequality comes from the fact that 4 and A are two decreasing functions of
€. This concludes the proof.

The convexity of absolute risk aversion is compatible with its positivity and its
decrease. It is also an intuitive assumption as it means that the risk premium to any
(small) risk decreases with wealth in a decreasing way. Observe that the familiar utility
functions with constant relative risk aversion y are such that 4(z) =y/z, so 4" < 0 and
A” > 0. Thus, there is no ambiguity of the effect of background risk for this set of
utility functions.

Eeckhoudt and Kimball (1992) and Kimball (1993) obtained an alternative suffi-
cient condition that they called “standard risk aversion”. Risk aversion is standard if
absolute risk aversion 4 and absolute prudence P are both decreasing in wealth.
Decreasing prudence means that the effect on savings of a risk on future incomes is
decreasing with wealth.

Gollier and Pratt (1996) obtained the necessary and sufficient condition for a
background risk with a non-positive mean to increase the aversion to other indepen-
dent risks. They coined the term (background) “Risk Vulnerability”. They used a tech-
nique of proof that has been systematized in Gollier and Kimball (1997) to solve other
problems dealing with multiple risks. _

Up to now, we examined the effect of introducing a background risk. Eeckhoudt,
Gollier and Schlesinger (1996) considered the more general problem of the effect of
increasing the background risk, in the sense of a FSD or IR shift in distribution. In
the case of an increase in background risk, they showed that the restrictions to impose
on u to obtain an unambiguous effect on o* are much more demanding than risk vul-
nerability. Meyer and Meyer (1997) relaxed these conditions on u at the cost of
restricting the changes in risk. For example, standard risk aversion is sufficient when
limiting the analysis to the effect of a strong increase in background risk.

4.6 EXTENSIONS

Let us go back to the problem analyzed in section 4.4. Indeed, the effect of a change
in the distribution of X and the effect of introducing a pure background risk are not
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without any link. Suppose that there is no background risk, but rather that the increase
in risk of x takes the form of adding an independent pure white noise € to it. The
derivative of the objective function with the new risk x + € evaluated at the initial
optimal exposure (normalized to 1) is written as

EX+8)u'(wo+x+8)=Exu'(wy +X+€)+ Egu'(wy + X +€)
= Exv'(wy +X) + E&u'(wy + X +€)
< Efu'(wy +X+8€)
<0. (19)

The first inequality is obtained by using the fact that o* = 1 under the initial risk X,
together with the fact that v is more concave than u under risk vulnerability. The
second inequality is a direct consequence of the fact that E (€)= 0. We conclude that
risk-vulnerable agents reduce their exposure to a risk that has been increased in the
sense of adding a zero-mean independent white noise to it. This result is in Gollier
and Schlesinger (1996).

Recent developments of this field of research have been made to extend
the basic model (1) to more than one source of endogenous risk. Landsberger and
Meilijson (1990), Meyer and Ormiston (1994) and Dionne and Gollier (1996)
considered the two-risky-asset problem, which is written as:

max Eu(wgy + 0%, + (1 —0)X,).

These authors determined whether imposing MLR, SIR or other restrictions on the
change in the conditional distribution of X, generates the same conclusion in this more
general context. Notice that rewritting final wealth as w, + a(X, — X,) + X, suggests
that this problem is similar to the initial one, with a controllable risk (X, — X,), and a
“background” risk X,. But the two risks are here correlated.

Another line of research is related to the management of multiple endogenous
risks, a problem which can be formulated as follows:

max Eu(wo +20L,-)?,- )

O, ..y Oy i=1

Dionne and Gagnon (1996) focused on the case n = 2, which corresponds to the man-
agement of a portfolio with two risky assets and one riskfree asset. Eeckhoudt, Gollier
and Levasseur (1994) examined the case where the x; are i.i.d., in which case all
oFare the same. They addressed the question of how a* is affected by an increase in
n. As an application, we have the optimal strategy of an agent who has to insure a
fleet of vehicule. Gollier, Lindsey and Zeckhauser (1997) showed that an increase in
n reduces o* if relative risk aversion is constant and less than unity.



The Effects of Changes in Risk on Risk Taking: A Survey 129
4.7 CONCLUSION

Stochastic dominance orders have been defined to determine the effect of a change in
risk on the welfare of some category of economic agents. It is now apparent that these
concepts are not well suited to perform comparative statics analyses. As an example,
an increase in risk a la Rothschild-Stiglitz on the return of a risky asset may induce
some risk-averse agents to increase their demand for it. Also, an increase in back-
ground risk a la Rothschild-Stiglitz may induce some risk-averse agents to raise their
demand for another independent risk. In this paper, we summarize the main findings
that allow to solve these paradoxes. We tried to convince the reader that most restric-
tions to pteferences or to stochastic orders make sense even if some are rather
technical.

We examined a simple model with a single source of endogenous risk, plus a
background risk. We separately considered the case of a change in the distribution of
the endogenous risk, and the case of a change in background risk. The current trends
in this field is for the analysis of multiple risk taking situations, in which these two
analyses are often combined to produce new results. Much progress must be still done
on our understanding of the interaction between risks, but we now have the relevant
tools and concepts to perform this work efficiently.
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Abstract

This chapter presents the basic theoretical models of insurance demand in a one-
period expected-utility setting. Models of coinsurance and of deductible insurance are
examined along with their comparative statics with respect to changes in wealth, prices
and attitudes towards risk. The similarities and difference between market insurance,
self-insurance and self-protection are also presented. The basic models are then
extended to account for default risk and for background risk.
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default risk, background risk.
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5.1 INTRODUCTION

The theory of insurance demand is often regarded as the purest example of economic
behavior under uncertainty. Interestingly, whereas a decade ago most upper-level
textbooks on microeconomics barely touched on the topic of uncertainty, much less
insurance demand, textbooks today often devote substantial space to the topic. The
purpose of this chapter is to present the basic model of insurance demand, that imbeds
itself not only into the other papers in this volume and in the insurance literature, but
also in many other settings within the finance and economics literatures. Since models
that deal with nonexpected utility analysis are dealt with elsewhere in this volume, I
focus only on the expected-utility framework.

If we were to view insurance as simply a case of optimal risk sharing, we would
be led to a simple sharing rule due to Karl Borch (1962). However, for many reasons,
not the least of which is the sheer size of the economy, such ideal risk sharing rarely
seems to take place. Indeed, even Borch himself had to move from the level of the

* The author thanks Henri Loubergé, Ray Rees, his Insurance Economics class at the University of
Konstanz, and an anonymous referee for helpful comments on a draft of this chapter. Remaining errors
are an example of a market for which there is no insurance.
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individual, past the level of the insurance company, and to the level of reinsurance in
expositing his classic result. In this sense, we can view insurance as an intermediary.
Although contingent contracts that allow for mutual risk sharing would be first
best, such contracts are not feasible. We thus see insurers in the economy, who
approximate the process by gathering and pooling the risks of a large number of
individuals.

The device offered by the insurer is one in which, for a fixed premium, the insurer
offers an indemnity for incurred losses. Of course, there are many variations on this
theme, as one can see from gleaning the pages of this volume. From a purely theo-
retical viewpoint, the model presented in section 5.2 of this chapter should be viewed
as a base model, from which all other models deviate.

In some ways, insurance is simply a financial asset. However, whereas most
financial assets are readily tradable and have a risk that relates to the marketplace,
insurance is a contract contingent on an individual’s own personal wealth changes.
This personal nature of insurance is what distinguishes it from other financial assets.
It also exacerbates problems of informational asymmetry, such as moral hazard and
adverse selection, which also are dealt with elsewhere in this volume.

The preponderance of insurance models isolate the insurance-purchasing deci-
sion. The consumer decides how much insurance to buy for a well-defined risk. And
indeed, this chapter starts out the same way in section 5.2. However, when multiple
risks face the consumer, it is not likely to be optimal to decide how to handle each
risk separately. Rather, some type of overall risk-management strategy is called for.
Even if we make an insurance decision in isolation, the presence of these other risks
is most likely going to affect our choice. The second part of this chapter (Section 5.3)
shows how the presence of other risks—so-called “background risk”—impacts the
consumer’s insurance-purchasing decision.

5.2 THE SINGLE RISK MODEL

Insurance contracts themselves can be quite complicated, but the basic idea is fairly
simple. For a fixed premium P the insurer will pay the insured a contingent amount
of money, that depends upon the value of a well-defined loss. This insurance payment
is referred to as the indemnity.

To make the model concrete, consider an individual with initial wealth W > 0.
Let the random variable X denote the amount of the loss, where 0 < x < W. The insur-
ance indemnity is contingent only on x and will be written as I(x). We often assume
that /(x) is nondecreasing in x and that 0 < I(x) < x, though neither of these assump-
tions is necessary to develop a theory of insurance demand. We do, however, assume
that the realization of X is costlessly observable by all parties and that both parties
agree on the distribution of the random variable X. Models that do not make these last
two assumptions are dealt with elsewhere in this volume.
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The insurer, for our purpose, can be considered as a risk-neutral firm that charges
a market-determined price for its product. The individual is considered to be risk
averse with von Neumann-Morgenstern utility of final wealth given by the function
u(-), where u is assumed to be everywhere twice differentiable with #” > 0 and
u” < 0. The assumption of differentiability is not innocuous. It is tantamount in our
model to assuming that risk aversion is everywhere of order 2.'

5.2.1 Proportional Coinsurance

The simplest type of indemnity payment is one in which the insurer pays a fixed
proportion, say ., of the loss. Thus, /(x) = ow. This type of insurance indemnity is
often referred to as coinsurance, since the individual retains (or “coinsures™) a frac-
tion 1 — a of the loss. If o = 1, the insurer pays an indemnity equal to the full value
of the loss and the individual is said to have full insurance.

An assumption that 0 < /(x) < x here is equivalent to assuming that 0 < o < 1.
The case where o > 1 is often referred to as over insurance. The case where a0 < 0 is
referred to by some as “selling insurance,” but this description is incorrect. If o < 0,
the individual is taking a short position in his or her own loss; whereas selling
insurance is taking a short position in someone else’s loss.

To consider the insurance-purchasing decision, we need to specify the insurance
premium as a function of the indemnity. The most general form of the premium is

PI0)] = E[I(%)+c[I(D)]) (M

Here E denotes the expectation operator and ¢(-) is a cost function, where c[/(x)]
denotes the cost of paying indemnity I(x), including any market-based charges for
assuming the risk I(X). Note that P itself is a functional, since it depends upon the
function ().

As a base case, we often consider c[/(x)] = 0 Vx. This case is usually referred
to as the case of perfect competition in the insurance market, since it implies that
insurers receive an expected profit of zero, and the premium is referred to as a fair
premium.?

The premium, as defined in (1), is a bit too general to suit our purpose here. See
Gollier (2000) for more discussion of this general premium form. We consider here

" See Segal and Spivak (1990). Although extensions to the case where u is not everywhere differentiable
are not difficult, they are not examined here. See Schlesinger (1997) for some basic results.

? Obviously real-world costs include more than just the indemnity itself, plus even competitive insurers
earn a “normal return” on their risk. Thus, we do not really expect c[/(x)] = 0. However, real-world markets
also allow for the insurer to invest premium income, which is omitted here, so that zero-costs might not
be a bad approximation for our purpose of developing a simple model. The terminology “fair premium” is
taken from the uncertainty literature, since such a premium in return for the random payoff /( X) represents
a “fair bet” for the insurer.
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the simplest case of (1) in which the expected cost is proportional to the expected
indemnity; in particular

P(o) = E(ox + Aox) = ou(1+ M) EX, Q)

where A is called the loading factor, A > 0. The individual’s final wealth can then be
expressed as a random variable, dependent upon the choice of a,

V(o) =W —a(l+A)EX — % + 0. (€)
The individual’s objective is choose o so as to maximize his or her expected utility

maximize £ [u(Y ()], C))

where we might or might not wish to impose the constraint that 0 < o < 1.
Solving (4) is relatively straightforward, yielding a first-order condition for the
unconstrained objective

%:E[u'(i(a)).(f-(1+x)Ef)]=o. )

The second-order condition for a maximum holds trivially from our assumption
that u” < 0. Indeed, d*Eu/do? is negative everywhere, indicating that any o* satisfy-
ing (5) will be a global maximum. The fact that E[u();((x))] is globally concave in o
also turns out to be key in later examining various comparative statics.

Evaluating dEu/do at o = 1 shows that

dE ~ - ~ . ~ .
d—“ = \EW/(F(1))- E% +Cov(w' (Y(1)), ¥) = —AEw/(Y (1)) - EX +0, (6)

a lg=1
where Cov(-,-) denotes the covariance operator. Consequently, the sign of (6) wi~ll be
zero if A = 0 and will be negative if A > 0. Together with the concavity of Eu(Y (o))
in o, this implies the following result, usually referred to as Mossin’s T heorem:®

Theorem. If proportional insurance is available at a fair price (A = 0), then full cov-
erage (o* = 1) is optimal. If the price of insurance includes a positive premium loading
(A > 0), then partial insurance (o* < 1) is optimal.

3 The result is often attributed to Mossin (1968), with a similar analysis also appearing in Smith
(1968).
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Note that Mossin’s Theorem does not preclude a possibility that o* < 0 in the
unconstrained case. Indeed, evaluating dEu/do at o = 0 when A > 0, yields

dEu

ol = —\Euw'(Y(0))- EX + Cov(u’(Y(0)), %). %)

o=0

Since the covariance term in (7) is positive and does not depend on A, we note
that there will exist a unique value of A such that the derivative in (7) equals zero. At
this value of A, zero coverage is optimal, o* = 0. For higher values of A, a* < 0. Since
Eu()7 (o)) is concave in o, oo = 0 will be a constrained optimum whenever the uncon-
strained optimum is negative. In other words, if the price of insurance is too high, the
individual will not purchase any insurance.

As long as the premium loading is nonnegative, A > 0, the optimal level of insur-
ance will be no more than full coverage, o* < 1. If, however, we allow for a negative
premium loading, A < 0, such as might be the case when the government subsidizes
a particular insurance market, then over insurance, o* > 1, will indeed be optimal in
the case where a is unconstrained. Strict concavity of Eu(); (o)) in o once again
implies that full insurance, o = 1, will be a constrained optimum for this case, when
over insurance is not allowed.

It may be instructive for some readers to compare the above results with the so-
called portfolio problem in financial economics. The standard portfolio problem has
an investor allocate her wealth between a risky and a riskless asset. If we let 4 denote
final wealth when all funds are invested in a riskless asset, and let Z denote the random
excess payoff above the payoff on the riskless asset, the individual must choose a
weight B, such that final wealth is

Y(B)=(1-B)A+P(A+2) = 4+P:. (®)

A basic result in the portfolio problem is that sgn B* = sgn EZ. If we set 4 =
W—-(1+MEX, z=(1 + M)EX — X, and B = (1 — ), then (8) is equivalent to (3).
Noting that sgn EZ = sgn A in this setting, our basic portfolio result is exactly equiv-
alent to Mossin’s Theorem. Using equation (8), we can think of the individual start-
ing from a position of full insurance (B = 0) and then deciding upon the optimal level
to coinsure, B*. If A > 0, then coinsurance has a positive expected return, so that any
risk averter would choose B* > 0 (i.e., a* < 1).

5.2.2 Effects of Changes in Wealth and Price

In the general case, it is often difficult to define what is meant by the price and the
quantity of insurance. Since the indemnity is a function of a random variable and since
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the premium is a functional of this indemnity function, both price and quantity—the
two fundamental building blocks of economic theory—have no direct counterparts
for insurance. However, for the case of coinsurance, we have the level of coinsurance
o and the premium loading factor A, which fill in nicely as proxy measures of
quantity and price respectively.

If the individual’s initial wealth changes, but the loss exposure remains the same,
will more or less insurance be purchased? In other words, is insurance a “normal” or
an “inferior” good? Clearly, if A = 0, then Mossin’s Theorem implies that full insur-
ance remains optimal. So let us consider the case where A > 0, but assume that A is
not too large, so that 0 < o* < 1. Since Eu(Y(ct)) is concave in o, we can determine
the effect of a higher W by differentiating the first-order condition (5) with respect
to W. Before doing this however, let us recall a few items from the theory of risk
aversion.

If the Arrow-Pratt measure of local risk aversion, #(y) = —u"(y)/u/(y), is decreas-
ing in wealth level y, then preferences are said to exhibit decreasing absolute risk aver-
sion (DARA). Similarly, we can define constant absolute risk aversion (CARA) and
increasing absolute risk aversion (IARA). We are now ready to state the following
result.

Proposition 1. Let the insurance loading A be positive. Then for an increase in the
initial wealth level W,

(i) the optimal insurance level o* will decrease under DARA,
(ii) the optimal insurance level a* will be invariant under CARA,
(iii) the optimal insurance level a* will increase under IARA.

Proof. Let F denote the distribution of X. By assumption, the support of F lies in the
interval [0, ]. Define x, = (1 + L)EX. Assume DARA. Then we note that 7(y,) < 7(y)
< K(y,) for any y, > y, > y,, and, in particular for y, = W — a*(1 + M)EX — xo + 0.
Now

0°Eu
oo

= " (Y (o) (x — (14 ) EX)dF

o*

= [ Y (@ (F (o)) — (1 + N ER)AF

[ 0 (o (v (o)~ 1+ M ER)F
<—rOu)[[ W (@) - (4 D) ER)F = 0] ©)
Thus increasing wealth causes o* to fall.

The cases where preferences exhibit CARA or IARA can be proved in a similar
manner. | |
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We should caution the reader that DARA, CARA and IARA do not partition the
set of risk-averse preferences. Indeed each of these conditions is shown to be sufficient
for the comparative-static effects in Proposition, though none is necessary.

The case of CARA is often used as a base case, since such preferences eliminate
any income effect. However, a more common and, by most standards, realistic assump-
tion is DARA, which implies that insurance is an inferior good. One must use caution
in using this interpretation however. It is valid only for the case of a fixed loss
exposure X. Since real-world loss exposures typically increase as wealth increases, we
do not necessarily expect to see richer individuals spending less on their insurance
purchases, ceteris paribus.* We do, however, expect that they would spend less on the
same loss exposure.

In a similar manner, we can examine the effect of an increase in the loading factor
A on the optimal level of insurance coverage. Differentiating the first-order condition
with respect to A obtains

0°Eu
..

0*Eu
oW

= —[ExEuw' (Y (0.%)] - 0EX (10)

The first term on the right-hand side of equation (10) captures the substitution
effect of an increase in A. This effect is negative due to the higher price of insurance.
The second term on the right-hand side of (10) captures an income effect, since a
higher premium would lower overall wealth, ceteris paribus. For a positive level of
o, which we are assuming, this effect will be the opposite sign of 0°Eu/dadW. For
example, under DARA, this income effect is positive: the price increase lowers the
average wealth of the individual, rendering him or her more risk averse. This higher
level of risk aversion, as we shall soon see, implies that the individual will purchase
more insurance. If this second (positive) effect outweighs the negative substitution
effect, insurance can be considered a Giffen good.” More comprehensively, the
following result is a direct consequence of equation (10) and Proposition 1.

Proposition 2. Let the insurance loading be positive, with 0 < a* < 1. Then, insur-
ance cannot be a Giffen good if preferences exhibit CARA or IARA, but may be
Giffen if preferences exhibit DARA.

5.23 Changes in Risk and in Risk Aversion

If the loss distribution F changes, it is sometimes possible to predict the change in
optimal insurance coverage a*. Conditions on changes to F that are both necessary

* If the support of ¥ is [0, L], it may be useful to define W = W, + L. If the loss exposure is unchanged,
an increase in W can be viewed as an increase in W,. More realistically, an increase in W will consist of
increases in both W, and L.

* A necessary and sufficient condition for insurance not to be Giffen is given by Briys, Dionne and
Eeckhoudt (1989).
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and sufficient for a* to increase are not trivial, but can be found by applying a
Theorem of Gollier (1995) to the portfolio problem, and then using the equivalence
of the portfolio problem and the insurance problem. Although this condition is very
complex, there are several sufficient conditions for a* to rise due to a change in risk
that are relatively straightforward. Since this topic is dealt with elsewhere in this
volume (Eeckhoudt and Gollier, 2000), I do not detour to discuss it any further here.

A change in risk aversion, on the other hand, has a well-defined effect upon the
choice of insurance coverage. First of all, we note that for an insurance premium that
is fair, A = 0, any risk-averse individual will choose an insurance policy with full cov-
erage, o* = 1. If, however, insurance premia include a positive premium loading,
A > 0, then an increase in risk aversion will always increase the level of insurance.
More formally,

Proposition 3. Let the insurance loading be positive, with 0 < a* < 1. An increase
in the individual’s degree of risk aversion at all levels of wealth will lead to an increase
in the optimal level of coverage, ceteris paribus.

Proof. Let o* denote the optimal level of coverage under the original utility function
u. Let v denote a uniformly more risk-averse utility function. We know from Pratt
(1964), that there exists a function g:[Image u] — R such that v(y) = g{u(y)], where
g >0and g”<0.

Since v is a risk-averse utility function, we note that Ev(Y(a)) is concave in .
Thus, consider the following:

% dEg u J (¥ (ck))x — (1 + 1) ER)aF
>g[u(yo)]{j (Y(0¥))(x — (1+ M) ER)dF + j ))(x—(1+k)Ei)dF}=

(1D

where x, and y, are as defined in the proof of Proposition 1, and where the inequal-
ity follows from the concavity of g. This last expression equals zero by the first-order
condition for ok,

Since Ev(Y(a)) is concave in o, the inequality in (11) implies that o* > o,

5.2.4 Self-Insurance and Self-Protection

It is useful, at this point, to distinguish insurance from two other types of protection
against loss. These alternatives were first examined in a classic article by Ehrlich and
Becker (1972) and represent engineering-types of alternatives. That is, while insur-
ance, which Ehrlich and Becker distinguish under the label “market insurance,” offers
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third-party indemnification for losses that occur, these alternatives actually change
the frequency and/or severity of the loss distribution. In particular, self-insurance
lowers the financial severity of any loss that occurs, whereas self-protection reduces
the likelihood that a loss occurs.® An example of self-insurance might be the instal-
lation a sprinkler system to protect against fire damages. An example of self-
protection might be the installation of dead-bolt locks at home to keep potential
thieves from entering.

In reality, the distinction between self-insurance and self-protection is often
blurred. Indeed even in the above examples, the sprinkler might extinguish a fire in a
waste basket, essentially lowering the chance of any loss occurring. Likewise, the
dead-bolt lock might only take away from some of the thief’s time spent in your house,
thus lowering the level of damages. The point is that most investment to control losses
simultaneously contains some degree of both self-insurance and self-protection.
Moreover, changes in a loss distribution are not typically decomposable into self-
insurance and self-protection types of changes.’

One way to view self-insurance in the general case is to redefine the “indemnity
function” I(x) as the deterministic reduction of the loss, which would have been of
size x without self-insurance.® Thus, a loss that would have been x is now reduced to
the amount x — /(x). Instead of a “premium” P[/(-)], we can view P as the cost for
achieving the loss-reduction schedule /(-). In this setting, it is not surprising that self-
insurance and market insurance are substitutes, which was proven formally by Ehrlich
and Becker for the simple case where there are only two states of nature: loss and no-
loss, where the loss size without self-insurance is fixed.

Similarly, one way to view self-protection is to define the random variable L as
the size of a loss, conditional on the occurrence of a loss. We then let p denote the
probability of a loss occurring. The loss amount X thus has a distribution that con-
tains an atom at zero. In particular, no loss occurs with probability (/ — p), and with
probability p the consumer experiences a loss of random size L. To introduce self-
protection, let ¢ denote the level of investment in this type of activity. We assume that
the loss probability is affected with p = p(c), where p(-) is a decreasing function. Final
wealth can thus be viewed as a compound lottery. With probability / — p(c) the level
of wealth is W — ¢, and with probability p(c) final wealth is W — ¢ — L, where the
distribution of loss severity L is assumed to be unaffected by c.

Whereas an investment in market insurance or in self-insurance will increase
wealth in the “bad” states of nature at a cost of reduced wealth in the good states,
the same cannot be said of self-protection. By increasing the expenditure on

¢ This terminology is still standard in the economics literature. These two activities are typically referred
to as “loss reduction” and “loss prevention” respectively in the insurance literature.

7 Ehrlich and Becker (1972) perform only a sketchy analysis of continuous loss distributions, and they
provide no clear definitions of self-insurance and self-protection except for the simple two-state framework.

& If the reduction in loss size is stochastic, rather than deterministic, the analysis becomes much more
complex.
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self-protection ¢, final wealth is lower in every state of nature. However, self-
protection alters the probabilities so that the best state of nature (no loss) is more
likely. Given their very different structures, it is not surprising that self-protection is
not generally a substitute for market insurance or self-insurance, and may indeed be
a complement.’

If we turn our attention to the effects of risk aversion on the purchase of self-
insurance, it is not surprising that self-insurance behaves much like market insurance.
Under reasonable cost conditions, investment in self-insurance increases with higher
levels of risk aversion. The same is not true for self-protection. Indeed, since self-
protection lowers wealth in all states of nature, including the state with the highest
loss, a more risk averse individual might optimally invest less in self-protection, in
order to improve the worst possible wealth level.'

5.2.5 Deductible Insurance

Although proportional coinsurance is the simplest case of insurance demand to model,
real-world insurance contracts often include fixed co-payments per loss or deductibles.
Indeed, optimal contracts include deductibles under fairly broad assumptions, and
under fairly simple but realistic pricing assumptions, straight deductible policies can
be shown to be optimal.'"' In this section, we examine a few aspects of insurance
demand when insurance is of the deductible type.

For deductible insurance, the indemnity is set equal to the excess of the loss over
some predetermined level. Let L denote the supremum of the support of the loss
distribution, so that L denotes the maximum possible loss. By assumption, we have
L < W. Define the deductible level D € [0, L] such that I(x) = max(0, x — D). If
D =0, the individual once again has full coverage, whereas D = L now represents zero
coverage. One complication that arises, is that the general premium, as given by equa-
tion (1), can no longer be written as a function of only the mean of the loss distribu-
tion, as in (2). Also, it is difficult to find a standard proxy for the quantity of insurance
in the case of deductibles.'?

In order to keep the model from becoming overly complex, we assume here that
the distribution F is continuous, with density function f, so that dF(x) = f{x)dx. We
will once again assume that the insurance costs are proportional to the expected
indemnity, so that the premium for deductible level D is given by

° Ehrlich and Becker (1972) derive complementarily in a model with two states of nature, under certain
cost conditions.

' Dionne and Eeckhoudt (1985) show these risk-aversion effects for the two-state model. Briys and
Schlesinger (1990) extend this analysis by analyzing the effects of self-insurance and self-protection on the
riskiness of final wealth. Sweeney and Beard (1992), show that there do not exist any conditions in an
expected-utility framework that would lead to an individual always investing weak more in self-protection.
See also the recent contributions of Jullien et al. (1999) and Dachraoui et al. (1999).

"' See the essay by Gollier (2000) in this volume for a detailed analysis of the optimality of deductibles.

"2 Meyer and Ormiston (1998) make a strong case for using E[/(x)], although it is often much simpler
to use D as an inverse proxy for insurance demand.
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P(D) =(1+ME[I(X)] =1+ X)J‘DL (x = D)dF(x)=(1+ k)ﬁ [1=F(x))dx, (12)

where the last equality is obtained via integration by parts.
Using Leibniz Rule, one can calculate the marginal premium reduction for
increasing the deductible level,"

P'(D)=-(1+A)(1- F(D)). (13)

By increasing the deductible level, say by an amount AD, the individual receives
a lower payout in all states of the world for which the loss exceeds the deductible.
The likelihood of these states is 1 — F(D). While it is true that the likelihood will
also change as D changes, this effect is of secondary importance and, due to our
assumption of a continuous loss distribution, disappears in the limit.

Following the choice of a deductible level D and using the premium as specified
in (12), final wealth can be written as

Y(D) =W - P(D) - min(%, D). (14)
The individual’s objective is now to choose the best deductible,

max imize £ [u(Y(D))], where 0SD<L. (15)

Assume that the premium loading is nonnegative, A > 0, but not so large that we obtain
zero coverage as a corner solution, D* = L. The first-order condition for the maxi-
mization in (15), again using Leibniz rule, is

dEu ’ D ’ ’ L 7
- =—P'[ w(W ~ P=x)dF +(~P'~1)[ ' % - P~ D)dF

= ~P’LDu’(W ~P—x)dF + (=P’ 1)1~ F(D))u’(W — P— D) =0. (16)

The first term in either of the center expressions in (16) represents the marginal
net utility benefit of premium savings from increasing D, conditional on the loss not
exceeding the deductible level. The second term is minus the net marginal utility cost
of a higher deductible, given that the loss exceeds the deductible. Thus, (16) has a
standard economic interpretation of choosing D* such that marginal benefit equals
marginal cost.

h(1) h(n
' Leibniz rule states that — I H(x,t)dx=H(b,1)b'(t)— H(a,t)a’(t)+ I —dx.
dt ot

a(r) a(r)
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The second-order condition for the maximization in (16) can be shown to hold

as follows.
d’Eu _
dD*
+(P) [ w" W = P x)dF +1+ M)~ £ (D)1 ~ F(D)u' (¥ — P~ D)

A+0)(- f(D))jOD W (W - P =x)dF +(~P"Y'(W — P D) f(D)

+(=P’ = 1)(~f(D))u'(W — P—D)+(~P’ -1’ (1~ F(D))" (W — P~ D). (17)

Multiplying all terms containing f{D) in (17) above by (1 — F(D))/(1 — F(D)) and
simplifying, yields

d’Eu _ —f(D) D, ) o
i “ToFy | F O - P=x)dF (P =D~ FDO)u (7 P D)|
[PV [ w O - P=x)dF + (P -1 (1~ FODO)W" (¥ - P~ D)|<0 (18)

The first term in (18) is zero by the first-order condition, while the second term is
negative from the concavity of u, thus yielding the inequality as stated in (18).

To see that Mossin’s Theorem can be extended to the case of deductibles, rewrite
the derivative in (16) as

‘% = (1~ FO)|+ W[ w/ (¥ - P~ min(x, D)F ~u'0¥ ~ P~ D)] (19)

If A = 0, then (19) will be negative for any D > 0, and is easily seen to equal zero
when D = 0. For A > 0, (19) will be positive at D = 0, so that the deductible should
be increased. Therefore, Mossin’s Theorem also holds for a choice of deductible.

It also is straightforward to extend the comparative-static results of Propositions
1-3 to the case of deductibles as well, although we do not provide the details here.

53 THE MODEL WITH MULTIPLE RISKS

Although much is to be learned from the basic single-risk model, rarely is the insur-
ance decision made with no other uncertainty in the background. This so-called back-
ground risk might be exogenous or endogenous. In the latter case decisions on how
to best handle risk cannot usually be decided in isolation on a risk-by-risk basis.
Rather, some type of comprehensive risk management policy must be applied."

' This question was first addressed by Mayers and Smith (1983) and Doherty and Schlesinger (1983).
The special case of default risk was developed by Doherty and Schlesinger (1990), and Schlesinger and
Schulenburg (1987).
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However, even in the case where the background risk is exogenous and independent
of the insurable risk, we will see that the mere presence of background risk affects
the individual’s insurance choice.

The existence of uninsurable background risk is often considered a consequence
of incomplete markets for risk sharing. For example, some types of catastrophic risk
might contain too substantial an element of nondiversifiable risk, including a risk of
incorrectly estimating the parameters of the loss distribution, to be insurable. Like-
wise, nonmarketable assets, such as one’s own human capital, might not find ready
markets for sharing the risk. Similarly, problems with asymmetry of information
between the insurer and the insured, such as moral hazard and/or adverse selection,
might preclude the existence of insurance markets for certain risks.

We begin the next section by examining a type of secondary risk that is always
present for an insurable risk, but almost universally ignored in insurance theory;
namely the risk that the insurer does not pay the promised indemnity following a
covered loss. The most obvious reason for nonpayment is that the insurer may be
insolvent and not financially capable of paying its claims in full. However, other
scenarios are possible. For instance, there might be some events that void insurance
coverage, such as a probationary period for certain perils to be included, or exclusion
of coverage in situations of civil unrest or war.'”” Even if the insurer pays the loss
in full, it may decide to randomly investigate a claim thereby substantially delaying
payment. In such an instance, the delay reduces the present value of the indemnity,
which has the same effect as paying something less than the promised indemnity.

5.3.1 The Model with Default Risk

We consider here an insurance model in which the insurer might not pay its claims
in full. To keep the model simple, we consider only the case of a full default on an
insured’s claim in which a loss of a fixed size either occurs or does not occur. Let the
support of the loss distribution be {0, L}, where a loss of size L occurs with proba-
bility p, 0 < p < 1. Let o once again denote the share of the loss paid as an indem-
nity by the insurer, but we now assume that there is only a probability ¢, 0 < ¢ < 1,
that insurer can pay its claim, and that with probability 1 — g the claim goes unpaid.'®
As a base case, we consider a fair premium, which we calculate taking the default
risk into account as P(a) = opgL.

Obviously such a premium is not realistic, since for g < 1 it implies that the insurer
will default almost surely. More realistically the insurance will contain a premium
loading of A > 0. Thus P(ar) = op[(1 + A)g]L. Since P, o, p and L are known or observ-
able, the consumer observes only g(1 + A), rather than g and A separately. It is the

' Although not modeled in this manner, the possibility of a probationary period is examined by
Eeckhoudt, et al. (1988), who endogenize the length of probation.

'® In a two-state (loss vs. no loss) model, there is no distinction between coinsurance and deductibles.
A coinsurance rate o is identical to a deductible level of D = (1 — a)L.
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consumer’s perception of q and A that will cause a deviation in insurance purchasing
from the no-default-risk case. Since we only concern ourselves with how default risk
affects insurance demand, the base case of a “fair premium” with A = 0 seems like a
good place to start.

Given our model, states of the world can be partitioned into three disjoint sets:
states in which no loss occurs, states in which a loss occurs and the insurer pays its
promised indemnity, and states in which a loss occurs but the insurer pays no indem-
nity. We assume that the individual’s loss distribution is independent of the insurer’s
insolvency. Thus, the individual’s objective can be written as

max imize Eu =(1- p)u(Y,)+ pqu(Y,)+ p(1— q)u(Y;) (20)
where
Y'=W-opgL

Y,=W-opgL-L+o0L
Yi=sW-apgl - L
The first-order condition for maximizing (20) is

dEu

o ~(1= p)pgLu’(Y}) + pq(1— pq)Lu'(Y;) - p(1—q) pgLu’(Y3) = 0. (21)

Dividing through by L and rearranging, we can rewrite (21) as
u'(Y,) = Bu' (1) + (1= B)u’(Y3), (22)

where B = (1 — p)/(1 — pq), 0 < B < 1. Thus we see that u'(Y,) is a weighted average
of «/(Y)) and «/(Y3)."” Given the concavity of u(-), equation (22) implies that

V,>Y,> 7, (23)

so that a* < 1. Clearly then, Mossin’s Theorem does not hold in the presence of
default risk.

In the presence of default risk, although we can purchase “nominally full insur-
ance” with o* = 1, this does not fully insure the individual, since the insurer might

"7 Note that if there is no default risk with ¢ = 1, then «’(Y;) = u’(Y,) implying that o* = 1, as we already
know from Mossin’sTheorem.
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not be able to pay a valid claim. Indeed, in the case where the insurer does not pay a
filed claim, the individual is actually worse off than with no insurance, since the indi-
vidual also loses his or her premium. The higher the level of insurance, the higher the
potential loss of premium. Thus it is not surprising that o* = 1 is not optimal.

It also is not difficult to show that, in contrast to the case with no default risk, an
increase in risk aversion will not necessarily lead to an increase in the level of insur-
ance coverage. Although a more risk-averse individual would value the additional
insurance coverage absent any default risk, higher risk aversion also makes the indi-
vidual fear the worst-case outcome (a loss and an insolvent insurer) even more. More
formally, let v(-) be a more risk-averse utility function than u(-). As in section 1.3, we
know there exists an increasing concave function g, such that v(y) = glu(y)] for all y.

Without losing generality, we can assume that g'[u(Y;)] = 1, so that g'Tu(Y))] < 1
< g'[u(Y3)]. Now, calculating

dEv

ol = —g'[u(M)I(1 = p)pgLu’ (Y1) + pg(1 - pg)Lu’(Y,)

- g'Tu(¥;)1p(1 - g) pgLu'(Y3). (24)

Comparing (24) with (21), we see that one of the negative terms on the right-hand
side in (24) is increased in absolute magnitude while the other is reduced. However,
it is not possible to predetermine which of these two changes will dominate, a priori.
Thus, we cannot predict whether o* will increase or decrease.

Using similar arguments, it is easy to show that insurance is not necessarily an
inferior good under DARA, as was the case without default risk. A somewhat more
surprising result is that, under actuarially fair pricing, an increase in the probability
of solvency does not necessarily lead to a higher level of coverage. To see this, use
the concavity of Eu(Y(a)) in o, which is easy to check, and calculate

0*Eu
0010q| .

= polL[H(a*)]+p*qLlu'(Ys) - u'(Y,)], (25)

where H(o) is defined as the derivative in the first-order condition (21), with «(Y)
replaced by the utility function —'(Y'). The level of insurance coverage will increase,
due to an increase in ¢, if and only if (25) is positive. Although the second term on
the right-hand side of (25) is positive, the first term can be either positive or negative.
For example, if u exhibits DARA, it is straightforward to show that —u’ is a more risk
averse utility than u. Therefore, by our results on increases in risk aversion, H(o*)
might be either positive or negative.

There are two, and only two, circumstances in which the form of the utility
function u will yield da*/dg > 0, regardless of the other parameters of the model
(assuming fair prices). The first is where u is quadratic, so that H(o) = 0 for all o.



146 Handbook of Insurance

The second is where u satisfies CARA, and which case —u” and u represent the same
risk-averse preferences.'® Hence, H(0*) = 0. We also know for any risk-averse utility
u, that do*/dg > 0 for g sufficiently close to ¢ = 1. This follows since o* = 1 for
g=lLbuta*<1forg<l.

5.3.2 An Independent Background Risk

As opposed to a default risk, we now suppose that the insurer pays all of its claims,
but that the individual’s uninsured wealth prospect is W + € — X, where X once again
represents the insurable loss and where € represents a zero-mean background risk that
is independent of ¥. We assume that the support of the distribution of € is not the sin-
gleton {0} and that W + € — ¥ > 0 almost surely. It is assumed that € cannot be insured
directly. We wish to examine the effect of € on the choice of insurance level o*.

The case of an independent background risk is easily handled by introducing the
so-called derived utility function which we define as follows:

v(y)=Eu(y+§€)= 'Ecu(y +€)dG(e), (26)
where G(-) is the distribution function for € Note that we can now write
max Eu(F(0)+8) = [ [~ u(Y(@) +£)dGe)dF (x) =[; w(¥ (@)dF (x) = Ev(f (). (27)

In other words, v(Y(@)) is simply the “inner part” of an iterated integral. Finding the
optimal insurance level for utility  in the presence of background risk &, is identical
to finding the optimal insurance level for utility v, absent any background risk.

For example, suppose u exhibits CARA or that u is quadratic. Then it is easy to
show in each case that v is an affine transformation of u, so that background risk has
no effect on the optimal choice of insurance."”

More generally, we know that more insurance will be purchased whenever the
derived utility function w(-) is more risk averse than u(-). A sufficient condition for
this to hold is standard risk aversion as defined by Kimball (1993). A utility function
exhibits standard risk aversion “if every risk that has a negative interaction with a
small reduction in wealth also has a negative interaction with any undesirable, inde-
pendent risk.” [Kimball (1993) p. 589] Here “negative interaction” means that risk
magnifies the reduction in expected utility. Kimball shows that standard risk aversion

'® This is easiest to see by noting that —u’ is an affine transformation of u.

' For CARA, w(y) = ku(y) and for quadratic utility v(y) = u(y) + ¢, where k = E[exp(r€)] > 0 and
¢ = —t var(€) for some ¢ > 0. Gollier and Schlesinger (1998) show that these are the only two forms of u
for which v represents preferences identical to u.
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is characterized by decreasing absolute risk aversion and decreasing absolute pru-
dence, where absolute risk aversion is #(y) = —u”(y)/u’(y) and absolute prudence is
nw) = -u"(y)u"(y).

It is easy to show that DARA is equivalent to 1(y) > #(y) Vy. Since DARA implies
prudence (i.e., u”(y) > 0), then under DARA the function —u(y) represents a risk-
averse utility of its own. The condition n(y) > () thus implies that —/(-) is a more
risk-averse utility than u(-). Similarly, we find that decreasing absolute prudence or
“DAP” implies that u””(y) < 0 and that ©”(-) is a more risk-averse utility function
than —u’(").

Let nt(y) denote the risk premium, as defined by Pratt (1964), for utility u(-), given
base wealth y and fixed risk €. Similarly, let 7,(y) and m,(y) denote the correspond-
ing risk premia for utilities —'(-) and u”(-) respectively. That is,

Eu(y +8&)=u(y —n(y))
—Eu'(y+8)=—u'(y - m,(»))
Eu"(y+€) = u"(y - m,(y)). (28)

Standard risk aversion thus implies that T,(y) > m,(y) > n(y) > 0 Vy. Thus, we have
the following set of inequalities

YY) _—Eu(y+E)  —u(y-m)  —u(y-m)  —u"(y)
V) B +E) Wy-m) T owy-m) W)

29

where the last inequality follows from DARA. Consequently v(-) is more risk-averse
than u(-).?

Considering the maximization program (27), the above result taken together with
our previous results on increases in risk aversion, implies the following:

Proposition 4. (a) If insurance has a zero premium loading, A = 0, then full cover-
age is optimal in the presence of an independent background risk. (b) If insurance
premia include a positive loading, A > 0, then partial coverage is optimal in the pres-
ence of an independent background risk. (c) If insurance premia include a positive
loading, A > 0 and utility exhibits standard risk aversion, then more coverage is
purchased in the presence of an independent zero mean background risk.

Remark. Parts (a) and (b) above do not require E€ = 0. They are direct applications
of Mossin’s Theorem to utility v(-). Although the discussion above is for proportional

? Another simple proof that standard risk aversion is sufficient for the derived utility function to be
more risk averse appears in Eeckhoudt and Kimball (1992). Standard risk aversion is stronger than neces-
sary, however. See Gollier and Pratt (1996).



148 Handbook of Insurance

coinsurance, part (c) of Proposition 4 also applies to deductibles, since it only relies
upon v(-) being more risk-averse than u(-).

533 Nonindependent Background Risk

Obviously the background risk need not always be statistically independent of the loss
distribution. For example, if € = X then final wealth is risk free without insurance,
Y = W. Buying insurance on X would only introduce risk into the individual’s final
wealth prospect. Consequently, zero coverage is optimal, even at a fair price, A = 0.
For example, suppose the individual’s employer provides full insurance coverage
against loss X. We can represent this protection by € as described here; and thus no
further insurance coverage would be purchased.

Similarly, if € = —% then final wealth can be written as ¥ = W — 2% with no insur-
ance. Treating 2X as the loss variable, Mossin’s Theorem implies that full insurance
on 2X will be optimal at a fair price. This can be achieved by purchasing insurance
with a coinsurance level of o* = 2. Although this is nominally “200% coverage,” it
is defacto merely full coverage of 2x. If insurance is constrained to exclude over-
insurance, then o = 1 will be the constrained optimum. For insurance markets with
a premium loading A > 0, Mossin’s Theorem implies that o* < 2. In this case, a
constraint of no overinsurance might or might not be binding.

For more general cases of nonindependent background risk, it becomes difficult
to predict the effects on insurance purchasing. Part of the problem is that there is no
general measure of dependency that will lead to unambiguous effects on insurance
demand. Correlation is not sufficient since other aspects of the distributions of X and
€, such as higher moments, also are important in consumer choice.?’ Alternatives
measures of dependence, many based on stochastic dominance, do not lead to
definitive qualitative effects on the level of insurance demand.

For example, suppose we define the random variable € to have the same mar-
ginal distribution as €, but with € statistically independent of X. We can define a
partial stochastic ordering for W + € — ¥ versus W + & — X. If, for example, we use
second-degree stochastic dominance, we will be able to say whether or not the risk-
averse consumer is better off or worse off with € or € as the source of background
risk; but we will not be able to say whether the level of insurance demanded will be
higher or lower in the presence of background risk € versus background risk €.

Some recent work has used more sophisticated partial orderings to examine the
behavior of insurance demand in the presence of a background risk that is not statis-
tically independent from the loss distribution. For the most part, this work has
focussed on comparing insurance demands with and without the background risk.?

' Doherty and Schlesinger (1983b) use correlation, but restrict the joint distribution of % and € to be
bivariate normal. For other joint distributions, correlation is not sufficient.

2 Aboudi and Thon (1995) do an excellent and thorough job of characterizing many of the potential
partial orderings, albeit in a discrete probability space, but they only whet our appetite for applying these
orderings to insurance demand.



The Theory of Insurance Demand 149

Eeckhoudt and Kimball (1992), for example, use one particular partial ordering,
assuming that the conditional distribution of € given x, dominates the conditional
distribution of € given x, via third-degree stochastic dominance, for every x, < x,.
Eeckhoudt and Kimball go on to show that such a negative dependency between €
and X leads to an increase in insurance demand in the presence of background risk,
whenever preferences exhibit standard risk aversion. Important to note here, is that
even with the strong third-degree stochastic dominance assumption, risk aversion
alone is not strong enough to yield deterministic comparative statics.

One paper that does compare insurance demands for a change in background risk
from € to €, where € is statistically independent from X and has the same marginal
distribution as £, is Tibiletti (1995). She uses the concept of concordance as her partial
ordering. In particular, if H(e, x) is the joint distribution of the random vector (£, X)
and G(g, x) the distribution of (€', X), then H is less concordant then G if H(g, x) >
G(g, x) V¢, x. In other words, G dominates H by joint first—degree stochastic domi-
nance. However, even using concordance, we need to make fairly restrictive assump-
tions on preferences to yield deterministic comparisons between optimal levels of
insurance purchases. In particular, suppose we restrict the degree of relative prudence,
wn(y) = —yu”(y)/u”(y), to be no greater than one. Then for H less concordant than G,
more insurance will be purchased under H; i.e., more insurance is purchased in the
presence of background risk € than in the presence of the independent background
risk €.

Note that concordance is yet another measure of positive dependency between
€ and ¥. Thus the above result implies that if € and X are, in a certain sense, nega-
tively associated with each other, so that higher losses are more readily exacerbated
by the simultaneous realization of low background wealth, then more insurance is
purchased. In other words, the individual can partly compensate for downward
fluctuations in background risk € by increasing his protection on the insurable loss
X. While this result seems intuitively appealing, note that Tibiletti’s result above, just
as the result of Eeckhoudt and Kimball (1992), does not automatically follow if
we assume only risk aversion for consumer preferences. In particular, if we assume
that we change from zero background risk to a background risk that is negatively
associated with € (either as measured by concordance, or as by Eeckhoudt and
Kimball, 1992), there exist examples of risk-averse utility functions that would lead
to the counter-intuitive result that insurance demand is lower in the presence of the
background risk.”

3 Although results are sparse and restrictive, this seems to be an area of much recent research activity.
Tibiletti (1995) introduces the use of copulas, which allow one to write the joint distribution of (£, %) as
another joint distribution function of the marginal distributions of € and £, to analyze this problem. The
use of particular functional forms for the copulas allows one to parameterize the degree of statistical asso-
ciation between * and €. See Frees and Valdez (1998) for a survey of the current use of copulas. The fact
that a detrimental change in the background risk € does not necessarily lead to higher insurance purchases
is examined by Eeckhoudt, Gollier and Schlesinger (1996), for the case where the deterioration can be
measured by first- or second-degree stochastic dominance.
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5.4 CONCLUDING REMARKS

Mossin’s Theorem is often considered to be the cornerstone result of modern
insurance economics. Indeed this result depends only on risk aversion for smooth
preferences, such as those found in the expected-utility model.*

Although many results depend on stronger assumptions than risk aversion alone,
research has turned in this direction. Stronger measures of risk aversion, such as those
of Ross (1981) and of Kimball (1993), have helped in our understanding more about
the insurance-purchasing decision.

One common “complaint,” that I hear quite often from other academics, is that
these restrictions on preferences beyond risk aversion are too limiting. These critics
might be correct, if our goal is to guess at reasonable preferences and then see what
theory predicts. However, insurance demand is not just a theory. I doubt there is
anyone reading this who does not possess several insurance policies. If our goal in
setting up simple theoretical models is to capture behavior in a positive sense, then
such restrictions on preferences might be necessary. Of course, one can always argue
that more restrictions belong elsewhere in our models, not on preferences.

As mentioned previously, the single-risk model as presented here should be
viewed as a base case. As new insights about preferences become known, this model
should extend in many ways. Indeed, many extensions already are to be found in this
volume. Certainly there are enough current variations in the model so that every reader
should find something of interest. I look forward to seeing the directions in which the
theory of insurance demand is expanded in the years to come.
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Abstract

This chapter surveys the theory of optimal insurance contracts under moral hazard,
revisiting the topic in light of developments in contract theory over the past twenty-
five years. Moral hazard leads to less than full insurance, so that the insured retains
some incentive to reduce accident costs. What form does the partial insurance con-
tract take: a deductible, co-insurance or a ceiling on coverage? Posed in the most
general form, the problem is identical to the hidden-action principal-agent problem.
The insurance context provides some structure that allows more specific predictions.
Optimal insurance contracts vary, for example, depending on whether effort affects
the probability of an accident or its severity. The chapter characterizes the optimal
insurance contract and integrates developments in contract renegotiation, contract
dynamics and other extensions.
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6.1 INTRODUCTION

In the context of insurance, moral hazard refers to the impact of insurance on incen-
tives to reduce risks. An individual facing an accident risk such as of the loss of a
home, car or the risk of medical expenses, can generally take actions to reduce the
risk. Without insurance, the costs and benefits of accident avoidance, or precaution,
are internal to the individual and the incentives for avoidance are optimal. With insur-
ance, some of the accident costs are borne by the insurer. The insured individual,
bearing all of the costs of accident avoidance but only some of the benefits will under-
invest in accident avoidance. The precaution decision is distorted relative by the failure
of the individual to incorporate the external cost imposed on the insurer.

An insurance contract may specify the levels of precaution (the number of fire
extinguishers, the frequency of inspection of equipment and so on). If the contract
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were complete in the sense of specifying the individual’s care in all dimensions and
in all future contingencies prior to the accident, then moral hazard would not be an
issue. If an insurance contract is incomplete, however, in the sense that it does not
fully specify the precaution to be taken by the insured, then the precaution decision
taken after the contract is signed will be distorted by the externality imposed on the
insurer. The optimal insurance contract will be designed, within the constraints of
asymmetric information and enforceability, in anticipation of the moral hazard
problem.

This chapter offers a synthesis of the economic theory of moral hazard in insur-
ance. It reviews the sources of moral hazard, i.e., the reasons why insurance contracts
may be incomplete, and then develops the economic implications of moral hazard.
The focus is on the implications of moral hazard for optimal contracts.'

The term moral hazard originated in the insurance context that we will study here,
but it is important to note that the meaning of the term has evolved and expanded.
The concept and terminology of moral hazard now extend beyond the traditional
context of insurance contracts to all types of contractual relationships. Labour con-
tracts, for example, are designed with the knowledge that the effort and diligence of
the employee cannot be specified completely in the contract and instead must be
induced through incentives provided in the contract. The relationships between a
homeowner and a contractor, a lawyer or service provider and a customer, partners in
a joint venture, the editor of this volume and the author of this chapter, are all subject
to moral hazard. Even a marriage is subject to moral hazard insofar as costs are
imposed on one marriage partner whenever the other one shirks.? Moral hazard is
often defined broadly as the conflict between the interests of an individual in an orga-
nization and the collective interest of the organization that arises when the contracts
that comprise the organization are incomplete.

Indeed, the concept of moral hazard can, in the limit, encompass any externality.
Law and social norms can be interpreted together as a social contract specifying the
rights and obligations of individuals in a society.’ All individuals are in the social con-
tract, and externalities are the consequence of incompleteness in the social contract.
Moral hazard in the broadest sense encompasses the distortions in individual deci-
sions that result from incompleteness in the social contract.

A large part of the microeconomics literature over the past twenty-five years has

' This chapter is an update and extension of a previous survey (Winter (1992)).

? In an ideal marriage, costs imposed on the spouse are internalized an individual’s own utility function.
Love solves the moral hazard problem.

* To take a concrete example, drivers’ decisions during morning rush hour, such as the speed, driving
care and which route to take, are all decisions that impose costs on others. If all drivers could costlessly
get on the internet before commuting to work in the morning and design an enforceable contract that
specified these parameters for each driver then the externalities could be eliminated. In reality, of course,
private contracts among drivers are incomplete in the extreme: they are non-existent. Highway regulations
and tort law, in establishing rules and transfers among drivers in the events of accidents, can be interpreted
as a (very incomplete) social contract specifying the obligations and rights of drivers.



Optimal Insurance under Moral Hazard 157

been devoted to the implications of incomplete contracts (and the related concept,
incomplete markets). In returning to the original context in synthesizing the implica-
tions of moral hazard in insurance, we draw on the developments in this literature.

It is well known and intuitive that the contractual response to moral hazard is to
leave some of the risk uninsured, i.e., borne by the risk averse insured individual rather
than transferred entirely to the insurer. Leaving the individual with some share of the
consequences of a marginal change in precaution improves his incentives. The optimal
contract will balance the risk-sharing benefits of greater insurance with the incentive
benefits of less insurance.

What is perhaps less well understood is what form the risk-sharing takes. Will it
involve a contract in which the individual bears the entire marginal cost of small
losses, up to some limit—i.e., a deductible ? Or will the optimal contract involve full
insurance of marginal losses up to some coverage limit with the individual bearing
the full marginal cost at high losses; or will it involve some continuous sharing of the
marginal accident costs? The focus of this review of moral hazard is the design of the
contractual response to moral hazard.*

We begin in section 6.2 with the simplest moral hazard setting: a risk averse indi-
vidual faces a known loss, L, with a probability p(x) that depends upon the individ-
ual’s effort x. In this simple case, the optimal form of the contract is not an issue; the
optimal amount of insurance (and premium) is the entire problem. We extend this
framework in section 6.3 to consider an individual facing with the same probability
p(x), an uncertain loss, L. In this case an insurance policy takes the form of a func-
tional relationship between the realized loss and the insurance payment. Section 6.4
considers the case where the individual’s effort affects the magnitude of the random
loss contingent on an accident, rather than the probability of the accident. The para-
meters in this case are the probability of an accident, p, and the distribution of acci-
dent costs conditional upon the accident, G(L; x). Section 6.5 then reviews the model
of the optimal contract under a general distribution of losses. This connects the
optimal insurance problem in terms of the standard principal-agent model. Section
6.6 outlines various extensions to the theory of moral hazard, including the issues of
renegotiation, multi-dimensional care, and the dynamics of insurance contracts under
moral hazard.

6.2 THE SIMPLEST MODEL

The simplest model of moral hazard is built on the following assumptions: An indi-
vidual with initial wealth W and utility function U(W) faces the risk of losing an

¢ The analysis of optimal contracts is partial equilibrium analysis. For treatment of the general equilib-
rium consequences of moral hazard, see Helpman and Laffont (1975).
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amount of wealth, L. The probability of the loss is a function, p(x), of the care, x,
undertaken by the individual on avoiding the loss. The cost of care is one dollar per
unit. The function p(x) is assumed to be decreasing and convex, with p’(0) = —oo.
In the absence of insurance, after investing in care x the individual’s final wealth is
W — x if there is no accident and W — L — x if there is an accident.

Insurance coverage in the amount of ¢ dollars at a premium of & changes the final
wealth in the events of no accident and accident, respectively, to W — x — t and W —
x — 1 — L + q. The insurer cannot observe x but (because the market for insurance
is assumed to be competitive) the insurer is willing to offer any insurance contract
[r, ¢] that yields zero profits.’

Before analyzing the optimal insurance problem under these assumptions, it is
important to note various features of insurance that are not captured by this simple
model. First, we represent care as a pecuniary expense, i.e., an expenditure of money
or time. Many examples of care in insurance—security systems, locks, product safety
decisions, fire sprinklers—fit this assumption. Care could, however, include diligence,
the mental concentration of an automobile driver, or intensity of effort rather than
expenditure. In the case of medical insurance, loss-avoidance costs would include
physical discomfort that would result from cutting back on medical care.® Any reduc-
tion in discomfort beyond that which would be specified in a complete contract is the
consequence of moral hazard, but would require a slightly different model than the
ones in this chapter.

Second, we are adopting a model of hidden action rather than a model of hidden
information, to use the distinction introduced by Arrow (1985) and now standard in
the agency literature. Suppose that the cost per unit of care varied, instead of being
equal to 1 as in our model. If the cost of care were uncertain at the time of contract-
ing, and were realized subsequently and observed only by the individual insured (prior
to the individual’s effort decision) then we would have a model of hidden informa-
tion. Even if care is observed in such a setting, the first-best contract would be unat-
tainable.” We do not deal with hidden information settings in this paper.

Third, if the information asymmetry were present at the time of contracting
instead of subsequently, we would have a particular type of hidden information:

* Constraining profits to be an arbitrary value rather than zero has no qualitative impact on the results
in this section or throughout the chapter. The characterization of optimal competitive insurance contracts
therefore extends directly to any Pareto optimal contracts, including the case where there is market power
on the sellers’ side of the market.

¢ The simple model also excludes the possibility that utility is state-dependent, which is suggested by
this example. Under the assumption of state dependent utility, very different results are generated. Con-
sider, for example, an individual who has tastes for only two activities: helicopter skiing and reading library
books. This individual would rationally want negative insurance against the event of a debilitating acci-
dent, since negative insurance would transfer income into states of the world where his or her marginal
utility of wealth is highest. After the insurance contract, the moral hazard problem would then be that the
individual takes excessive care (because of the positive externality extended to the insurer in the event of
an accident).

7 For an analysis of hidden information contracts, see Mas-Colell, Whinston and Green (1996).
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adverse selection (Akerlof (1970), Rothschild and Stiglitz (1976)). The assumption
of symmetric information at the time of contracting means that we are abstracting
from the problem of adverse selection. Adverse selection in insurance markets refers
to the implications of insurers’ inability to identify the risk types of individuals. Some
of the contractual implications of adverse selection and moral hazard are identical.
Under both moral hazard and adverse selection partial coverage for at least some indi-
viduals is optimal. Other implications, for example the self-selection of lower risk
individuals into contracts with less coverage, distinguish adverse selection from moral
hazard situations. Of course, in reality both problems occur together, and the simul-
taneous treatment of the two is an important area.®

Fourth, our moral hazard characterization characterizes the individual’s care or
precaution decision in a single dimension. There may in reality be many dimensions
of care, only some of which cannot be contracted. We consider this extension in
section 6.5. The conflict of interest between an insurer and an insured individual could
be manifest in ways other than reduced care, such as in the selection of ventures or
projects that are excessively risky. This moral hazard problem is ubiquitous in financial
economics and is discussed in the concluding section.

Returning to the simple model at hand, we can characterize the optimal contract
following a standard methodology in principal-agent theory. The level of care, x,
cannot be contracted for since it is unobservable by the insurer. Rather than omitting
the care, x, from the contract, however, we allow it to enter as a contractual parame-
ter and restrict the set of contracts by an incentive compatibility constraint: only those
contracts are allowed in which the care promised is credible, in the sense that it is the
level of care that will actually be forthcoming given the incentives provided by the
rest of the contract.

The optimal contract maximizes expected utility subject to the zero profit con-
straint, or participation constraint on the part of the insurer, and the incentive com-
patibility constraint of the insured:

(P1) Tax(l —p)WUW —rn—x)+ p(x)UW —t—x—L+q) )
subject to

n2 p(x)q (2)
x = arg mzax(l —pEWUW —n—z)+ pUW —n—z—L+q) 3)

The participation constraint ensures that the insurer would willingly offer the con-
tract, and the incentive compatibility constraint ensures that the care level in the con-

8 Stewart (1994) shows that the effects of moral hazard and adverse selection can be partially offsetting.
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tract is credible in the sense that it will actually be chosen by the agent under the
incentives provided by the rest of the contract.

The “first-best optimal” insurance contract corresponding to the problem (P1) is
characterized by the same maximization problem, with the incentive compatibility
constraint deleted. The effect of the incomplete contracting or moral hazard problem
is to constrain the set of available contracts to those for which promises on non-
enforceable dimensions of the contracts are credible.

In characterizing the solution to the problem (P1), as with more general
principal-agent problems, three technical issues arise. The first issue is whether the
incentive compatibility constraint be replaced by the first order condition of the agent’s
maximization problem. As Mirrlees (1975) first noted, because expected utility is
often non-concave in care or effort, the set of care levels satisfying a first-order con-
dition is different from the set satisfying the incentive compatibility constraint. The
first-order conditions are satisfied at saddle points, local minima and local-but-not-
global maxima as well as interior global maxima; on the other hand, the first-order
conditions are not satisfied at corner solutions. For the current problem, however, our
assumptions that p(x) is convex and that p’(0) = —oo, however, are sufficient for the
second-order conditions on the problem expressed by (3). This assumption is there-
fore enough to justify the first-order approach to the characterization of any interior
solution to (P1), i.e., a solution involving positive care.

We can therefore replace the incentive compatibility constraint (3) with the
insured’s first-order condition (assuming an interior level of care):

pPNUW -n—x—L+q)-UW —1—x)]
=[1-px)U'W -1 —x)+p(x)U'(W - —x~L+q) 4)

The second technical issue presented by the problem (P1) is that, in general, a
break-even contract with the highest expected utility may involve random coverage.
This possibility was demonstrated by Gjesdal (1982). A sufficient condition for the
solution to be non-random would be for utility to be separable in income and effort;
for the context of insurance, however, this separability is unrealistic as most forms of
care involve pecuniary cost as we assume. Following Shavell (1979b: 544, nt 5) and
almost all of the literature on moral hazard in insurance, we simply ignore the possi-
bility of random contracts.

Consider the expected utility of the insured individual and the expected profits of
the insurer as functions of the insurance contract, (%, ¢). The insured’s valuation of
the contract [, ] can be expressed as U(m, q) = (1 — p(X(w, ¢)))UW — n — X(, q))
+ p(X(r, @)UW — =t — X(n, q) — L + q) where X(=, q) is the optimal level of care
defined by the incentive compatibility condition (3). The insurer’s valuation can be
similarly expressed as V((T, ¢)) = T — p(X(T, q)) - g. A contract solving (P1) must be
Pareto optimal between the two parties to the contract, and can therefore be repre-
sented on the space of contracts by a tangency of an indifference and the zero expected
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profits curve. The third technical issue presented by the problem (P1) is that the indif-
ference curves and the expected profit curves on this space may be non-convex. The
non-convexity is in contrast to the standard consumer theory, and to the theory of
optimal insurance in the absence of moral hazard.

The implications of the moral hazard non-convexities are investigated by
Helpman and Laffont (1975) and Arnott and Stiglitz (1983, a and b) and reviewed in
Arnott (1992). Among these implications is that equilibrium may fail to exist in com-
petitive insurance markets, analogous to the failure of existence in competitive product
markets when consumer utility is non-concave and demand functions, as a result, dis-
continuous. The principal implications, however, are for the case in which insurers are
constrained to offer uniform price contracts, i.e., unlimited amounts of insurance at
any premium. This constraint would arise if insurers could not observe the amount of
insurance that an individual purchased from other insurers. We retain the assumption
that contracts limiting the amount of coverage purchased by the individual are enforce-
able, as is generally the case for insurance contracts.

The solution to (P1) is described by its first order conditions when the incentive
compatibility constraint (equation 3) has an interior solution. We can substitute the
break-even constraint into the objective, and define x(¢g) as the solution in x to the
incentive compatibility constraint. This yields expected utility as a function of ¢ alone.
Differentiating this function, and substituting in (4) yields the condition (5) below for
the optimal coverage. Let W, and Wy be short-hand for the realized wealth given an
accident and no accident, respectively; that is, W, = W —-n —x - L + g and Wy =
W-m-—x.

EU(q)=-x"p'ql(1-p)U’'Wy)+pU'(W,)]
= plA=-pU'Wy)+pU W)+ pU’(W.) )

The three terms in this expression, following Shavell (1979), represent the mar-
ginal expected utility, with an additional dollar of coverage, from

(a) a change in the premium due to a change in the premium rafte per dollar of
coverage;

(b) a change in the premium due to an increased level of coverage; and

(c) achange in the level of coverage.

The latter two terms would be present even without the second constraint, i.e.,
these terms reflect the marginal benefits and costs of increased insurance even without
moral hazard. Moral hazard is reflected only in the first term of the expression. The
failure of U and V to be concave means that the optimal care level will vary discon-
tinuously with changes in exogenous variables in the problem. Shavell (1979b) illus-
trates the discontinuity of optimal care as a function of the cost of care.
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6.3 SELF-PROTECTION AND UNCERTAIN LOSSES

In the basic moral hazard model of section 2 we assumed that the cost of an accident
is non-random. This framework is restrictive in that it allows one to address essen-
tially only one question: How much insurance coverage is optimal under moral
hazard? There are only two outcomes in the model: accident or no accident.

This section introduces the simplest extension that allows one to inquire into the
form that insurance contracts take under moral hazard. Clearly moral hazard should
lead to less insurance coverage—but does this reduction in insurance take the form
of deductibles, co-insurance or upper limits on coverage? All three of these contrac-
tual features are observed in practice.

Following Ehrlich and Becker (1972), I distinguish between expenditure under-
taken to reduce the probability of an accident and expenditure to reduce the size of
the contingent loss. In Ehrlich and Becker’s terminology, the former is self-protection.
The latter these authors call self-insurance, although I will use the term loss reduc-
tion because “self-insurance” has more than one meaning in the insurance literature.

Expenditures on fire sprinklers reduce the size of a loss, but not the probability
of an accident. Expenditures on a burglar alarm reduce the probability of a theft
whereas the decision not to leave expensive silverware in an unlocked container
reduces the loss if there is a household theft. In the case of earthquake insurance, all
precaution is loss-reducing; we cannot under current technology change the proba-
bility of an earthquake. Driving an automobile more slowly and carefully reduces both
the probability of an accident and the likely costs of an accident should it occur.

While many other expenditures lead to reductions in both the chance of an acci-
dent and the cost of an accident, it is instructive to consider separately the conse-
quences of moral hazard in each type of expenditure. Posing the moral hazard or
agency problem in the most general way possible yields few specific predictions;
insight is gained by dissecting the kinds of moral hazard and investigating separately
their implications for insurance contracts.

As it turns out, the consequences of each type of moral hazard for insurance con-
tracts are quite different. For example, moral hazard on self-protection leads to a
deductible under reasonable assumptions. The entire marginal loss (or “residual
claim”) accrues to the individual at low loss levels. Moral hazard on loss-reduction
on the other hand leads to optimal insurance with the opposite feature: the individual
is fully covered up to some ceiling; the marginal loss accrues entirely to the insurer
at low loss levels.

In some contexts it is reasonable to assume that insurance payments cannot exceed
losses. With this constraint and the constraint against negative payouts, we find that
the two types of moral hazard each give rise to a simple insurance contract: a
deductible in one case, and full coverage up to a limit, with co-insurance thereafter,
in the other case.
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To analyze the moral hazard on expenditures for self-protection, we retain sub-
stantial notation of Section 6.2. The function p(x) represents the probability of an acci-
dent, as before, with p’ < 0 and p” > 0. We assume that the cost of care is one dollar
per unit, and also assume that p’(0) = —eo, which guarantees an interior solution on
the optimal care. The event of an accident in this section refers to a random loss, with
distribution function G(L) and density g(L). That is, G is the conditional distribution
of L given the event L > 0. Self-protection then refers to an increase in the probabil-
ity of a zero loss, with no change in the conditional distribution G. Loss-reduction
refers to a first-order stochastic reduction in the random loss with no change in the
probability of a loss.

A general insurance contract in this case consists of a premium 7 and a payment
function or sharing rule ¢(L) specifying how much the insurer promises to pay with
each loss, L. Thus the insurer is assumed to be able to verify the size of the loss. As
before, the optimal insurance contract maximizes expected utility subject to a break-
even constraint for the insurer and an incentive-compatibility constraint for the
individual.

In addition, we impose the constraint that the specified insurance payment g(L)
can never be negative. That is, the contract cannot specify a transfer from the insured
to the insurer that is contingent upon particular realizations of the random loss. This
limited liability constraint reflects an assumption that the insurer is aware of losses
only when the insured reports them.

The following problem, (P2), characterizes the optimal contract with moral hazard
on self-protection:

(P2)  max (1= p()UOY ~~x)+ p(x) [UW ~ - x - L+q(L)g(L)dL

subject to
n- p(x)[ q(L)g(L)dL 20 (6)

x = argmax pR)U(W —n~2)+[(1 - PN VW - -z L+q)g)dL  (7)

q(L)20 ®)

In this maximization problem, the constraint (6) is the break-even constraint; (7)
is the incentive compatibility constraint; and (8) is the “reporting constraint” that
insurance payments not be negative. For any interior solution to this problem, the
incentive compatibility constraint can be replaced by a first order condition in an inte-
rior solution, because of the convexity of p(-). That is, the constraint (7) can be
replaced by
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(1= PG =7~ x) = p(x) [ [U" W =~ x — L+ q(L))]g(L)dL
-p’@[UW -m—x)- j [UW -m—x-L+q(L)]g(L)dL]=0 )
With this replacement, the problem (P2) is a problem of Lagrange, and an inte-
rior solution to the problem must satisfy a set of first-order conditions corresponding
to the choice of each g(L), as well as a first order condition on x, the level of care.
Let W, be shorthand for the wealth level given a loss of L, and W, be the wealth level
with no accident (Wy =W -n—eand W, = W -t —x ~ L + g(L)). Let the shadow

prices on the first two constraints be A, and A,.
At each L, either:

q(L)=0

or
PV WL)G(L) = M p(x)G(L) = A [- p()G(LYU " (W, ) + p"(x)G(L)U"(W,)] = 0 (10)

which implies that for all positive W,

7\'2U”(WL)+|:1_;"2 p’(x)j|U'(WL)‘7\-1 =0 (11)
p(x)

If equation (11) is solved at a particular loss, L, by a wealth level W, then W also
solves the equation at any other loss. That is, (11) implies that at the optimum, W, is
independent of L wherever it is positive. From W, = W — 1t — x — L + g(L), this implies
that g(L) = max(0, L ~ D) for some constant D. It is easy to verify that D must be
positive. In sum, we have proved:

Proposition 1. The optimal contract [*, g*(-)] solving (P2), optimal insurance under
moral hazard on self-protection, satisfies, for some constant D,

q*(L) = max(0, L — D)
That is, the optimal contract is full insurance above a deductible.

The intuition for this result is clear. Suppose that negative payouts were feasible.
Because there is no moral hazard on the magnitude of the loss, large losses should be
fully insured relative to small losses; the equalization of final wealth in all states with
a positive loss is efficient. On the other hand, the moral hazard with respect to the
event of a loss dictates that individuals face some penalty (reduction in wealth) in the
event of the loss. This reduction in wealth will exceed the loss for small-loss states;
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i.e., the pay-out will be negative. Incorporating the constraint against negative pay-
ments then yields the proposition.

6.4 LOSS REDUCTION AND MORAL HAZARD

The moral hazard problem under self-protection, or the reduction of the chance of an
accident, was analyzed above given uncertainty about the size of the loss. In the case
of moral hazard on loss reduction, the motivation for considering uncertain losses is
even stronger: this moral hazard problem does not even exist unless the losses are
random. For suppose that the loss conditional upon an accident is a deterministic func-
tion of unobservable expenditure by the individual. An insurance contract that covered
only the loss associated with the first-best level of expenditure would leave the mar-
ginal cost of additional loss entirely on the insured, and would therefore elicit the first-
best expenditure. The moral hazard problem would disappear.

Accordingly, we consider the moral hazard problem under the assumption that an
additional unit of expenditure yields a reduction in the random loss in the sense of
first-order stochastic dominance. We assume that conditional upon an accident, there
are a finite number of possible loss values, /,, I, . . ., I, with [;;; > [; for each i. These
losses occur with probability p(x), i = 1, ..., n conditional upon an accident, i.e.,
conditional upon L > 0, given expenditure x. Loss-reduction refers to a first order sto-
chastic drop in the conditional distribution of losses, with no change in the probabil-
ity of an accident.

We adopt the constraint that insurance coverage given any loss cannot exceed the
loss. This is based on the assumption that the individual could effect (without being
observed by the insurer) a loss of any particular size. For example, if an item such as
a bicycle is insured for more than its worth, it would purposely be lost. To avoid this
moral hazard problem, the wealth of the individual in any state cannot be higher than
the wealth in the event of no accident.

The probability of a positive loss is p, the insurance payouts in the n accident
states are (g, ¢, - - - , ¢,) and the remaining notation is as in the previous section. The
optimal insurance contract (n*; gf, g%, . .., g%) solves the following problem

(P3) T[rng_;;e(l—p)U(W-n—e)+p > p@QUW -n—e-1+q,)

i=l...n

subject to

P2 pile)g-n<0 (12)

i=l...,

e=argm?x(1—p)U(W—n—z)+p Z pQUW -—m-z-1 +g¢,) (13)

i=l....n
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g—-1<0 (14)

In this problem (12) is the break-even constraint and (13) the incentive compat-
ibility constraint. The constraint (14) reflects the assumption that an insurance policy
which promised to pay out more than the loss in any state i would lead an individual
to cause an accident. A constraint that the insurance payment is positive would also
be justified (as in Section 6.3), but is never binding in this problem.

The first assumption that we impose on the problem is that every loss have pos-
itive probability when the first-best care level, e*, is taken. (This assumption is famil-
iar from the general principal-agent problem, to be reviewed in Section 6.5.) If this
assumption did not hold, then the insurance contract could impose a penalty of zero
coverage in outcomes that signalled a sub-optimal level of effort.

We adopt the assumption here that the incentive compatibility condition can be
represented by the first-order condition to the individual’s maximization problem.
(This assumption is discussed below.) With this assumption, the constraint becomes

~(1=-pU' W ~m=e)=p 2, {p(U' W ~n~e~1I+q)

i=l,...,

-plUW —n—e—1l+¢)} =0

The following proposition characterizes the insurance market reaction to moral
hazard on loss-reduction activities. The technical condition of a monotone likelihood
ratio is standard in principal-agent problems, and is discussed in Section 6.5.

Proposition 2. Assume:

*  pde*) >0 for every i;

* The incentive compatibility condition (13) can be represented by its first order
condition;

* U exhibits non-increasing absolute risk aversion; and

» the distribution of losses satisfies the condition of monotone likelihood ratio.

Then the solution to (P3) satisfies:

a) (/i — g, is non-decreasing in i. That is, the amount of the risk borne by the indi-
vidual is a non-decreasing function of the size of the loss.

b) There is some m such that:
For i < m, g; = I; and the constraint (14) is binding.
Fori>m, g <.

Proof. Appendix
Part a) of the proposition states that the amount of the loss borne by the individ-
ual is a non-decreasing function of the realized loss. Part b) states that sufficiently
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small losses are fully covered by the optimal policy with moral hazard in loss- reduc-
tion activities, and that the constraint against over- insurance is binding for these
losses. In contrast to the case of self-protection, optimal insurance contracts with
moral hazard on loss-reduction activities involve full coverage of small losses (more
than full coverage if possible) and on average, less than full coverage of the marginal
dollar of high losses.

The intuition for this result is as follows. Ignore for the moment the constraint
(14). Because there is no moral hazard problem on the event of an accident, efficient
risk-bearing dictates that the individual’s marginal utility of wealth in the event of no
accident be equated to the expected marginal utility of wealth conditional upon the
event of an accident. Wealth will be transferred, through insurance, between these two
events to achieve this condition. But within the event of an accident, wealth will be
transferred from high-loss states to low-loss states relative to the full insurance solu-
tion, in order to enhance incentives for loss-reduction, because of moral hazard. This
leaves wealth in the low-loss states greater than in the event of no accident—that is,
the insurance payment for a low loss exceeds the loss. With the constraint (14) binding,
low losses are fully insured.

6.5 GENERAL ASSUMPTIONS ON THE
DISTRIBUTION OF LOSSES

Up to this point, we have adopted specific assumptions on the impact of greater care
on the distribution of losses faced by the insured. When we generalize the models of
sections 6.2, 6.3 and 6.4 to allow for an arbitrary distribution of losses, with care
affecting both the probability of a loss and the size of the loss, the result is the
Principal-Agent model. This model is at the core of the theory of contracts in eco-
nomics in a wide variety of contexts. An excellent overview of the model is provided
in chapter 14 of MasColell, Whinston and Green (1995).

The interpretation of this general model as the optimal insurance contract under
moral hazard is only one interpretation. The economic modelling of virtually any orga-
nization involves incentives, the allocation of risk-bearing and incomplete contract-
ing. The most popular application of the principal-agent model is to the contractual
relationship between managers of corporations and the owners in corporations; the
model or its extensions can be interpreted in terms of a share-cropper and a landlord,
or an employer and an employee where the actions or effort of the employee are not
perfectly monitored by the employer; a manufacturer and a franchisee, and so on.
Almost every economic relationship is influenced by risk and a trade-off between the
efficient allocation of risk-bearing and the minimization of incentive distortions is
fundamental.

Moral hazard arises in any contractual setting whenever an individual is not
assigned the full costs and benefits, at the margin, of a decision that affects other
parties to the contract. Moral hazard therefore arises in a contractual setting where
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the full residual claim (the total output or profit from the enterprise, minus a lump
sum) is not assigned to each party making a decision after the contract. The manager
of a firm that purchases the firm from its shareholders for a lump sum of money or
an issue of riskless debt has resolved the moral hazard or agency problem, but a
manager who has only partial equity in the firm has not.

There are three main reasons why an individual would not be assigned the full
consequences of his decisions and, correspondingly, three types of principal-agent
problems. First, the agent (a manager of a firm, for example) may not have the wealth
to purchase the enterprise for its value to the principal or principals. A wealth con-
straint gives rise to the limited liability class of principal-agent models (e.g., Sap-
pington (1983)). Second, there may be “multiple moral hazard”: more than one agent,
or individual whose actions affect the return to the enterprise. With only one residual
claim to divide among many agents, each agent cannot receive the full benefits of
additional effort at the margin (Alchian and Demsetz (1972), Holmstrom (1982),
Carmichael (1983)). In either of these first two classes of agency models, moral hazard
exists even if all parties are risk-neutral. Finally, in the class of principal-agent models
that are of interest here, it is possible but not optimal to allocate the full residual claim
to the agent. The agent’s risk aversion implies that the principal should bear at least
some part of the uncertainty that is tied to ownership of the residual claim. The actual
contract is second best in that it compromises between the goal of efficient risk allo-
cation and the achievement of efficient incentives. This is the essence of optimal insur-
ance contracts under moral hazard.’

The following is the basic set of assumptions defining the Principal-Agent
problem. Consider a principal and an agent who have property rights to an uncertain
income stream. The random income stream depends on an input such as care or
effort on the part of the agent, to be taken in the future. The income stream may rep-
resent a firm or project which is initially owned by the principal, the management of
which is delegated to the agent; it may represent a project owned by the agent who
must raise capital by promising some share of the income stream to the principal;
or, it may represent a possible loss from current wealth if the agent insures with the
principal.

Let e represent the effort of the agent in avoiding an accident, and 6 the random
state of the world. The principal and agent establish a sharing rule or contract to share
the random income stream. In the insurance example, this contract describes the insur-
ance payment to the agent, I(L), as a function of the loss incurred by the agent. The
loss L(e, 6) depends on the effort input by the agent as well as the state of the world.
The critical assumption is that neither e nor 6 can enter the contract. For example,
neither is observable to the principal; alternatively, neither is observable to a third
party enforcer of the contract (the courts). In most cases, it is analytically convenient

° Holmstrom and Milgrom (1991) discuss a fourth reason why residual claimancy contracts may not be
feasible: the output, or benefit to the principal of the agent’s effort, may not be observable. Their multi-
task agency model accomodates this possibility.
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to re-parameterize the problem by letting F(L, e) refer to the distribution of losses, L,
given the care, e, undertaken by the agent.

The utility of the agent is represented by U(W, e) which is increasing and concave
in the agent’s wealth, ¥ and decreasing in effort. It simplifies the analysis to assume
that the agent’s utility is quasi-linear: U(W, e) = u(w) — e, in contrast to our assump-
tion earlier in this essay that care is a pecuniary expense. The set of possible
effort levels is denoted by 4. The objective of the principal and agent is to choose
a Pareto optimal sharing rule. If the principal owns the project, this is represented
as maximizing the principal’s utility subject to achieving a reservation level for
the agent.

In the case of an optimal insurance contract with a competitive insurance market,
however, the most natural formulation is the dual problem: maximize U subject to a
break-even constraint on the part of the insurer. Furthermore, in the insurance context,
the usual assumption is that the principal (the insurer) is risk-neutral because a large
number of independent risks are insured. Finally, in most formulations, the effort on
the part of the agent is assumed to be decided before the state 0 is realized. The optimal
contract under these assumptions is characterized by the maximization of the agent’s
expected utility subject to two constraints: the break-even constraint, and the
incentive compatibility constraint:

(P4) max JutW - L-m+ (L) (L, e)dL - e

subject to
n—[I(L)f(L,e)dL20 (15)
eeargm%‘xIU(W—L—-1t+I(L))f(L,a)dL—a (16)

A necessary condition for the incentive compatibility constraint is the first-order
condition corresponding to the maximization problem in the constraint. Where this
first-order condition is sufficient as well as necessary for the constraint, the constraint
can be replaced by the first-order condition. This method is referred to as the “first-
order approach” to agency problems. Unfortunately, the first-order condition can iden-
tify not just global maxima but minima and local-but-not-global maxima. Mirrlees
(1975), Rogerson (1985) and Jewitt (1988) contain analyses of circumstances under
which the first-order approach is valid.

Where the first-order approach is valid, the incentive compatibility constraint
becomes:

jU(W—L—n+1(L))ﬁ(L,e)dL—1:o (17)
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The resulting principal-agent problem (P4) becomes a standard Lagrangian max-
imization problem. Letting the shadow prices for the constraints (15) and (16) be A
and 1 respectively, and solving the first-order conditions for (P4) yields the follow-
ing standard necessary condition for the optimal contract:

1 a f.(L,e)
W —L-n+1) Mo

(18)

This first-order condition reveals the trade-off between the insurance benefits of the
contract, in transferring risk from the agent to the principal, and the incentives benefits
of leaving the residual claim or effect of increased losses with the agent. If incentives
were not an issue, so that L and the last term of (18) disappeared, then this condition
would imply that the agent’s wealth be independent of the realization of L, and there-
fore that L — I(L) were independent of L. In other words, the agent is fully insured.
The extent to which a particular loss, L,, is associated with a higher uninsured loss
to the agent, L, — I(L,), relative to another loss, L,, depends on the proportionate sen-
sitivity of the likelihood of L, to effort relative to L,—i.e., on the value of fi(L, e)/
AL, e) at L, and L,. This measures the incentive benefit, in terms of mitigating the
moral hazard problem, of deviating from the full insurance strategy of equalizing the
agent’s marginal utility of wealth at L, and L,.

The principal-agent model is too general to reveal specific propositions on the
form of the optimal insurance contract. Even the intuitive proposition that the agent’s
wealth is non-decreasing with output—in our context, that the agent’s exposure to the
loss is non-decreasing in the realized loss—is not automatic. To see this suppose
that there are four possible values for the loss, 1, 2, 3 and 4 dollars, and that the effect
of increasing the agent’s effort is that the outcomes of 1 and 3 become more likely
than 2 and 4. In this example, in the optimal contract the agent may bear less of the
loss under the outcome of L = 3 than under the outcome L = 2. The latter outcome,
even though it is more favourable to the insurer, signals a higher likelihood of low
effort on the part of the agent. Attaching a penalty to this outcome encourages greater
effort.

The example is ruled out by a condition referred to as the monotonic likelihood
ratio condition (Milgrom (1981) and MasColell, Whinston and Green (1995)). For
two effort levels, e; and ey, with e, > e;, the condition is that f{L, e;)/f L, ey) be increas-
ing in L. That is, as L increases, the likelihood of generating a loss L from the low
effort relative to the likelihood if effort is high, must increase. The monotone likeli-
hood ratio is the essential condition that yields monotonicity of the sharing of acci-
dent losses between the agent and the principal.

Note that our framework in section 6.2, in which the accident probability but not
the accident loss depended upon care, implied a constant likelihood ratio over all pos-
sible loss levels. The agent’s exposure to the loss was, correspondingly, constant over
sufficiently high loss levels.
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A general result that is relevant for insurance contracts is proved by Shavell
(1979): While moral hazard reduces the expected utility achieved with an insurance
contract, under the assumptions of this section it never eliminates the gains to trade
from insurance. There is always some gain from the first dollar of insurance
coverage.

In sum, under general assumptions including the monotonic likelihood ratio prop-
erty, moral hazard reduces but does not eliminate the gains from insurance, and is
responded to optimally with a contract in which the agent bears an increasing, but not
full, share of greater accident losses.

6.6 EXTENSIONS

The models of optimal insurance under moral hazard outlined in this essay are sim-
plistic compared to the richness of real world markets. This concluding section reviews
a number of ways in which the model of insurance contracts under moral hazard has
been extended, or could be extended further.

6.6.1 Renegotiation

We have, to this point, ignored the possibility that the insurance company and the
insured, or the principal and the agent, will renegotiate the insurance contract once it
has been signed. The possibility of renegotiation must be addressed: an opportunity
to achieve a Pareto superior outcome some time after the insurance contract has been
signed will surely be exploited by the contractual parties. The standard model assumes
that there is commitment against renegotiation. As Fudenberg and Tirole (1990, p.
1279) note, however, “While such commitment is likely to be credible in some situ-
ations, in others it may not be, especially if there are long lags between the agent’s
choice of action and the time when all of the (stochastic) consequences of that actions
will have been revealed.”

Suppose that the principal and the agent have signed an insurance contract in
anticipation of moral hazard, according to the principles outlined in the previous
section. Suppose further that there is a significant time interval between the time of
the agent’s action and the realization of uncertainty and that this timing is common
knowledge. The principal and agent would, during this interval, face the opportunity
for mutual gain from further contracting. Specifically, there would be no incentive
cost to switching to a full insurance contract, since the agent’s effort decision is history
at this point.

What is the outcome of the moral hazard problem in this set of circumstances?
Fudenberg and Tirole address this question in the following model (adapted to the
insurance context). First, the parties sign an original or ex ante contract, ¢,, which
specifies the insurance coverage as a function of the realized accident loss. Then the
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agent chooses an effort level e. This effort generates the probability distribution
AL, e) over the accident losses. The principal will observe the realized loss but not
the effort. After the effort is undertaken, but before the realization of the loss, the
parties have the opportunity to renegotiate, replacing ¢, with a new contract c,. At the
renegotiation stage, the principal is assumed to be able to implement the optimal
mechanism, which generally involves the offer of a menu of insurance coverage func-
tions, one for each level of effort that the agent may have undertaken.

As is standard in contractual games with renegotiation, the optimum can be
achieved through the offer of a contract that is renegotiation-proof. If a contract c is
offered and renegotiated to a contract c*, then the principal and agent do as well by
signing the contract c* at the outset.

Fudenberg and Tirole show that the optimal contract in this model typically elicits
randomization by the agent over choices of effort. To see why, suppose that only two
levels of effort, e, and e, are possible. If the agent chose a pure strategy in the con-
tract game, it would have to be ;. It could not be e since the agent’s choice of effort
would be followed by renegotiation to full insurance (rather, this renegotiation incen-
tive would be reflected in the original contract); the agent anticipating this would have
no incentive to put out the higher effort. Therefore, a contract that induces the agent
to choose a strategy with some probability on the high level of effort, cannot induce
the entire probability on the high effort level, if it is to be renegotiation-proof.

Fudenberg and Tirole compare the outcome of this renegotiation contract game
with the Principal Agent model under the standard commitment assumption. The rene-
gotiation constraints in general lead the principal to elicit a different distribution over
effort levels on the part of the agent than under the standard commitment model. In
addition, depending on the class of the agent’s utility function, any particular distrib-
ution of effort levels may be elicited with a different contract (including in particular
a different level of rent or surplus to the agent) in the renegotiation game than when
commitment is possible.

6.6.2 Multidimensional Care

Care or effort on the part of an insured agent does not in reality take on a single
dimension, as we have assumed here. There are, for example, many activities that a
homeowner can undertake to reduce the probability of fire or to lessen the damage if
a fire does occur: “not dumping cigarette ashes in wastepaper baskets, not smoking
in bed, not leaving the stove unattended while cooking, dousing the ashes in the
fireplace before retiring, replacing frayed electrical cords immediately, keeping a func-
tioning fire extinguisher in every room, spending extra on fire-resistant materials in
home construction and household furnishings, ensuring easy exits from each room in
the house, holding family fire drills, etc.” (Arnott 1991: 327).

The problem of moral hazard is not manifest in all dimensions of care to the same
degree. Some dimensions, such as the construction materials used in a home in the
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example above, are observable by the insurer; other aspects of care, such as refrain-
ing from smoking in bed, are not. The mental concentration of an automobile driver
cannot be contractually specified, but the attendance in an advanced driving class or
the choice by the driver of a car model, can be specified. How does the ability of the
principal to observe some aspects of care affect the moral hazard problem?

The central tool for multi-dimensional principal-agent problems is the multi-task
model of Holmstrom and Milgrom (1991). In this model, the agent makes a one-time
choice of a vector of efforts ¢ = (¢, . . ., t,) at personal cost C(¢). The efforts lead to
expected gross benefits B(¢) which accrue directly to the principal. The function C is
strictly convex and B is strictly concave. The agent’s efforts generate as well a vector
of informational signals

xX=t+¢ (19)

where € is normally distributed with mean vector zero and covariance matrix .'° (One
limiting, special case is where some dimensions of effort are observable and others
are not.)

The agent’s utility over wealth is assumed to exhibit constant absolute risk aver-
sion. Income effects in the demand for insurance are thus set aside. The agent’s cost
of effort is pecuniary. The agent’s utility, from a contract specifying receipts by the
agent of w(x), interpreted in our context as the uninsured component of accident
losses, is

E{ulw(+¢)-C@)]} (20)

where u(w) = —e™. The coefficient » measures the agent’s degree of risk aversion.
The agent’s certainty-equivalent of the compensation package w(-) is CE defined by

u(CE) = E{u[w(t +€)-C(@)]} 21

In the case of a linear compensation rule, w(x) = a’x + B, the exponential form
of the utility implies that the certainty equivalent is

CE=0t+B-C(t) —%roc’Za (22)

where the term oot is the variance of the agent’s income under the scheme.
The principal’s expected profit is B(¢) — E{w[¢ + €]} which under the linear scheme
equals B(f) — ot — B. Thus the combined certainty equivalent, or joint surplus, of the

' Holmstrom and Milgrom use the notation x = p(#) + € but note in their footnote 8 that this is no more
general than x =7 + €.
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principal and agent is B(f) — C(t) — +ro/Zo.. The principal-agent problem, with linear
compensation rules and constant absolute risk aversion on the part of the agent, can
thus be written very simply:

1
max B(t)-C(t) - > ro o (23)
subject to
t=argmaxo’f —C(f) (24)

(The problem is expressed simply in terms of the slope o of the compensation rule;
the intercept is determined subsequently.) For positive ¢, the incentive constraint (24)
can be replaced by the first-order conditions o; = C(¢), i = 1 ... n. Solution of the
resulting quadratic maximization problem yields as an optimum

B,
oax=(I+AC,IY)7| ¢ (25)
B,

The above model contains an assumption that compensation rules are linear, or
equivalently, that insurance payments are linear in realized losses. As Holmstrém and
Milgrom point out, it contains as well a second assumption that is common in agency
models and therefore likely to be overlooked: that the agent makes the effort decision
once-and-for-all during the insurance relationship. Holmstrom and Milgrom demon-
strate in an earlier article (Holmstrom and Milgrom (1987)), however, that these two
assumptions are exactly offsetting: The solution to the linear/normal distribution
agency problem is identical to the solution to a principal-agent problem in which (i)
the agent chooses efforts continuously over the time interval [0, 1] to control the drift
vector of a stationary Brownian motion process, and (ii) the agent can observe his
accumulated performance before acting. In this model, the agent’s compensation is a
linear function of the final accumulated performance. As applied to the insurance
context, the potential insight is that the simple linear form of some co-insurance con-
tracts could be explained by the continuous effort decisions over time on the part of
the insured individual (and the normality structure of the uncertainty).

Holmstréom and Milgrom apply the multi-task agency model to the explanation
of a wide variety of contractual phenomena. With respect to the type of problem posed
above—the optimal contract when some actions of the agent are observed and other
actions are not—the authors show that the contract will reward the agent for actions
that are complementary to those that are not observed. This encourages the agent to
undertake more of the unobserved (hence, noncontractible) actions. In the insurance
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context, the purchase of new fire extinguishers is an investment that is complemen-
tary to the effort undertaken to monitor and replace existing fire extinguishers. Fire
extinguishers are subsidized by insurers, or required in fire insurance contracts. Sim-
ilarly, fire sprinkler systems may be required in commercial buildings as part of a
building code, or as a requirement for lower insurance premiums.

An alternative, and natural, model of multi-dimensional care in insurance is the
following. The agent can undertake two different kinds of care, 1 and 2, in amounts
t, and #,, and has a utility over wealth and care U(W) — t, — t,. The probability of an
accident is p(#,, t,) and an accident leads to a loss L if it occurs. The Principal (insurer)
can observe t, but not #, and is willing to provide insurance at a zero expected rate
of profit. Unfortunately, in this model the impact of the non-observability of ¢, i.e.,
the moral hazard problem, on the observable care level ¢, cannot be determined
unambiguously.

The impact on optimal insurance contracts of partial observability of insured’s
actions, both in terms of dimensionality as described here and in terms of “noisy”
observability of actions, remains an important open issue.

6.6.3 Dynamics

Part of the conventional wisdom in insurance economics is that moral hazard prob-
lems are likely to be less severe under a repeated relationship between the insurer and
the insured. Increased frequency of accidents because of failure on the part of an indi-
vidual to take adequate care, the argument goes, will be met with increases in pre-
miums. That is, the incentives to take adequate care are enhanced with “experience
rating” of premiums. The central question in multiperiod moral hazard models has
been the extent to which this conjecture is valid.

A basic starting point for this discussion is that with finite repetitions, this
conventional wisdom is wrong. Suppose that the individual’s utility exhibits con-
stant absolute risk aversion, so that there are no income effects in the demand
for insurance. Then when the relationship between the principal and agent is as mod-
elled in Section 4, including the assumption of no informational signals being
observed by the principal, with the repetition of the relationship a finite number of
times, the contract and effort of the agent is identical to the single period case. Rep-
etition has no impact on the moral hazard problem. Where the agent’s degree of
absolute risk aversion does vary with wealth, then contracts vary from period to period
only because of the effect on the demand for insurance of changes in the individual’s
wealth.

The logic of this proposition is clear. Suppose that the principal and agent have
access to the same interest rate for borrowing or lending in the capital market. Then
a penalty for an accident in the current period, in the form of a higher premium in
next period’s contract, offers no additional degrees of freedom as compared with the
static model. Such a penalty, contingent upon an accident the current period, is iden-
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tical to a reduction in coverage for the current period equal to the present value of the
increased future premium. The trade-off between optimal insurance and adequate
incentives is unchanged by the repetition of the simplest moral hazard game.

The theory of repeated moral hazard proceeds by relaxing various of the assump-
tions in this “irrelevance proposition”. The assumptions discarded in the various
papers in the literature have been (i) finite number of periods; (ii) zero information
on the part of the principal, and (iii) equal access to capital markets.

Rogerson (1985) relaxes the assumption that the principal and agent have equal
access to capital markets. The long-term contract between the agent and the principal
is governed by the goal of realizing the gains to trade arising from this difference in
access (effectively, the gains from intermediation by the principal) and the usual goal
of achieving the right mix of incentives and insurance. Rogerson shows that the
expected wealth allocated to the agent by the contract may increase or decrease over
time, depending on how quickly risk aversion decreases with wealth.

In another approach to long-term contracts under moral hazard, Becker and Stigler
(1974) show that a strategy of increasing wages over time (relative to marginal
product), together with a rule that shirking agents be fired if detected, can improve
efficiency under moral hazard. The analysis of long-term contracts, however, is less
relevant to the insurance context than to the context of long-term labour contracts.
Life insurance contracts appear to be the only insurance contracts in which premiums
are guaranteed for long periods, and for this type of insurance moral hazard is surely
not a major issue.

A different branch of the literature on repeated moral hazard examines the extent
to which the moral hazard problem can be resolved through “punishment strategies”
by the principal when the principal infers that the agent has shirked, i.e., taken less
than due care (Radner (1981), Rubinstein and Yaari (1983)). Expressed differently,
this literature offers an explanation of experience rating, i.e. discounts on premiums
offered to clients who possess a favourable record of part claims. It argues that expe-
rience rating provides a mechanism which enables the parties to the contract to
mitigate or eliminate the moral hazard inefficiency.

The Rubinstein and Yaari (1983) analysis, in particular, is framed in the context
of insurance markets. These authors show that if there are infinite periods, and no dis-
counting (the insured and the insurer are interested in the average payoff in each
period) then the insurer can eliminate the moral hazard problem by choosing an appro-
priate “no-claims-discount” (NCD) strategy. An NCD involves giving a discount for
coverage in any period if the history of claims up to that period leads to an inference
that the level of care is sufficiently high. Facing this announced strategy, it pays the
insured to choose the first best care level in each period.

The insurer’s problem is to determine exactly which claims histories should
warrant a discount on the premium. If the definition of “excessive” claims is too strict,
then the owner of the asset would end up paying a high premium too often, even when
due care is exercised. If the definition is too lax, then the optimal care is not elicited.
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Rubinstein and Yaari show that the two types of possible errors in inferring a devia-
tion from optimal care are both minimized with a particular class of insurance
premium strategies.

Radner (1981) has a similar model, although his equilibrium strategies do not
satisfy the property of “perfection” as Rubinstein and Yaari (p. 95) point out. Both of
these papers can be thought of as extensions of the “Folk Theorem” of repeated games
to the class of games where a player makes a move in each period without full knowl-
edge of the previous moves of the other player. Whatever the theoretical interest of
these models, their implications for actual insurance contracts are limited by the
assumptions of no discounting and infinite periods. A zero discount rate is simply
counterfactual, and it is very difficult to determine the deviation from first best that
arises when there is a discount rate.

The assumption of infinite periods is also unrealistic. In a finite period model, it
is possible that individual’s incentive to take adequate care is enhanced by a desire to
achieve a reputation as one who is careful. This, however, becomes a model of adverse
selection (hidden types) rather than a model of moral hazard alone. A conjecture is
that the resolution of adverse selection, via revelation of information about types, can
reduce welfare in a combined adverse selection-moral hazard model, because it elim-
inates the possibility of taking care to acquire a reputation with finite repetitions. In
general, the literature on repeated moral hazard does not offer an implication for expe-
rience rating in actual contracts that is testable against the alternative hypothesis of
adverse selection. Adverse selection clearly leads to experience rating (e.g., Hosios
and Peters (1989)). There is no reason not to think that experience rating in actual
insurance contracts is entirely explained by adverse selection.

An interesting case that has not been investigated in the repeated moral hazard
literature is the case of long-lived, capital investments in care. In the case of product
liability insurance, for example, “care” refers to the investment in safety in product
design and the decision not to market excessively dangerous products. A decision to
invest in care affects not just the immediate rate of accidents but the future rate as
well. In a finitely repeated contract, when there is common knowledge at the begin-
ning of the relationship (so that the problem is in this sense one of moral hazard), the
incentive to take care is enhanced by the dependence of future premiums on past
claims records: the future insurers “infer” the care decision from past claims. A con-
jecture is that even with a finite number of periods in the case of long-lived care deci-
sions, repetition and the ability of premiums to respond to claims’ histories does
mitigate the moral hazard problem.

6.6.4 Other Extensions
A number of areas of the theory of moral hazard in insurance contracts remain fertile

ground for further research. As I suggested above, a dynamic model of moral hazard
in investment in safety capital, would yield important insights as well as a set of cir-
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cumstances in which finite repetition of the insurance contracting does affect the
nature of the contract.

The theory of moral hazard in insurance, indeed the theory of optimal insurance
in general, has not been fully developed for the case of liability insurance purchased
by a corporation with limited liability." The presence of limited liability means that
even without insurance, moral hazard is potentially a problem, as creditors bear some
of the costs of lax effort on the part of equity holders. The specific moral hazard
problem of deposit insurance, in the context of financial intermediary corporations,
has received substantial attention (e.g., Grubel (1993)).

The basic assumption of moral hazard models is that some decisions about care
on the part of the insured cannot be contracted for. But there are often both substi-
tute or complementary inputs by the individual that are observable. As discussed in
section 6.6, the theory of moral hazard in insurance contracts should be extended
to analyze the contractual requirement of extra expenditure on contractible, loss-
reducing activities as a response to moral hazard. A closely related topic is the invest-
ment by insurers themselves in loss-reduction and accident-avoidance (Schiesinger
and Venezian (1986)). A conjecture is that these activities will be relied upon to a
greater extent under moral hazard than in a complete insurance contract. The supply
side of the insurance market is itself subject to moral hazard problems when there are
guaranty laws, which limit the liability of insurance corporations in the event of insol-
vency (Brewer et al. 1997).

Finally, as Arnott (1991) discusses, the interaction of moral hazard and adverse
selection in insurance markets deserves further exploration. A recent contribution on
this topic is Stewart (1994), who argues that the effect of each type of problem is par-
tially offset by the other. Moral hazard, as we have seen, elicits equilibrium insurance
contracts with partial insurance. The addition of adverse selection induces low risk
agents to choose contracts with even lower insurance coverage, so that these agents
can be separated from high risk agents (who would refuse such contracts). This has
the effect that the low risk agents bear more risk themselves, thus mitigating the low
care levels associated with the moral hazard problem alone.

APPENDIX 6.1: PROOF OF PROPOSITION 2

Let w; denote W — t — x — I; + g,, the individual’s wealth in state i. The first-order con-
ditions for this problem, corresponding to g;, ® and x are provided below. In these
equations, A, and A, are the shadow prices for the break even constraint and the incen-
tive compability constraint respectively.

(Vi) PP.‘U,(W.') —Mppi - )\-ZPPiU”(Wi)'*’ kzppﬂf'(wi) -A3 =0 (26)

'" An exception is Huberman, Mayers and Smith (1983).
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To prove (a) of the proposition, we must show that wi Sw, forallj=1,...
n — 1. If the constraint (14) is binding for both j and j + 1, or only for ; this is trivial.
Consider the case where (14) is binding for neither j nor j + 1. Equation (26) and
Ai=0, fori =j, j+ 1 imply that

M
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As a function of w;, the left hand side of (28) is strictly decreasing (the second
term is strictly decreasing by the concavity of U and the third is nonincreasing by the
assumption of non-increasing absolute risk aversion). It follows from Milgrom (1981:
Proposition 5) that under the monotone likelihood ratio condition, the right hand side
of (28) is nondecreasing in i. To maintain the equality (28) for all i, therefore, it must
be that w; is decreasing in i. The case where (14) is binding only for j + 1 is similar.
This proves part (a) of the proposition.

To prove part (b), suppose that A, = 0 for all i. Then equation (28) implies

U’ (W)= Ay =AaU”"(w,) + A 22U () = 0 (29)

Di
Adding up all » first-order constraints represented by equation (26), subtracting (27)
and simplifying yields

U'(wo) =Ai =A,U"(wg) =0 (30

Next, note that Zp; = 1 implies Zp; = 0. This and the fact that not all p; are zero implies
pi are neither all negative nor all positive. The monotonicity in i of p/p; (see proof of
(a) above) then implies that there exists j, j > 1 such that the last term of (29) is neg-
ative for all i < j, and positive for all i > j. Comparing with (30) and using the fact
that the left hand side of (30) is decreasing in w, because U” > 0 for non-increasing
absolute risk aversion utility functions, shows that w; > wy, for i <. From the definitions
of wy and w;, this contradicts the constraint (14). Thus the supposition that A3; = 0 for
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all i is contradicted, and the constraint (14) must therefore be binding for some i. Part
(a) of the proposition implies that (14) is binding for small i. QED

APPENDIX 6.2: THE FIRST-ORDER APPROACH

Two assumptions are sufficient to justify the replacement of the incentive compati-
bility constraint with a first-order condition (Rogerson (1985)), in the case where the
utility of the agent is separable in wealth and effort: the monotone likelihood ratio
condition (MLRC) and the concavity of the distribution function condition (CDFC).
Since the first-order approach is standard in modelling moral hazard and agency prob-
lems in general, it is a worthwhile digression in this survey to illustrate the basic
problem with the first-order approach as well as the solution to the problem.

The first-order approach replaces the constraint that the agent choose an optimal
level of care with a requirement that the agent choose a level of care at which his
utility is at a stationary point. This is valid only when all stationary points are optima.
In general, stationary points may also be saddle points, local minima or local maxima
that are not global maxima. The first-order approach in general, therefore, expands
the constraint set for the maximization problem and can lead to a different optimum,
with a higher expected utility. i X

The MLRC is satisfied if, for e < e, p(€)/p/(e) is nonincreasing in i. Milgrom
(1985) shows that the MLRC is equivalent to the following condition (expressed here
in our context). Suppose that one starts with a prior on the agent’s care level, observes
only the outcome, i.e., the size of the loss, and then forms a posterior on the agent’s
care. Then the condition is that the observation of a higher loss allows the statistical
inference that a lower care level was chosen in the sense of first-order stochastic
dominance. This is, intuitively, a modest requirement on the distribution of output
given care. Rogerson (1985) shows that MLRC implies the condition that increases
in care cause the random loss to decrease in the sense of first-order stochastic
dominance.

Define Fj(e) = =/, pi(e) as the distribution function associated with the probabil-
ities p,(e), p.(e), . . . . The concavity of the distribution function condition is satisfied
if F/(e) is nonpositive for every j and e. By the MLRC, F{(e) is increasing in e, i.e.,
the probability of realizing a loss lower than /; is increasing in the care taken. The
CDEFC requires that the function increase at a decreasing rate, analogous to decreas-
ing returns to scale.

Jewitt (1988) criticizes the Mirrlees-Rogerson conditions for the validity of the
first-order approach, on the grounds that 1) the conditions do not work if the princi-
pal can observe more than one relevant statistic; and 2) the concavity of the distrib-
ution function is too restrictive a condition for even the basic principal-agent problem,
being violated by some simple and reasonable examples. Jewitt (Theorem 1) replaces
the conditions (the convexity condition in particular) with a set of four, easily
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tractable, convexity conditions on transformations of the distribution function and the
utility function in the basic principal agent problem.
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Abstract

In this survey we present some of the more significant results in the literature on
adverse selection in insurance markets. Sections 7.1 and 7.2 introduce the subject and
section 7.3 discusses the monopoly model developed by Stiglitz (1977) for the case
of single-period contracts and extended by many authors to the multi-period case. The
introduction of multi-period contracts raises many issues that are discussed in detail:
time horizon, discounting, commitment of the parties, contract renegotiation and acci-
dents underreporting. Section 7.4 covers the literature on competitive contracts. The
analysis becomes more complicated since insurance companies must take into account
competitive pressures when they set incentives contracts. As pointed out by Rothschild
and Stiglitz (1976), there is not necessarily a Cournot-Nash equilibrium in presence
of adverse selection. However, market equilibrium can be sustained when principals
anticipate competitive reactions to their behaviour or when they adopt strategies that
differ from the pure Nash strategy. Multi-period contracting is discussed. We show
that different predictions on the evolution of insurer profits over time can be obtained
from different assumptions concerning the sharing of information between insurers
about individual’s choice of contracts and accidents experience. The roles of com-
mitment and renegotiation between the parties to the contract are important. Section
7.5 introduces models that consider moral hazard and adverse selection simultane-
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ously and section 7.6 treats adverse selection when people can choose their risk status.
Section 7.7 discusses many extensions to the basic models such as risk categoriza-
tion, different risk aversion, symmetric imperfect information, multiple risks, princi-
pals more informed than agents and uberrima fides.

Keywords: Adverse selection, insurance markets, monopoly, competitive contracts,
self-selection mechanisms, single-period contracts, multi-period contracts, commit-
ment, contract renegotiation, accidents underreporting, risk categorization.

JEL Classification Numbers: D80, D81, G22.

7.1 INTRODUCTION

In 1996, the European Group of Risk and Insurance Economists used its annual
meeting to celebrate the twenty-year birthday of the Rothschild and Stiglitz (1976)
article: “Equilibrium in Competitive Insurance Markets: An Essay in the Economics
of Imperfect Information”. At this meeting, many papers on adverse selection were
presented and a subset of these presentations is now published in a 1997 issue of the
Geneva Papers on Risk and Insurance Theory.

One of these articles was written by Rothschild and Stiglitz (1997) themselves.
Their main topic was the role of competition in insurance markets, with an emphasis
on underwriting in a world with imperfect information. They argue that insurance
competition using underwriting on preexisting conditions (such as genetic conditions)
can limit the welfare benefits of insurance. In this survey, we are mainly limited to a
subset of situations involving imperfect information in the insured-insurer relation-
ship since we analyse situations of standard adverse selection where the insured has
more information about his risk than the insurer. However, we will consider exten-
sions where insurers learning activities on individual characteristics that are not known
by the insureds are introduced. We will also drop the assumption that risks are exoge-
nous to individuals.

Adverse selection can be a significant resource allocation problem in many
markets. In automobile insurance markets, risk classification is mainly explained by
adverse selection. In health insurance, different insurance policies or contracts are
offered to obtain some self-selection between different groups. In life insurance, the
screening of new clients with medical exams is an accepted activity also justified by
asymmetrical information between the insurer and the insured. These three resource
allocation mechanisms can be complements or substitutes and adverse selection is not
always a necessary condition for their presence. For example, in automobile insur-
ance, we observe that insurers use risk classification and different deductible policies.
Risk classification is usually justified by adverse selection, but the presence of dif-
ferent deductibles can also be explained by proportional transaction costs with dif-
ferent observable risks. A difficult empirical test is to verify whether the presence of
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different deductibles is justified by residual adverse selection or not! Another empir-
ical test would be to verify whether bonus-malus schemes or multiperiod contracts
with memory are explained in different markets by the presence of moral hazard, or
by that of adverse selection or both. We shall not discuss these tests or these mecha-
nisms in detail here, since other chapters of this book are concerned with these issues
(Chiappori, 2000; Dionne, 2000). Instead, we will review the major allocation mech-
anisms that can be justified by the presence of adverse selection. An emphasis will be
put on self-selection mechanisms in one-period contracting since a large part of the
literature was devoted to this subject in the early literature (on risk classification, see
Crocker and Snow, 2000). We will also discuss in detail some extensions of these
basic models. Particularly, the role of multi-period contracting will be reviewed in
detail. Finally, we will discuss the more recent contributions that focus on the effect
of modifying the basic assumptions of the standard models. In particular, we will see
how introducing moral hazard in the basic Rothschild and Stiglitz (1976) model
affects the conclusions about both the nature and the existence of an equilibrium. The
same exercise will be done for the monopoly model. Another subject will be insur-
ance when individuals can choose their risk status. Other extensions concern the intro-
duction of multiple risks, adverse selection and uberrima fides, the consideration of
different risk averse individuals, the consideration of imprecise information about
accident probabilities, and even, the case where the insurer is more informed than
the insured about loss probabilities. This survey has to be considered as an update of
Dionne and Doherty (1992).

7.2 BASIC ASSUMPTIONS AND SOME FUNDAMENTAL RESULTS

Without asymmetric information and under the standard assumptions of insurance
models that we shall use in this article (same attitude toward risk and same risk aver-
sion for all individuals in all classes of risk, one source of risk, risk neutrality on the
supply side, no transaction cost in the supply of insurance, and no moral hazard), a
Pareto optimal solution is characterized by full insurance coverage for all individuals
in each class of risk. Each insured sets his optimal consumption level according to
his certain wealth. No other financial institution is required to obtain this level of
welfare. Both risk categorization and self-selection mechanisms are redundant. There
is no need for multi-period insurance contracts since they are not superior to a
sequence of one-period contracts. Finally, the two standard theorems of welfare eco-
nomics hold and market prices of insurance are equal to the corresponding social
opportunity costs.

In insurance markets, adverse selection results from asymmetric information
between the insured (agent) and the insurer (principal). The insureds are heteroge-
neous with respect to their expected loss and have more information than the insur-
ance company which is unable to differentiate between risk types. Naturally, the high
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risk individual has no incentive to reveal his true risk which is costly to observe
by the insurer. As pointed out by Arrow, a pooling of risks is often observed in insur-
ance markets. “In fact, however, there is a tendency to equalize rather than to differ-
entiate premiums . . . This constitutes, in effect, a redistribution of income from those
with a low propensity of illness to those with a high propensity . . ” (Arrow, 1963;
p. 964).

Akerlof (1970) showed that if all insurers have imperfect information on indi-
vidual risks, an insurance market may not exist, or if it exists, it may not be efficient.
He proposed an explanation of why, for example, people over 65 have great difficulty
in buying medical insurance: “the result is that the average medical condition of insur-
ance applicants deteriorates as the price level rises—with the result that no insurance
sales may take place at any price” (1970; p. 492). The seminal contributions of Akerlof
and Arrow have generated a proliferation of models on adverse selection. In this
survey we shall, however, confine attention to a limited subset. Many authors have
proposed mechanisms to reduce the inefficiency associated with adverse selection: the
“self-selection mechanism” in one period contracts which induces policyholders to
reveal hidden information by selection from a menu of contracts, (Rothschild and
Stiglitz, 1976, Stiglitz, 1977; Wilson, 1977; Miyazaki, 1977; Spence, 1978; Hellwig,
1986), the “categorization of risks” (Hoy, 1982; Crocker and Snow, 1985, 1986, 2000),
and “multi-period contracting” (Dionne, 1983; Dionne and Lasserre, 1985, 1987;
Kunreuther and Pauly, 1985; Cooper and Hayes, 1987; Hosios and Peters, 1989;
Nilssen, 1990; Dionne and Doherty, 1994; Fombaron, 1997b, 2000). All of them
address private market mechanisms. In the first case, insurers offer a menu of poli-
cies with different prices and quantity levels so that different risk types choose dif-
ferent insurance policies. Pareto improvements for resource allocation with respect to
the single contract solution with an average premium to all clients can be obtained.
In the second case, insurers use imperfect information to categorize risks and, under
certain conditions, it is also possible to obtain Pareto improvements for resource allo-
cation. In the third case, insurers use the information related to the past experience of
the insured as a sorting device (i.e., to motivate high risk individuals to reveal their
true risk ex ante).

Before proceeding let us comment briefly on some standard assumptions. We
assume that all individuals maximize expected utility. The utility functions of the indi-
viduals in each risk group are identical, strictly concave and satisfy the von Neumann-
Morgenstern axioms. Utility is time independent, time additive and state-independent.
In many models there is no discounting. Individuals start each period with a given
wealth, W, which is non random. To avoid problems of bankruptcy, the value of the
risky asset is lower than W. All risks in the individual’s portfolio are assumed to be
insurable. Income received in a given period is consumed in that period; effectively
there is no saving and no banking. Insurers are risk neutral and maximize the value
of their cash flows or profits. Insurers write exclusive insurance contracts and there
are no transaction costs in the supply of insurance. Finally, the insureds are assumed
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to be unable to influence either the probabilities of accident or the damages due to
accidents; this rules out any problem of moral hazard.

To simplify the presentation we explicitly assume that insurers are risk neutral.
An equivalent assumption is that insurers are well diversified in the sense that much
of their total risk is diversified by their own equity holders in the management of their
personal portfolios. The presence of transaction costs would not affect the qualitative
conclusions concerning the effects of adverse selection on resource allocation in insur-
ance markets (see Dionne, Gouriéroux and Vanasse, 1998, for more details). However,
proportional transaction costs (or proportional loadings) are sufficient to explain
partial insurance coverage and their explicit introduction in the analysis would modify
some conclusions in the reference models. For example, each individual in each class
of risk would buy less than full insurance in presence of full information and the intro-
duction of adverse selection will decrease further the optimal coverage for the low
risk individuals. Consequently the presence of adverse selection is not a necessary
condition to obtain different deductibles in insurance markets.

The presence of many sources of non insurable risks or of many risky assets in
individual portfolios is also an empirical fact that is not considered in the models. As
long as these risks are independent, the conclusions should not be affected signifi-
cantly. However, the optimal portfolio and insurance decisions in the presence of many
correlated risks and asymmetrical information in one or in many markets is still an
open question in the literature.

In reality, we observe that banks coexist with insurers who offer multi-period
insurance contracts. The presence of saving and banking may change the conclusions
obtained for multi-period contracts under asymmetrical information. Particularly, it
may modify accidents reporting strategies and commitment to the contracts. However,
with few exceptions (Allen, 1985, moral hazard; Dionne and Lasserre, 1987, adverse
selection; Fudenberg, Holmstrom and Milgrom, 1986, moral hazard; Caillaud,
Dionne and Jullien, 2000, insurance and debt with moral hazard. See Chiappori et al.,
1994, for detailed discussion of different issues) research on principal-agent relation-
ships has not envisaged the simultaneous presence of several alternative types of
institutions.

The assumption of exclusive insurance contracting is discussed in Section 7.4 and
some aspects of the discounting issues are discussed in Section 7.3. There remain the
assumptions on the utility function. Although the theory of decision making under
uncertainty has be challenged since its formal introduction by von Neumann and Mor-
genstern (Machina, 1987, 2000), it has produced very useful analytical tools for the
study of optimal contracts such as, for example, optimal insurance coverage and the
associated comparative statics, as well as the design of optimal contracts under moral
hazard or the characterization of optimal insurance policies under adverse selection.
In fact, very few contributions use non-linear models in insurance literature (see
however Karni, 1992; Gollier, 2000; Doherty and Eeckhoudt, 1995) and none of these
has addressed the adverse selection problem. In this survey we then limit the discus-
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sion to the linear expected utility model. We also assume that utility functions are not
function of the states of the world and that all individuals in all classes of risks have
the same level of risk aversion. As we will see, some of these assumptions are not
necessary to get the desired results but permit the discussion to focus on differences
in the risk types. They are discussed in more detail in 7.7.

7.3 MONOPOLY
7.3.1 Public Information

There are two possible states of the world (x € {n, a}): state (n), “no accident” having
the probability (1 — p;) and state (a), “accident” having the probability 0 < p; < 1. Con-
sumers differ only by their probability of accident. For simplicity, there are two types
of risk in the economy (i € {H, L} for high and low risk) with p; > p;. Each con-
sumer owns a risky asset with monetary value D(x); D(a) = 0 in state (a) and
D(n) = D in state (n). Therefore the expected damage for a consumer of type i (E;D(x))
is p;D.

Under public information and without transaction cost, a risk neutral private
monopoly' would offer insurance coverage (net of premium) (B,) for an insurance
premium (o) such that a consumer will be indifferent between purchasing the policy
and having no insurance (Stiglitz, 1977). In other words, the private monopolist
maximizes his total profit over o, B; and A;:

Problem 1

Max Zqi((l—Pi)ai—PiBi) (1

i, Bi i
under the individual rationality (or participating) constraints
V(Ci|p)-V(C°|p)=0 i=H,L )
where V(C; | p;) is the expected utility under the contract C; = {o,, B,}:
V(Cilp) = pUW =D +B)+(1-p)U W —o.);

U(") is a twice differentiable, strictly increasing and strictly concave function of
final wealth (U’(-) > 0, U”(*) < 0);
' For an analysis of several reasons why a monopoly behavior in insurance markets should be con-

sidered, see Dahlby (1987). For examples of markets with a monopoly insurer see D’Arcy and Doherty
(1990) and Dionne and Vanasse (1992).
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W is non random initial wealth;

C° denotes self-insurance; C° = {0, 0} implies that

V(C° | p) = p:UW - D) + (1 — p)) UW); V(C°| p;) is the reservation utility. Below
this level, individuals will self insure.

g, is the number of policies sold to consumers of type i;

A; is a Lagrangian multiplier for constraint (2).

It is well known that full insurance, B*= D — o} (for i = H, L), is the solution
to the above problem and that (2) is binding for both classes of risk, which means
that

v(cHip)=V(Clp) i=H.L
or
(x’f=p,D + Za,"‘,

where z*is the maximum unit-profit (or the Arrow-Pratt risk premium) on each policy.
In other words z¥solves: U(W — p.D — z*) = p,U(W — D) + (1 — p)UW).

The private monopoly extracts all the consumer surplus. However, there is no
efficiency cost since each individual buys full insurance as under perfect competi-
tion.” This is the classical result that Pareto efficient risk sharing between a risk-averse
agent and a risk-neutral principal shifts all the risk to the principal. To sum up we can
write:

Proposition 1. In presence of public information about insureds’ underlying risk, an
optimal contract between a private monopolist and any individual of type i is charac-
terized by:

a) full insurance coverage, B*= D — a¥;
b) no consumer surplus, ¥(C¥| p,) = (C° | p).

Both solutions are shown at C}; and Cf in Figure 1 where C° is the “initial endow-
ment” or self-insurance situation and where the vertical axis is wealth in the accident
or loss state and the horizontal axis is wealth in the no-loss state.

Any point to the north-west of C° and below or on the 45° degree line represents
the wealth of the insured with any contract where o, > 0 and B, > 0. Since the monop-
oly solution implies no consumer surplus, it must lie on each risk type indifference

? As in the perfect discrimination case, the monopolist charges a price of insurance to each consumer
equal to marginal cost. All potential consumer surplus is collected into monopoly profits so there is no
dead weight loss. This result would not be obtained with a proportional loading or unit profit.
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Figure 1 Monopoly model

curve passing through C°. These indifference curves are strictly convex since U(:) is
strictly concave by assumption.?

7.3.2 Private Information and Single-Period Contracts

Under private information the insurer does not observe the individual’s risk types,’
and must introduce mechanisms to ensure that agents will reveal this characteristic.
Stiglitz (1977) extended the Rothschild-Stiglitz (1976) model to the monopoly case.
In both contributions, price-quantity contracts® permit the separation of risks by intro-
ducing incentives for individuals to reveal their type. Low risk individuals reveal their
identity by purchasing a policy which offers limited coverage at a low unit price. Thus
they trade off insurance protection to signal their identity. Formally, risk revelation is
obtained by adding two self-selection constraints to Problem 1:

3 Since individuals of different types have the same degree of risk aversion, at each point in the figure,
the absolute value of the slope of the high-risk indifference curve is lower than that of the low-risk indi-
vidual. For example at point C°, U'(W)(1 — p;)/ U (W = D)p, < U (W)(1 - p,)/U (W — D)p,. At equilibrium
points C}; and C¥, the respective slopes (in absolute values) are (1 — p,)/py and (1 — p,)/p,. This is true
since under full insurance, the insured of type i has W — p,D — z¥ in each state.

* For models where neither the insurer nor the insured know the individuals’ probabilities of accident,
see Palfrey and Spatt (1985), Malueg (1988), Boyer, Dionne and Kihlstrom (1989), and De Garidel (1997).

° We limit our discussion to private market mechanisms. On public provision of insurance and adverse
selection, see Pauly (1974) and Dahlby (1981).
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V(Ci|Pi)“V(CjIP,)ZO L,j=H,L 3)
E

Equation (3) guarantees that individual i prefers C; to C;. Let us use Ay, and Ay
for the corresponding Lagrangian multipliers where A, is for the self-selection con-
straint of the H type risk and A, is that for the L type. Ay, and A,y cannot both be
positive.® From Figure 1 it is easy to observe that, if the high risk individuals are indif-
ferent between both contracts (A, > 0), the low risk individuals will strictly prefer
their own contracts (A, = 0). Moreover, A, cannot be positive when A is zero since
this leads to a violation of (2). Therefore, a feasible solution can be obtained only
when Ay, > 0 and A, = 0.

Figure 1 shows the solution to the maximization of (1) subject to (2) and (3) where
low risk individuals choose a positive quantity of insurance’ Bf* > 0 and high risk
individuals buy full insurance coverage (B};* = B%). Separation of risks and profit max-
imization imply that V(CA* | py) = V(CF* | pr). As discussed above, it is clear that
(2) and (3) cannot both be binding for the high risk individuals when it is possible for
the low risks to buy insurance. In fact, Figure 1 indicates that C%* is strictly preferred
to C}; which means that high risk individuals get some consumer surplus when the
monopolist sells insurance to the low risk individuals. In other words, the rationality
constraint (2) is not binding for the H individuals (A, = 0).

Another property of the solution is that good risk individuals do not receive any
consumer surplus (A, > 0). However, as discussed above, they strictly prefer their con-
tract to the contract offered to the bad risk individuals. In other words

v(C2*1p)=v(Clp) and V(CH*Ip.)>V(CE* .,

which means that the self-selection constraint is not binding for the low risk individ-
uals while the rationality constraint is.

In conclusion, one-period contracts with a self-selection mechanism increase the
monopoly profits under private information compared with a single contract without
any revelation mechanism, but do not necessarily correspond to the best risk alloca-
tion arrangement under asymmetrical information. In particular, good risk individu-
als may not be able to buy any insurance coverage or, if they can, they are restricted
to partial insurance. As we shall see in the next section, multi-period contracts can be

® Technically the preference structure of the model implies that indifference curves of individuals with
different risks cross only once. This single crossing property has been used often in the sorting literature
(Cooper, 1984).

7 It is important to note that there is always a separating equilibrium in the monopoly case. However,
the good risk individuals may not have any insurance coverage at the equilibrium. Property 4 in Stiglitz
(1977) establishes that C}* = {0, 0} when g,/q, exceeds a critical ratio of high to low risk individuals
where g; is the proportion of individuals i in the economy. The magnitude of the critical ratio is function
of the difference in accident probabilities and of the size of the damage. Here, in order to have C}* # {0,
0}, we assume that g,/q, is below the critical ratio.
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used to relax the binding constraints and to improve resource allocation under asym-
metrical information. In summary

Proposition 2. In the presence of private information, an optimal one-period contract
menu between a private monopoly and individuals of types H and L has the follow-
ing characteristics:

a) Br*=D-of* Br* <D - of*
b) V(CE* | pw) > V(C° | pw); (CE* | p) = V(C° | p1)
©) V(CE* | pw) = (CF* | pu); V(CF* | p1) > V(CE* | po).

Proof. See Stiglitz (1977). |

Stiglitz (1977) also considered a continuum of agent types and showed that some
of the above results can be obtained under additional conditions. However, in general,
the presence of a continuum of agent types affects the results.®

7.3.3 Multi-Period Insurance Contracts

Multi-period contracts are often observed in different markets. For example, in many
countries, drivers buy automobile insurance with the same insurer for many years and
insurers use bonus-malus systems (or experience rating) in order to relate insurance
premiums to the individual’s past experience (Lemaire, 1985; Henriet and Rochet,
1986; Hey, 1985; Dionne and Vanasse, 1992, 1997). Long term contracting also is
observed in labour markets, workers’ compensation insurance, service contracts,
unemployment insurance and many other markets. The introduction of multi-period
contracts in the analysis gives rise to many issues such as time horizon, discounting,
commitment of the parties, myopic behaviour, accident underreporting, renegotiation.
These issues are discussed in the following paragraphs.

Multi-period contracts are set, not only to adjust ex-post insurance premiums or
insurance coverage to past experience, but also as a sorting device. They can be a
complement or a substitute to standard self-selection mechanisms. However, in pres-
ence of full commitment, ex-ante risk announcement or risk revelation remains nec-
essary to obtain optimal contracts under adverse selection.

In Cooper and Hayes (1987), multi-period contracts are presented as a comple-
ment to one period self-selection constraints. Since imperfect information reduces the
monopolist’s profits, the latter has an incentive to relax the remaining binding
constraints by introducing contracts based on anticipated experience over time. By
using price-quantity contracts and full commitment in long term contracts, Cooper

¥ In another context, Riley (1979a) showed that a competitive Nash equilibrium never exists in the con-
tinuum case (see also Riley, 1985).
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and Hayes introduce a second instrument to induce self-selection and increase monop-
oly profits: experience rating increases the cost to high-risks from masquerading as
low-risks by exposing them to second-period contingent coverages and premia.

Cooper and Hayes’ model opens with a direct extension of the standard one-period
contract presented above to a two-period world with full commitment on the terms of
the contract. There is no discounting and all agents are able to anticipate the values
of the relevant future variables. In order to increase profits, the monopolist offers con-
tracts in which premiums and coverages in the second period are function of accident
history in the first period. Accidents are public information in their model. The two
period contract C? is defined by:

Ci2 = {ais Bi, aia’ Bia’ ain’ Bin}

where a and » mean “accident” and “no accident” in the first period and where o
and B, (I = a, n) are “contingent” choice variables. Conditional on accident experi-
ence, the formal problem consists of maximizing two-period expected profits by
choosing C7 and C}; under the following constraints:

V(CEH pi)22V(C°| i) 4.1)
i#7]
where

V(CPp) = pUW =D +B)+(1 = pUW - ;)
+ o [l UW =D +B)+ (1= p ) UW — )]
+(0=pXpUW =D +B;,) + (1= p ) UW — ;)]
k=ij i,j=HL i#].

The above constraints show that agents are committed to the contracts for the two
periods. In other words, the model does not allow the parties to renegotiate the con-
tract at the end of the first period. Moreover, the principal is committed to a loss related
adjustment of the insurance contract in the second period negotiated at the beginning
of the first period; the insured is committed, for the second period, to buy the cover-
age and to pay the premium chosen at the beginning of the first period. It is also inter-
esting to observe from (4) that the decisions concerning insurance coverage in each
period depend on the anticipated variations in the premiums over time. In other words,
(4) establishes that variations in both premia and coverages in the second period are
function of experience in the first period. Using the above model, Cooper and Hayes
proved the following result:
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Proposition 3. In the presence of private information and full commitment, the
monopoly increases its profits by offering an optimal two-period contract having the
following characteristics:

1) High risk individuals obtain full insurance coverage in each period and are not
experience rated

dH = dy,, = aHa, BH = BHa = BHn

where BH =D -0y
2) Low risk individuals obtain partial insurance with experience rating

Oy < Oy < Oty Bro < Pr < Brn

3) Low risk individuals do not obtain any consumer surplus, and high-risk individ-
uals are indifferent between the two contracts

V(C2 1 pr)=2V(C°| p,),
V(C? pu)=V(Cilpn).

Proof. See Cooper and Hayes (1987). | |

The authors also discussed an extension of their two-period model to the case
where the length of the contract may be extended to many periods. They showed that
the same qualitative results as those in Proposition 3 hold with many periods.

Dionne (1983) and Dionne and Lasserre (1985, 1987) also investigated multi-
period contracts in presence of both adverse selection’ and full commitment on the
part of the insurer. Their models differ from that of Cooper and Hayes in many
respects. The main differences concern the revelation mechanism, the sorting device,
commitment assumptions and the consideration of statistical information. Moreover,
accidents are private information in their models. Unlike Cooper and Hayes, Dionne
(1983) did not introduce self-selection constraints in order to obtain risk revelation.
Instead risk revelation results from a Stackelberg game where the insurer offers a con-
tract in which the individual has to select an initial premium by making a risk
announcement in the first period. Any agent who claims to be a low risk pays a cor-
responding low premium as long as his average loss is less than the expected loss
given his declaration (plus a statistical margin of error to which we shall return). If

° Townsend (1982) discussed multi-period borrowing-lending schemes. However, his mechanism
implies a constant transfer in the last period that is not compatible with insurance in presence of private
information.



Adverse Selection in Insurance Markets 197

that condition is not met, he is offered a penalty premium. Over time, the insurer
records the agent’s claims and offers to reinstate the policy at the low premium when-
ever the claims frequency become reasonable again.'

Following Dionne (1983) and Dionne and Lasserre (1985), the no-claims discount
strategy consists of offering two full insurance premiums'' (F' = {0y, 0, }) in the first
period and fort=1, 2, ...

N(r)
oot | =0 12,00/ N(O) < E,D(x) + 8]
s=1
= o, otherwise
where
Oy is the full information premium corresponding to the declaration (d),
de {H, L}

o’ is the amount of loss in contract period s, 6° € {0, D}
Ol is a penalty premium. o is such that UMW — o) < (Cy | pr)
E,D(x) is the expected loss corresponding to the announcement (d)
3o is the statistical margin of error
M) is the total number of periods with insurance; N(f) < .

N(t)
Therefore, from the construction of the model, 29‘ / N(@) is the average loss

s=1
claimed by the insured in the first N(¢) periods. If this number is strictly less then the
declared expected loss plus some margin of error, the insurer offers a,. Otherwise he
offers oy. The statistical margin of error is used in order not to penalize too often those
who tell the truth. But it has to be small enough to detect those who try to increase
their utility in announcing a risk class inferior to their true risk. From the Law of the
Iterated Logarithm, one can show that

adN(r) — «/2'YG§1 log logN(t)/N(t), y>1

' This type of “no-claims discount” strategy was first proposed by Radner (1981) and Rubinstein and
Yaari (1983) for the problem of moral hazard (see also Malueg (1986) where the “good faith” strategy is
employed). However, since the two problems of information differ significantly the models are not identi-
cal. First the information here does not concern the action of the agent (moral hazard) but the type of risk
which he represents (adverse selection). Second, since the action of the insured does not affect the random
events, the sequence of damage levels is not controlled by the insured. The damage function depends only
on the risk type. Third, in the adverse selection model, the insured cannot change his declaration and there-
fore cannot depart from his initial risk announcement although he can always cancel his contract. There-
fore, the stronger conditions used by Radner (1981) (robust epsilon equilibrium) and Rubinstein and Yaari
(1983) (“long proof ) are not needed to obtain the desired results in presence of adverse selection only.
The Law of the Iterated logarithm is sufficient.

""" In fact their formal analysis is with a continuum of risk types.
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to declaration d
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Figure 2 Graphical representation of ED(x) + 8}

where 6 is the variance of the individual’s loss corresponding to the declaration (d)
and ) converges to zero over time (with arbitrary large values for N(¢) = 1, 2).

Graphically, we can represent E,D(x) + 8} as in Figure 2:

As N(t) — o, E,D(x) + 8} — E,D(x).

Over time, only a finite number of points representing (£6°/N(¢)) will have a value
outside the shaded area.

Proposition 4 below shows that the public information allocation of risks is
obtainable using the no-claims discount strategy as 7 — o and as long as the agents
do not discount the future."

Proposition 4. Let i be such that:
o; — E,D(X) >0and U(W —(X,) 2> V(CO I p,)

Then, when T — oo, there exists a pair of optimal strategies for the individual of type
i and the private monopoly having the following properties:

"2 In general, introducing discounting in repeated games reduces the incentives of telling the truth and
introduces some inefficiency because players do not care for the future as they care for the current period.
In other words, with discounting, players become less patient and cooperation becomes more difficult to
obtain. See Sabourian (1989) and Abreu, Pearce and Stacchetti (1990) for detailed discussions on the dis-
count factor issues in repeated contracts.
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1) the strategy of the monopoly is a “no-claims discount strategy”; the strategy of
insured i is to tell the truth about his type in period 1 and to buy insurance in
each period;

2) the optimal corresponding payoffs are o — ED(x) = z¥ and U(W — a¥) =
WC°|p),i=H, L

3) both strategies are enforceable.

Proof. See Dionne and Lasserre (1985). |

It is also possible to obtain a solution close to the public information allocation
of risks in finite horizon insurance contracts. Dionne and Lasserre (1987) showed how
a trigger strategy with revisions'® may establish the existence of an € equilibrium. This
concept of € equilibrium is due to Radner (1981) and was also developed in a moral
hazard context. Extending the definition to the adverse selection problem, Dionne and
Lasserre (1987) defined an € equilibrium as a triplet of strategies (principal, low risk
individual, high risk individual) such that, under these strategies, the expected utility
of any one agent is at least equal to his expected utility under public information less
epsilon. In fact, the expected utility of the high risk individual is that of the full infor-
mation equilibrium.

As for the case of an infinite number of periods,'* Dionne and Lasserre (1987)
showed that it is in the interest of the monopolist (he obtains higher profits) to seek
risk revelation on the part of the insured rather than simply use the statistical instru-
ment to discriminate between low-risk and high-risk agents. In other words, their
second main result shows that it is optimal to use statistical tools not only to adjust,
ex-post, insurance premiums according to past experience, but also, to provide an
incentive for the insured to announce, ex-ante, the true class of risk he represents.
Finally, they obtained that a multi-period contract with announcement dominates a
repetition of one-period self-selection mechanisms (Stiglitz, 1977) when the number
of periods is sufficiently large and there is no discounting. This result contrasts with
those in the economic literature where it is shown that the welfare under full
commitment is equal to that corresponding to a repetition of one period contracts. In
fact here, a multiperiod contract introduces a supplementary instrument (experience

13 Radner’s (1981) contribution does not allow for revisions after the initial trigger. However, revisions
were always present in infinite horizon models [Rubinstein and Yaari (1983), Dionne (1983), Radner (1985),
Dionne and Lasserre (1985)]. A trigger strategy without revision consists of offering a premium corre-
sponding to a risk declaration as long as the average loss is less than the reasonable average loss corre-
sponding to the declaration. If that condition is not met, a penalty premium is offered for the remaining
number of periods. With revisions, the initial policy can be reinstate.

' See also Gal and Landsberger (1988) on small sample properties of experience rating insurance
contracts in presence of adverse selection. In their model, all insureds buy the same contracts and
resort to experience is made in the premium structure only. They show that the monopoly’s expected profits
are higher if based on contracts which take advantage of longer experience. Fluet (1998) shows how
a result similar to Dionne and Lasserre (1985) can be obtained in a one period contract with fleet of
vehicles.
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rating) that increases efficiency (Dionne and Doherty, 1994; Dionne and Fluet, 1999;
Fombaron, 1997b).

Another characteristic of Dionne and Lasserre (1987) model is that low risk
agents do not have complete insurance coverage when the number of periods is finite;
they chose not to insure if they are unlucky enough to be considered as high risk indi-
viduals. However, they always choose to be insured in the first period and most of
them will obtain full insurance in each period. Finally, it must be pointed out that the
introduction of a continuum of agent types does not create any difficulty in the sense
that full separation of risks is obtained without any additional condition.

In Dionne (1983) and Dionne and Lasserre (1985) there is no incentive for acci-
dents underreporting at equilibrium since there is no benefit associated with under-
reporting. When the true classes of risk are announced, insureds cannot obtain any
premium reduction by underreporting accidents. When the number of periods is finite,
matters are less simple since each period does matter. In some circumstances, the
insured has to evaluate the trade-off between increased premiums in the future and
no coverage in the present. This is true even when the contract involves full com-
mitment as in Dionne and Lasserre (1987). For example, the unlucky good risk may
prefer to receive no insurance coverage during a particular period in order to pass
over a trigger date and have the opportunity to pay the full information premium as
long as his average loss is less than the reasonable average loss corresponding to his
class of risk.

We next address the incentive for policyholders to underreport accidents. The ben-
efits of underreporting can be shown to be nil in a two-period model with full com-
mitment and no statistical instrument and when the contract cannot be renegotiated
over time (Dionne and Doherty, 1992). To see this, let us go back to the two-period
model presented earlier (Cooper and Hayes, 1987) and assume that accidents are now
private information. When there is ex ante full commitment by the two parties to the
contract one can write a contract where the net benefit to any type of agent from under-
reporting is zero. High risk individuals have full insurance and no experience rating
at equilibrium and low risk individuals have the same level of expected utility what-
ever the accident reporting at the end of the second period. However, private infor-
mation about accidents reduces insurer’s profits when we compare with the situation
where accidents are public information.

In all the preceding discussions it was assumed that the insurer can precommit to
the contract over time. It was shown that an optimal contract under full commitment
can be interpreted as a single transaction where the incentive constraints are modified
to improve insurance possibilities for the low risk individuals and to increase profits.
Since there is full commitment and no renegotiation, accident histories are uninfor-
mative on the risk type. This form of commitment is optimal in Dionne (1983) and
Dionne and Lasserre (1985) since, as in the Arrow-Debreu world, neither party to the
contract can gain from renegotiation. However, in a finite horizon world, the role of
renegotiation becomes important since self-selection in the first period implies that
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future contracts might be inefficient given the public information available after the
initial period. When the good risks have completely revealed their type, it becomes
advantageous to both parties, the insurer and the low risk individuals, to renegotiate
a full insurance contract for the second period. Although the possibilities of renego-
tiation improve welfare in the second period, they violate the ex-ante self-selection
constraints and reduce ex-ante welfare. In other words, renegotiation limits the com-
mitment possibilities and reduces ex-ante parties welfare. For example, if the high
risk individuals anticipe renegotiation in the second period, they will not necessarily
reveal their type in the first period (Dionne and Doherty, 1994).

Formally, we can interpret the possibility of renegotiation as adding a new con-
straint to the set of feasible contracts: unless parties can precommit not to renegoti-
ate then contracts must be incentive compatible and renegotiation-proof (Dewatripont,
1989; Bolton, 1990; Rey and Salanié, 1996). In order to reduce the possibilities for
renegotiation in the second period, the insurer who is unable to commit not to rene-
gotiate after new information is revealed, must set the contracts so that the insured
type will not be perfectly known after the first period. This implies that the prospect
of renegotiation reduces the speed of information revelation over time. In other words,
the prospect of renegotiation can never improve the long term contract possibilities.
In many circumstances, a sequence of one period contracts will give the same outcome
as a renegotiated-proof long term contract; in other circumstances a renegotiation-
proof long term contract dominates (when intertemporal and intertypes transfers and
experience rating are allowed, for example) (Hart and Tirole, 1988; Laffont-Tirole,
1987, 1990, 1993; Dionne and Doherty 1994; Fombaron, 1997a; see the next section
for more details).

Hosios and Peters (1989) presented a formal model that rules out any renegotia-
tion by assuming that only one-period contracts are enforceable.'® They also discussed
the possibility of renegotiation in the second period when this renegotiation is bene-
ficial to both parties. Although they cannot show formally the nature of the equilib-
rium under this alternative, they obtained interesting qualitative results. For example,
when the equilibrium contract corresponds to incomplete risk revelation in the first
period, the seller offers, in the second period, a choice of contract that depends on the
experience of the first period. Therefore accident underreporting is possible without
commitment and renegotiation. This result is similar to that obtained in their formal
model where they ruled out any form of commitment for contracts that last for more
than one period. Only one-period contracts are enforceable. They showed the follow-
ing. results.'®

'* On limited commitment see also Freixas, Guesnerie and Tirole (1985), Laffont and Tirole (1987) and
Dionne and Fluet (1999).

'* However, separating equilibria are possible with discounting since future considerations are less rel-
evant. In a model with commitment and renegotiation, Dionne and Doherty (1994) obtain a similar result:
when the discount factor is very low a separating equilibrium is always optimal in a two-period framework.
Intuitively, low discount factors reduce the efficiency of using intertemporal transfers or rents to increase
the optimal insurance coverage of the low risk individuals by pooling in the first period. See Laffont and
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Proposition 5. In absence of any form of commitment from both parties to the
contract:

1) Without discounting, separating equilibria do not exist; only pooling and semi-
separating equilibria are possible.

2) Accident underreporting can now affect the seller’s posterior beliefs about risk
types and insurance buyers may fail to report accidents in order to avoid premium
increases.

Proof. See Hosios and Peters (1989). |

This result implies that the insurer does not have full information on the risk types
at the end of the first period; therefore, accidents reports become informative on the
risk type contrary to the Cooper and Hayes model. However, the authors did not
discuss the optimality of such two-period contract. It is not clear that a sequence of
one period contracts with separating equilibrium does not dominate their sequence of
contracts.

7.4 COMPETITIVE CONTRACTS

We now introduce a competitive context. Competition raises many new issues in both
static and dynamic environments. The two main issues that will be discussed here are
1) the choice of an adequate equilibrium concept and the study of its existence and
efficiency properties, and 2) the nature of information between competitive insurers
(and consequently the role of government in facilitating the transmission of informa-
tion between insurance market participants, particularly in long term relationships).

It will be shown that many well-known and standard results are function to the
assumption on how the insurers share the information about both the individual’s
choice of contracts and accident experience.

In a first step, the situation where no asymmetric information affects the insur-
ance market is presented as a benchmark. Then, issues raised by adverse selection
problem and the remedies to circumvent it are discussed.

7.4.1 Public Information about an Individual’s Characteristics

In a competitive market where insurance firms are able to discriminate among the
consumers according their riskiness, we would expect that insureds are offered a menu

Tirole (1993) for a general discussion on the effect of discounting on optimal solutions in procurement
when there is no uncertainty. See Dionne and Fluet (2000) for a demonstration that full pooling can be
an optimal solution when the discount is sufficiently high and when there is no commitment. This result is
due to the fact that, under no-commitment, the possibilities of rent transferts between the periods are
limited.
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of policies with a complete coverage among which they choose the one that
corresponds with their intrinsical risk. Indeed, under competition, firms are now con-
strained to earn zero expected profits. When information on individual risk charac-
teristics is public, each firm knows the risk type of each individual. The optimal
individual contract is the solution to:

Problem 2

Max pUW -D+B)+(0-p)UW —a;)+ N[ - po: = pfi), i=H,L

a;,Bi, Ai
where (1 — p;)o; = p,B; is the zero-profit constraint.

As for the monopoly case under public information, the solution to Problem 2
yields full insurance coverage for each type of risk. However, on the contrary to
monopoly, the optimal solutions C% and C7¥ in Figure 3 correspond to levels of con-
sumer welfare greater than in the no-insurance situation (C°). As already pointed out,
the monopoly solution under public information also yields full insurance coverage
and does not introduce any distortion in risk allocation. The difference between the
monopoly and competitive cases is that, in the former, consumer surplus is extracted
by the insurer, while in the latter it is retained by both types of policyholder.

Wealth in

loss state
A

V(Cy™ [ py)

ol V(CL‘ ‘ PL)

‘> Wealth in
w no-loss state

Figure 3 One-period competitive contracts with full information
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Under competition, a zero-profit line passes through C° and represents the set of
policies for which a type i consumer’s expected costs are nil for insurers. The absolute

. . . 1=-p .
value of its slope is equal to the (absolute) ratio —p—p-. Each point on the segment

i

[C°C7] has the same expected wealth for an individual of type i than that corre-
sponding to C°. The full information solutions are obtained when the ratio of slopes
of indifference curves is just equal to the ratio of the probability of not having an acci-
dent to that of having an accident. To sum up,

Proposition 6. In an insurance world of public information about insureds’ riskiness,
a one-period optimal contract between any competitive firm on market and any indi-
vidual of type i (i = H, L) is characterized by:

a) full insurance coverage, B¥= D — of
b) no firm makes a surplus, T(C¥| p) =0
c) consumers receive a surplus ¥(C¥| p) > V(C° | p)).

Characteristic b) expresses the fact that premiums are set to marginal costs and
characteristic ¢) explains why individual rationality constraints (2) are automatically
satisfied in a competitive context. Consequently, introducing competitive actuarial
insurance eliminates the wealth variance at the same mean or corresponds to a mean
preserving contraction.

In a usual way, under perfect information, competition allows to attain one-period
solutions which are first-best efficient. This result does not hold when we introduce
asymmetric information.

7.4.2 Private Information and Single-Period Contracts

In the presence of adverse selection, the introduction of competition may lead to fun-
damental problems with the existence and the efficiency of an equilibrium. When
insurance firms cannot distinguish among different risk types, they lose money by
offering the set of full information contracts (C%, C¥) described above, since both
types will select C7 (the latter contract requires a premium lower than C7; and in coun-
terpart, covers also totally the incurring losses). Each insurer will make losses since
the average cost is greater than the premium of C7, which is the expected cost of
group L. Under asymmetrical information, traditional full information competitive
contracts are not adequate to allocate risk optimally. Consequently, many authors
have investigated the role of sorting devices in a competitive environment to circum-
vent this problem of adverse selection. The first contributions on the subject in com-
petitive markets are by Akerlof (1970), Spence (1974), Pauly (1974), Rothschild and
Stiglitz (1976) and Wilson (1977). The literature on competitive markets is now very
large and it is not our intention here to review all contributions. Our selection of
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models was made with criteria that will be identified and explained when it will
become appropriate.'”’

A first division that we can make is between models of signaling (informed
agents move first) and of screening (uninformed agents move first) (Stiglitz and Weiss,
1984). Spence (1974) and Cho and Kreps (1987) models are of the first type and are
mainly applied to labor markets in which the workers (informed agents) move first
by choosing an education level (signal). Then employers bid for the services of the
workers and the latter select the more preferred bids. Cho and Kreps (1987) present
conditions under which this three-stage game generates a Riley (1979a) single-period
separating equilibrium.'® Without restrictions (or criteria as those proposed by Cho
and Kreps (1987)) on out-of-equilibrium beliefs, many equilibria arise simultane-
ously, which limit considerably the explanatory power of the traditional signaling
models. "

Although it may be possible to find interpretations of the signaling models
in insurance markets, it is generally accepted that the screening interpretation is
more natural. Rothschild and Stiglitz (1976) and Wilson (1977) introduced to the lit-
erature insurance models with a screening behavior. In Rothschild and Stiglitz model
only a two-stage game is considered. First, the uninformed insurer offers a menu of
contracts to the informed customers who then choose among the contracts in the
second stage.

Let us start with the Rothschild and Stiglitz (1976) model in which the insurers
set premia with constant marginal costs. Each insurer knows the proportions of
good risks and bad risks in the market but has no information on an individual’s type.
Moreover, each insurer cannot, by assumption, buy insurance from many insurers.
Otherwise, the individual insurers would not be able to observe the individuals’ total
amount of insurance and would not be able to discriminate easily.”” Each insurer
observes all offers in the market. Finally, the insurer only needs to observe the claims
he receives.”!

Clearly, the properties of the equilibrium depend upon how firms react to rival
offers. In a competitive environment, it seems reasonable to assume that each insurer

17 See Cresta (1984) and Eisen (1989) for other analyses of problems of equilibria with asymmetric
information.

'® A Riley or reactive equilibrium leads the Rothschild-Stiglitz separating equilibrium regardless of the
number of individuals in each class of risk.

' In fact, multiple equilibria are the rule in two-stage signaling models. However, when such equilib-
ria are studied, the problem is to find at least one that is stable and dominates in terms of welfare. For a
more detailed analysis of signaling models see the survey by Kreps (1989). On the notion of sequential
equilibrium and on the importance of consistency in beliefs see Kreps and Wilson (1982).

0 Jaynes (1978) and Hellwig (1988) analyzed the consequences of relaxing this assumption. More par-
ticularly, they showed under what conditions an equilibrium exists when the sharing of information about
customers is treated endogenously as part of the game among firms. They showed that it is possible to over-
come Rothschild-Stiglitz’s existence problem of an equilibrium if insureds cannot buy more than one con-
tract. Finally, Hellwig (1988) showed that the resulting equilibrium is more akin to the Wilson anticipatory
equilibrium than to the competitive Nash equilibrium.

?' In fact, this is a consequence of the exclusivity assumption. Moreover, since we consider static con-
tracts, observing accident or claims does not matter. A conclusion, that will not be necessarily true in
dynamic models.



206 Handbook of Insurance

takes the actions of its rivals as given. The basic model by Rothschild and Stiglitz
described in the following lines considers that firms adopt a (pure) Nash strategy.
Then, a menu of contracts in an insurance market is an equilibrium in the Rothschild
and Stiglitz sense if a) no contract in the equilibrium set makes negative expected
profits and b) there is no other contract added to the original set that earns positive
expected profits.

Under this definition of the equilibrium, Rothschild and Stiglitz obtained three
significant results:

Proposition 7. When insurers follow a pure Cournot-Nash strategy in a two-stage
screening game:

a) A pooling equilibrium is not possible; the only possible equilibria are separating
contracts.

b) A separating equilibrium may not exist.

c) The equilibrium, when it exists, is not necessarily a second-best optimum.

A pooling equilibrium is an equilibrium in which both types of risk buy the same
contract. Recall that the publicly observable proportions of good-risk and bad-risk
individuals are respectively ¢g; and gy (with gy + g, = 1) and the average probability
of having an accident is p. This corresponds to the line C°F in Figure 4a. To see why
the Nash definition of equilibrium is not compatible with a pooling contract, assume
that C; in the figure is a pooling equilibrium contract for a given insurer. By defini-
tion, it corresponds to zero aggregate expected profits; otherwise, another insurer in
the market will offer another pooling contract. Because of the relative slopes of the
risk type indifference curves, there always exists a contract C, that will be preferred
to contract C, by the low-risk individuals. The existence of contract C, contradicts the
above definition of a Nash equilibrium. Consequently, if there exists an equilibrium,
it has to be a separating one in which different risk-type consumers receive different
insurance contracts.

As for the monopoly case, the formal solution is obtained by adding one self-
selection constraint (3) that guarantees individual i prefers C; to C; to Problem 2. By
a similar argumentation to the one used in the determination of the optimal solution
in the monopoly situation, it can be shown that only the self-selection constraint of
the H risk type is binding at full insurance. Again the profit constraint is binding on
each type so the problem is limited to find an optimal contract to the low-risk indi-
vidual since that of the high risk individual corresponds to the public information case
(of* = oy =D - Bj):
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Figure 4a Inexistence of a Rothschild-Stiglitz pooling equilibrium
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Figure 4b Existence of a Rothschild and Stiglitz separating equilibrium
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Problem 3

Max p UW -D+B)+(U-p)UW -a.,)

o BroAiAuL

subject to the zero-profit constraint

(I-po, = pLﬁL
and the self-selection constraint
U ~al*) = puU¥ =D +B)+( - py U —a1,).

At equilibrium, the high-risk individuals receive full ins