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Abstract

This paper develops a simple arbitrage approach to valuing insurance-linked securities, which ac-
counts for catastrophic events and interest rate randomness, notwithstanding a framework of non-traded
underlyings. It shows that holders of catastrophe bonds are in a short position on one-touch binary options
based upon risk-tracking indexes that obey jump-diffusion processes. Using first-passage time distribu-
tions, this contribution provides a closed-form valuation expression in the context of pure crashes, while
it resorts to numerical simulations in the case of mid-range catastrophes. Comparative statics results point
out that the term structure of yield spreads of catastrophe bonds is hump-shaped as for corporate bonds.
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1. Introduction

Securitization of losses from catastrophic events such as hurricanes and earthquakes is gain-
ing momentum. The insurance industry may face overwhelming environmental risks, as evi-
denced by Hurricane Andrew, which resulted in 30 billion US$ in 1992. On the other hand, daily
fluctuations on worldwide financial markets reach tens of billion US$. Therefore, securitization
is likely to offer a more effective mechanism for financing catastrophic losses than conventional
insurance and reinsurance, as advocated for instance byJaffee and Russell (1997).
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Index-linked catastrophic loss futures contracts were introduced on the Chicago Board of
Trade (CBOT) in 1992. Call option spreads later superseded them, but were de-listed eventually
because of low trading volume. New entrants include over-the-counter (OTC) products, pri-
marily engineered by investment bankers. This trend has advanced in the recent years with the
introduction of weather derivatives to the U.S. since 1997, with subsequent growth in Europe.
For example, a European bank and an insurance company teamed up to launch a joint venture
“Meteo transformer” meant to issue weather derivatives and insurance contracts in late 2000.
Also, the stock exchange Euronext introduced electricity derivatives in 2001. Indeed, the needs
for power and weather hazards are often related.

Key structures for insurance-risk transfer to capital markets are catastrophe bonds issued
by industrial corporations and insurance–reinsurance companies. They enable the former to
hedge natural risks by means of personalized contracts, and in so doing, to focus on their
core business, and the latter to share their business risk with other market participants. The
first successful catastrophe bond (catbond) was issued in 1997 by Swiss Re to cover earth-
quake losses; and the first catbond by a non-financial firm was issued in 1999 in order to
cover earthquake losses in the Tokyo region for Oriental Land Company, Ltd., the owner
of Tokyo Disneyland. More recently, Swiss reinsurer Zurich Re placed US$ 160 million
of risk-linked securities in 2001, which provides it “fully collateralized protection against
low-frequency, high-severity hurricane and earthquake exposures in the United States, as well as
European windstorm.” Transactions on the market for catastrophe risk are documented inFroot
(2001).

As described inFig. 1, the hedger (e.g., a corporation) pays an insurance premium in ex-
change for a pre-specified coverage if a catastrophic event occurs; and investors purchase an
insurance-linked security for cash. The total amount (premium+ cash proceeds) is directed
to a tailor-made fund, called a special-purpose vehicle (SPV), which issues the catastrophe
bonds to investors and purchases safe securities as Treasury bonds. Therefore, investors hold
nature-linked assets whose cash flows—coupons and/or principal—are contingent on the risk
occurrence. If the covered events happen during the risk-exposure period, the SPV compensates
the firm and there is full or partial forgiveness of the repayment of principal and/or interest. If
the defined events do not occur, the investors receive their principal plus interest equal to the
risk-free rate plus a risk-premium.

Fig. 1. Engineering of catastrophe bonds.
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The pricing of these products must deal with incomplete markets and non-traded under-
lyings. Insurance-linked securities are primarily meant to transfer catastrophic nature risks.
Natural catastrophes can be taken into account by resorting to mixed jump-diffusion processes
for an underlying risk index. Financial markets are incomplete in this framework; thus, the
methodology of replicating portfolios does not apply. Several lines can be followed along.
Merton (1976)assumes that the risk associated with jumps can be diversified away. Therefore,
the beta, in the sense of the Capital Asset Pricing Model, of portfolios that only incorpo-
rate this non-systematic risk is zero and their expected return is equal to the risk-free rate.
Föllmer and Sondermann (1986), Föllmer and Schweizer (1991), andSchweizer (1992), in
a series of articles, implement a variance-minimizing hedging approach that allows picking
an equivalent martingale measure.Davis (1997)specifies a utility function for investors and
can determine prices by solving an optimization problem under the historical probability mea-
sure. Other approaches try to capitalize on the completeness framework, either by assuming
that the market is complete by restricting the problem to the case of non-random jump ampli-
tudes (e.g.,Cox & Ross, 1976) or by embedding the market in a complete market by adding
another fictitious asset (e.g.,Shirawaka, 1991). We will favor Merton’s approach because it
can be straightforwardly adapted to the scope of underlying state variables that are not invest-
ment assets. In turn, this non-tradability feature can be accounted for by introducing a market
price of nature risk. What is more, to be fully consistent with the subject of bonds, interest
rates must be modeled as evolving in a stochastic manner. On the other hand, to avoid tech-
nicalities, we will merely work with Gaussian spot interest rates rather than the whole term
structure.

There is little academic research devoted to the pricing of catastrophe bonds, as opposed to
works on their benefits, like inAnderson, Bendimerad, Canabarro, and Finkemeier (2000), and
their management, including their combination with reinsurance, like inCroson and
Kunreuther (2000). On the one hand, actuaries tend to price insurance contingent claims as
random sums where weights are taken according to the historical probability. On the other
hand,Froot (2001)provides evidence that catbonds generally trade at significant margins
above the expected loss covered by the hedge. Consistently, practitioners can set the price
of insurance to the expected value plus a function of the second moment of the distribution
in order to take into account risk aversion; and with the corresponding probability of occur-
rence being obtained from a sample of historical observations. However, this pricing approach
is reasonable only in the context of large diversified portfolios of identical and independent
risks, so that the law of large numbers holds. Besides, in the process, rational option pricing
is ignored. To remedy this deficiency in the existing literature,Poncet and Vaugirard (2002)
derive a tractable formula within the more convincing arbitrage approach, in a framework of
stochastic interest rates, but limit their analysis to non-catastrophic events. Compared with
the paper ofPoncet and Vaugirard (2002), which is our closest predecessor, our contribu-
tion lies in that we account for catastrophic events. Thus, to the best of our knowledge, this
article develops the first valuation model of insurance-linked securities that deals with catas-
trophic events and interest rate randomness within an arbitrage approach. Moreover, this ar-
ticle, which works on OTC derivatives, must be contrasted with related papers coping with
exchange-traded insurance derivatives, notably, CBOT derivatives byCummins and Geman
(1995).
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We first vindicate the existence of well-defined arbitrage prices for catastrophe bonds,
notwithstanding a framework of incomplete markets and non-traded underlying state variables.
Then, we show that their valuation comes down to computing first-passage time distributions,
since bondholders are showed to be in a short position on one-touch digital options based on
risk-tracking indices that follow jump-diffusion processes in a Gaussian interest rate framework.
Finally, we perform a comparative statics analysis that pinpoint the sensitivity of insurance bond
prices to the exposure to nature risk and that show that the term structure of yield spreads is
hump-shaped as for corporate bonds.

The remainder of the paper is organized as follows.Section 2presents the framework.
Section 3derives solutions.Section 4is devoted to comparative statics.Section 5summa-
rizes the article and suggests a possible extension. For ease of exposition, most proofs are in
Appendix A.

2. The valuation framework

In this section, we underscore the binary structure of catastrophe bonds and we extend and
adapt the jump-diffusion model ofMerton (1976)to develop a valuation framework that allows
for catastrophic events, interest rate uncertainty, and non-traded underlying state variables.

2.1. Product structure and economy

The catastrophe-bond payoff has a binary structure. An insurance-linked security can be
thought of as a corporate bond with insurance risk instead of default risk. The bondholder
expects to lose interest or a fraction of the principal if a natural risk index, whose value at datet

is denotedIt , hits a pre-specified thresholdK. More specifically, if the index does not reach the
threshold during a risk-exposure periodT , the bondholder is paid the face valueF . Otherwise,
he receives the face value minus a write-down coefficient in percentagew. We allow the bond
maturity T ′ to be longer than the risk-exposure periodT to account for possible lags in the
risk-index assessment at expiration. We focus on the case where the risk index starts below the
barrier. This boundary is supposed to be fixed.

Let (Ω, I, P ) define a probability space, whereΩ is the set of states of the world,I is a
σ -algebra of subsets ofΩ andP is a probability measure onI. Processes are defined on this
probability space and on a trading horizon [0, T ′]. {Wt : 0 ≤ t ≤ T ′} and{W2t : 0 ≤ t ≤ T ′}
are two standard Brownian motion.{Nt : 0 ≤ t ≤ T ′} is a Poisson process with an intensity
parameterλp. {Uj : j ≥ 1} is a sequence of identically and independently distributed (i.i.d.)
random variables with values in ]−1; +∞[; Uj occurs at timeτj defined by(Nt), that is,
τj = inf {0 ≤ t ≤ T ′, Nt = j}. Theσ -fields generated by(Wt), (W2t ), (Nt), and(Uj ) are
supposed to be independent. For allt in [0, T ′], let Ft be theσ -field generated by the random
variablesWs , W2s , Ns for s ≤ t , andUj1{j≤Nt } for j ≥ 1. The filtration{Ft : 0 ≤ t ≤ T ′}
represents the information flow reaching market players.(Ft ) is further augmented to encompass
all P-null events. The four sources of randomness(Wt), (Nt), (Uj ), and(W2t ) account for
non-catastrophic nature risk, the occurrences of catastrophes, the size of catastrophes, and the
uncertainty of interest rates.
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2.2. Assumptions

Financial markets are frictionless. There are no transaction costs or differential taxes, trading
takes place continuously in time, borrowing and short selling are allowed without restriction
and with full proceeds available, and borrowing and lending rates are equal.

Assumption 1. Interest rates obey a mean-reverting process.

The risk-free spot interest rater follows the process, under the historical probabilityP :

dr(t) = a(b − r(t))dt + σr dW2t , (1)

wherea, b, andσr are constants.
The formula ofVasicek (1977)is available for the corresponding risk-free zero-coupon bond.
Besides, it will be convenient to considerr constant in an early stage of this paper:σr = 0;

r(t) = r(0) = b for everyt in [0, T ′].

Assumption 2. The risk index is driven by a Poisson jump-diffusion process.

(It )t≥0 is right-continuous and satisfies under the historical probability:

dIt
It−

= µ(t)dt + σ(t)dWt + Jt dNt, (2)

whereIt− stands for the index value just beforet ;µ(·) is the drift parameter and can be stochastic;
σ(·) is a deterministic volatility parameter of the Brownian component of the process;(Nt) is
a Poisson process accounting for the expected number of jumps per time unit;(Jt ) depicts the
stochastic size of the jumps:

Jt =
∑

n=1,+∞
Un1]τn−1,τn](t),

where(Uj ) and(τj ) are defined in the previous subsection, that is, at timeτj , the jump ofIt is
given by

�Iτj = Iτj − Iτ−
j

= Iτ−
j

× Uj, or Iτj = Iτ−
j
(1 + Uj).

Jt dNt is then a handy notation to designate a compounded Poisson process.
In addition,(1 + Uj)’s are log-normally i.i.d.
Changes in the risk-tracking index comprise three components: the expected instantaneous

index change conditional on no occurrences of catastrophes, the unanticipated instantaneous
index change, which is the reflection of causes that have a marginal impact on the gauge, and the
instantaneous change due to the arrival of a catastrophe. We focus on physical indexes rather
than reported loss claims.Cummins and Geman (1995)evaluated the latter. Scientists may
explain the driftµ. For instance, in the case of a temperature or a precipitation index, global
warming and the greenhouse effect are likely relevant. The volatility parameterσ(·) is assumed
to evolve deterministically. Therefore, no additional sources of randomness are introduced and
the valuation process is similar to the case where it is constant. From now on, we will refer to
it asσ . The assumption of log-normality of(1 + Uj) must not be seen as restrictive. In effect,
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several distributions could be taken into consideration since we resort to simulations. A mixed
jump-mean-reverting process for the risk index would be also a natural candidate to cope with
cyclical meteorological phenomena. Yet, to keep things tractable, we only consider the case
where the no-jump component is a geometric Brownian motion. We stress also that we do not
attempt to calibrate the parameters. Indeed, practitioners have the relevant information to assess
those, whereas we are interested in performing simulations, which by nature involve several
sets of parameters.

Assumption 3. Investors are neutral toward nature jump risk (A31) and non-catastrophic
changes in the risk index can be replicated by existing quoted securities, as for changes in
interest rates (A32).

We split attitude toward risk to deal with two issues: a non-traded risk index and market
incompleteness when accounting for jumps. Assumption (A31) means that investors acknowl-
edge that natural catastrophe risk can be diversified away when it comes to pricing contingent
claims upon environmental risk. The rationale underlying this stance is that natural catastrophes
are barely correlated to financial storms, which is supported for example by the empirical study
of Hoyt and McCullough (1999), with a qualification due to the low number of transactions
though. Therefore, merely holding other usual financial assets enables investors to diversify
nature jump risk. In other words, catbonds provide a valuable new source of diversification for
investors because catastrophic losses are “zero-beta events” in the sense of the Capital Asset
Pricing Model, as emphasized for example byLitzenberger, Beaglehole, and Reynolds (1996)
or Canter, Cole, and Sandor (1997). This assumption is a reformulation of the stance ofMerton
(1976): “jump risk is not systematic.” Since the risk index is not traded, we avoid using this
vernacular, which, strictly speaking, makes sense in the scope of capital asset pricing models.
Besides, the main drawback of the Merton assumption, which lies in that it implies that the
market itself is not subject to jumps, is irrelevant here. As for Assumption (A32), while we
can assume routinely that changes in domestic interest rates are replicable due to the existence
of risk-free bonds, the analogous assumption relative to non-catastrophic changes in the risk
index warrants some justification. Though nature derivatives were withdrawn from the CBOT,
we may for instance argue that continuous changes in the risk index can be mimicked by in-
struments such as energy and power derivatives, weather derivatives or contingent claims on
several commodities.

Proposition 1. There exists a well-defined arbitrage price for quoted contingent claims upon
the risk index.

More specifically, letCI be such a contingent claim. Then,

CI(t) = EQ(D(t, T ′)CI (T
′)/Ft), (3)

whereQ is the unique restriction to theσ -field generated byW andW2 of any equivalent mar-

tingale measure, with the stochastic discount factor given byD(t, T ′) = exp
(
−∫

t,T ′r(u)du
)
,

and where the dynamics ofI andr underQ are described by

dIt
It−

= (µ(t) − λ(t)σ (t))dt + σ(t)dW ′
t + Jt dNt, (4)
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and

dr(t) = a(b∗ − r(t))dt + σr dW ′
2t , (5)

whereλ(·) is the market price of nature risk, andW ′ andW ′
2 are theQ-standard Brownian

motion that correspond to theP -standard Brownian motionW andW2, and are obtained by
the Girsanov theorem. Last, b∗ = b−λrσr/a, with (−λr) the risk premium for risk-free bonds.

Proof. SeeAppendix A. �

3. Solutions

In this section, we derive a generic valuation expression for pure discount catastrophe bonds,
from which we will either run simulations or derive a closed-form formula in a particular
situation. Then, we show how to cope with coupon bonds and payments at hit.

3.1. Generic formula

Proposition 2. Let IB(t) be the price of a zero-coupon insurance bond at timet and TI,K
the first passage time ofI throughK. We suppose that all cash payments are done at date of
maturityT ′. Then,

IB(t) = FP(t, T ′){1 − wEQ(1TI,K≤T /Ft)}, (6)

whereQ is the risk-adjusted probability measure defined univocally earlier, the dynamics ofI
andr underQ were given inProposition 1, and where,

P(t, T ′) = exp[−(T ′ − t)R(T ′ − t, r(t))],

with

R(θ, r) = R∞ − [1/(aθ)]{(R∞ − r)(1 − e−aθ ) − [σ 2
r /(4a

2)](1 − e−aθ )2},
and

R∞ = b∗ − [σ 2
r /(2a

2)].

Proof. Bondholders receive atT ′:

F1TI,K>T + (1 − w)F1TI,K≤T = F − wF1TI,K≤T ,

whereF is the bond face value and1A stands for the indicator function of setA. Therefore,
bondholders are in a short position on a one-touch up-and-in digital option on the risk-tracking
index. Now, we extendProposition 1to over-the-counter contingent claims and we obtain
Eq. (6). P(t, T ′) is further made explicit by the Vasicek formula. We refer toAppendix Afor
details.

Henceforth, we give prices at timet = 0 for the sake of simplicity and without loss of
generality. �



126 V.E. Vaugirard / The Quarterly Review of Economics and Finance 43 (2003) 119–132

3.2. Crash case: closed-form formula

The risk index and the barrier are such that the latter will be broken at the first catastrophe.

Proposition 3. In the case of a crash, and when interest rates are assumed constant:

IB = F e−rT′
(1 − wEQ(1TI,K≤T )),

with

EQ(1TI,K≤T ) = e−λpT

{
N(d1) +

(
I0

K

)1−2δ/σ 2

N(d2)

}
+ (1 − e−λpT ), (7)

where

d1 = ln(I0/K) + (δ − σ 2/2)T

σT 1/2
, and d2 = ln(I0/K) − (δ − σ 2/2)T

σT 1/2
,

with

δ = µ − λσ.

Proof. SeeAppendix A. �

3.3. Mid-range catastrophe case: Monte-Carlo simulations

Here, the nature of compounded Poisson processes is truly at work, with mid-range catas-
trophes that occur according to Poisson arrival times.

We start from the generic Formula (6) and we focus onEQ(1TI,K≤T ) since the Vasicek
closed-form formula is available forP(0, T ′).

Proposition 4. The core subroutine to assessEQ(1TI,K≤T ) is:

In+1 = In




[
1 +

(
µ

(
Tn

N

)
− λ

(
Tn

N

)
σ

(
Tn

N

))]
�t + σ

(
Tn

N

)
g(0,1)

√
�t

+
∑

j=1,N(λp �t)

[exp(gj (kv, δ)) − 1]


 (8)

and

rn+1 = a(b∗)�t + (1 − a �t)rn + σrg2(0,1)
√
�t, (9)

whereN is the number of steps, �t = T/N , kv = ln(1 + E(U1)), δ2 = var(ln(1 + U1)), and
whereg(0,1), g2(0,1), andgj (kv, δ) follow independent normal distributions with respective
parameters(0,1) and (kv, δ). In addition, N(λp �t) is simulated by using that, if Nθ is a
Poisson random variable with intensityθ , then,

Nθ =
∑
n≥1

n1{UF1UF2···UFnUFn+1≤e−θ≤UF1UF2···UFn}, (10)
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where(UFi)i≥1 are independently and uniformly distributed on[0,1].
Then, we track if the index hits the barrier during the risk-exposure period by incrementing

by 1 if I breaksK along a given sample path, and we obtainEQ(1TI,K≤T ) by averaging over
the number of trajectories. It is noteworthy that simulating digital options exhibits a high level
of instability around their thresholds, and this issue is tackled inVaugirard (2001).

Proof. The whole scheme comes straightforwardly from theQ-dynamics determined in
Proposition 1and we do not elaborate. �

3.4. Extensions

3.4.1. Pricing coupon bonds by a value-additivity feature
We first notice that only breaking the barrier triggers the default on the bond. In particular,

coupon payments bear no influence on the contingency of default. Consequently, an insurance
coupon bond can be seen as a portfolio of pure discount bonds whose weights match coupon
rates. It is noteworthy that we are in a more favorable situation than for corporate bonds. In the
latter case indeed, the fact that coupon payments impinge on the solvency status of the indebted
firm rules out this convenient value-additivity feature. This is the reason why most models of
contingent claims on corporate bonds deal with zero-coupon bonds only. In the remainder of
this article, without loss of generality our bonds will be meant to be pure discount bonds, unless
otherwise stated.

3.4.2. Payments at hit
The payoff schedule of the catastrophe bond is now:

F1TI,K>T, paid atT ′,

and

(1 − w)F1TI,K≤T , paid atTI,K.

Therefore,

IB = FP(0, T ′)EQ(1TI,K>T ) + (1 − w)FEQ(D(0, TI,K)1TI,K≤T ), (11)

whereD(0, TI,K) = exp
(
−∫

0,TI,K
r(u)du

)
. Then, both expectations are simulated like in the

previous subsection. The additional difficulty due to assessing simultaneously an integral in the
second expectation operator is merely incremental.

4. Comparative statics

In this section, we assess the impact of the exposure to nature risk and we show that the term
structure of catbond yield spreads is hump-shaped.
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Table 1
Catastrophe bond price and nature risk

Intensityλp

0 0.5 1 2

X = 0.5 765 730 700 640
X = 0.8 370 335 320 280

E (U1) = 0.1 765 730 700 640
E (U1) = 0.2 765 710 650 550

σ = 0.2 895 860 815 735
σ = 0.5 765 730 700 640

T = 0.5 860 845 825 795
T = 1 765 730 700 640

Risk-free bond 905 905 905 905

Default parameters:X = I/K = 0.5; F = 1,000;w = 0.9; T = T ′ = 1 year;σ = 0.5; E(U1) = 0.1; δ = 0.2;
r = 0.1; a = 0.1; b∗ = 0.1; σr = 0.03;µ = 0.2; λ = 0.1. These results exhibit the variation of catastrophe-bond
prices according to the risk exposure: Poisson intensity; index–barrier distance; jump size; index volatility (diffusion
component); risk-exposure period. The number of simulations is 5,000, and prices are set at the center of 95%
confidence intervals.

4.1. Exposure to nature risk

Prices of catastrophe bonds decrease if nature risk increases, as indicated inTable 1. This
first set of results follows immediately from the observation that the bondholders are short a
digital up-and-in option. More specifically, the longer the distance between the actual index
level and the barrier the higher the catbond price; in other words, the further the risk-tracking
index from the insurance trigger point the smaller the discount for nature risk. Moreover, if the
index volatility rises, then the catbond price decreases. Indeed, the risk-adjusted probability that
the risk-tracking index reaches the threshold increases. Further, other things being equal, the
catbond is less valuable with a longer risk exposure streak. Indeed, the price of the corresponding
risk-free bond is unaffected—since the time to maturity is unchanged—while the odds that the
index hits the barrier are higher with a longer risk-exposure period. Finally, prices of catbonds
decrease if the parameters of the Poisson process are sharper, since the probability ofI hitting
the threshold rises.

4.2. Yield spread

The yield of a zero-coupon bondB with maturityT ′ is −ln(B)/T ′, so the yield spread of a
catastrophe bond of maturityT ′ and with risk-exposure periodT is:−ln(1−wEQ(TI,K≤T )/T ′.
The yield spread increases if the risk-exposure period lengthens and decreases if the time
to maturity increases. Therefore, when further imposing that the two time variables match
(T = T ′), the overall sensitivity depends on which effect prevails.

As depicted inFig. 2, the term structure of yield spreads is hump-shaped. This result is
familiar for defaultable bonds, as inLongstaff and Schwartz (1995). In our different context
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Fig. 2. Yield spread is hump-shaped. Yield spreads of catastrophe bonds as a function of time to maturity. Default
parameters:K = 100;I = 50;w = 0.9; E(U1) = 0.1; δ = 0.2; r = 0.1; a = 0.1; b∗ = 0.1; σr = 0.03;µ = 0.2;
λ = 0.1. Three sets of parameters are used: set 1(λp = 0, σ = 0.5); set 2(λp = 1, σ = 0.5); set 3(λp = 0,
σ = 0.2).

Table 2
Yield spread and risk exposure

X = I/K µ λp E(U1)

0.2 0.5 0.8 0.2 0.5 0 1 2 0.1 0.2
8 26 103 26 50 16.5 26 35 26 33

These results exhibit the catastrophe-bond yield spread (in percentage) for different sets of nature risk exposure:
proximity to barrier, index historical drift, Poisson intensity and jump size.λp: intensity parameter of Poisson process;
X = I /K: index–barrier ratio;µ: index historical drift;E(U1): jump size. Default parameters:K = 100;I = 50;
σ = 0.5;w = 0.9; E(U1) = 0.1; δ = 0.2; r = 0.1; a = 0.1; b∗ = 0.1; σr = 0.03;µ = 0.2; λ = 0.1; T = T ′ = 1
year.
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of natural risks, this humped shape can be explained as follows. The yield spread first worsens
since a longer risk-exposure period increases the probability of natural event occurrences. Along
the way, the time to maturity reaches a value such that the index is expected to break the barrier.
From that moment on, a longer risk-exposure period raises the chances that the index drifts
away from the trigger point.

Yield spreads widen with the risk exposure, as indicated inTable 2. Higher risk exposures,
either due to a shorter distance between the index and the barrier or to sharper parameters for
the compounded Poisson process, induce wider yield spreads, since the barrier is more likely
to be broken for a given time to maturity.

5. Conclusion

This paper vindicated the existence of a well-defined arbitrage price for catastrophe bonds,
notwithstanding a framework of incomplete markets and non-traded underlying state variables.
Then, it showed that their valuation comes down to computing first-passage time distributions,
since bondholders were showed to be in a short position on one-touch digital options based
upon risk-tracking indexes that obey Poisson jump-diffusion processes in a Gaussian interest
rate framework. It provided a closed-form valuation expression when working in the context
of pure crashes. In the case of mid-range catastrophes, numerical simulations were resorted
to. Comparative statics results pinpointed the sensitivity of insurance bond prices to the ex-
posure to nature risk and showed that the term structure of yield spreads is hump-shaped as
for corporate bonds. Moreover, yield spreads widen with the exposure to nature risk. As for
the issue of hedging catastrophe bonds, we did not elaborate since hedging one-touch digital
options is known to be complicated, and this problem is compounded here by the risk-index
non-tradability. Moreover, this stance is consistent with our assumption of neutrality toward
nature jump risk. Indeed, as often with exotic options or other structured products, actual diver-
sification merely occurs through holding and monitoring an entire book of options in a more or
less continuous manner.

A follow-up is worth considering. It would be useful to account for foreign exchange risk.
Indeed, to the extent that natural risks are world-widely spread, whereas catastrophe bonds are
almost exclusively denominated in US$ for liquidity reasons, many catastrophe bondholders
face currency risk in addition to nature and interest rate risks.

Appendix A

Proof of Proposition 1. Let Q be the unique martingale measure, equivalent to the objec-
tive probability measureP , with complete financial markets. We now defineW ′ andW ′

2 the
Q-standard Brownian motion that are routinely derived from theP -standard Brownian motion
W andW2 by means of the Girsanov theorem, which is legitimate due to Assumption (A32).

To fix ideas, letI ′ be the process which dynamics are described by the geometric-Brownian
component of the jump-diffusion process set by Formula (2). Then, any attainable contin-
gent claimCI ′ has a well-defined price given byCI ′(t) = EQ(D(t, T ′)CI ′(T ′)/Ft). Now,
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due to Assumption (A31), investors use the same arbitrage price when it comes to con-
tingent claims uponI , that is, the risk-adjusted probability measureQ is used to evaluate
non-attainable contingent claimsCI uponI , since they are neutral toward nature jump risk:
CI(t) = EQ(D(t, T ′)CI (T

′)/Ft); which yields Formula (3).
We now only have to account for the non-tradability to identify the dynamics ofI underQ.

We introduce the market price of nature riskλ associated toI and we obtain Formula (4). We
refer toHull (2000, Section 19.1) for a textbook treatment of this point. Formula (5) for interest
rates is usual. �

Proof of Proposition 2. Bondholders receive atT ′:

F1TI,K>T + (1 − w)F1TI,K≤T = F − wF1TI,K≤T .

Now, extendingProposition 1to over-the-counter contingent claims, we can take theQ-expec-
tation conditioned on the set of information(Ft )t generated byI andr to price the bond:

IB(t)= EQ(D(t, T ′) × Payoff/Ft) = EQ(D(t, T ′)F (1 − w1TI,K≤T )/Ft)

=FEQ(D(t, T ′)/Ft) − wFEQ(D(t, T ′)1TI,K≤T /Ft).

By definition,P(t, T ′) = EQ(D(t, T ′)/Ft)). In addition, sinceW ′ andW ′
2 are independent

underQ, and sincer does not appear in the risk-adjusted drift ofI , thenD(·, T ′) and1TI,K≤T
are independent underQ. So, we have:

EQ(D(t, T ′)1TI,K≤T /Ft) = EQ(D(t, T ′)/Ft)E
Q(1TI,K≤T /Ft),

and we obtain:

IB(t) = FP(t, T ′){1 − wEQ(1TI,K≤T /Ft)}.
�

Proof of Proposition 3. With obvious notation,

EQ(1TI,K≤T )= EQ(1TI,K≤T /no jumps) × PQ(no jumps) + EQ(1TI,K≤T /jumps)

× PQ(jumps).

Now,

PQ(no jumps) = e−λpT ,

and

EQ(1TI,K≤T /jumps) = I by hypothesis(crash),

and

EQ(1TI,K≤T /no jumps) = EQ(1TI,K≤T /I geometric Brownian).

The latter expression can be computed by applying a standard result on the one-sided first-passage
time distribution for a drifted Brownian motion starting from zero (e.g., seeHarrison, 1985,



132 V.E. Vaugirard / The Quarterly Review of Economics and Finance 43 (2003) 119–132

Chapter 1) to:(
1

σ

)
ln

(
It

I0

)
= W ′

t +
(
δ

σ
− σ

2

)
t through the barrier

(
1

σ

)
ln

(
K

I0

)
. �

References

Anderson, R. R., Bendimerad, F., Canabarro, E., & Finkemeier, M. (2000). Analyzing insurance-linked securities.
Journal of Risk Finance, 1(2), 49–78.

Canter, M., Cole, J. B., & Sandor, R. L. (1997). Insurance derivatives: A new asset class for the capital markets and
a new hedging tool for the insurance industry.Journal of Applied Corporate Finance, 10(3), 69–83.

Cox, J. C., & Ross, S. A. (1976). The valuation of options for alternative stochastic processes.Journal of Financial
Economics, 3, 145–166.

Croson, D. C., & Kunreuther, H. C. (2000). Customizing indemnity contracts and indexed cat bonds for natural
hazard risks.Journal of Risk Finance, 1(3), 24–42.

Cummins, J. D., & Geman, H. (1995). Pricing catastrophe insurance futures and call spreads: an arbitrage approach.
Journal of Fixed Income, 1, 46–57.

Davis, M. H. A. (1997). Option pricing in incomplete markets. In M. A. H. Dempster & S. R. Pliska (Eds.).
Mathematics of derivative securities(pp. 216–226). Cambridge: Cambridge University Press.

Föllmer, H., & Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In M. H. A.
Davis & R. J. Elliott (Eds.).Applied stochastic analysis(vol. 5, pp. 389–414). New York: Stochastic monographs,
Gordon and Breach.

Föllmer, H., & Sondermann, D. (1986). Hedging of non-redundant contingent claims under incomplete information.
In W. Hildenbrand & A. Mas-Colell (Eds.).Contribution to mathematical economics(pp. 205–223). Amsterdam:
North-Holland.

Froot, K. A. (2001). The market for catastrophe risk: A clinical examination.Journal of Financial Economics, 60,
529–571.

Harrison, J. M. (1985).Brownian motion and stochastic flow systems. New York: Wiley.
Hoyt, R. E., & McCullough, K. A. (1999). Catastrophe insurance options: Are they zero-beta assets?The Journal

of Insurance Issues, 22(2), 147–163.
Hull, J. C. (2000).Options, futures and other derivatives. New York: Prentice Hall.
Jaffee, D. M., & Russell, T. (1997). Catastrophe insurance, capital markets and uninsurable risks.Journal of Risk

and Insurance, 64, 205–230.
Litzenberger, R. H., Beaglehole, D. R., & Reynolds, C. E. (1996). Assessing catastrophe reinsurance-linked securities

as a new asset class.Journal of Portfolio Management, 13, 76–86.
Longstaff, F., & Schwartz, E. (1995). A simple approach to valuing risky fixed and floating rate debt and determining

swap spreads.The Journal of Finance, 50, 789–819.
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.Journal of Financial

Economics, 3, 125–144.
Poncet, P., & Vaugirard, V. E. (2002). The pricing of insurance-linked securities under interest rate uncertainty.

Journal of Risk Finance, 3(3), 48–59.
Schweizer, M. (1992). Mean-variance hedging for general claims.Annals of Applied Probabilities, 2, 171–179.
Shirawaka, H. (1991). Interest-rate option pricing with Poisson–Gaussian forward rate curve processes.Mathematical

Finance, 1, 77–94.
Vasicek, O. (1977). An equilibrium characterization of the term structure.Journal of Financial Economics, 5, 177–

188.
Vaugirard, V. E. (2001). Monte Carlo applied to exotic digital options.Applied Mathematical Finance,8(3), 183–196.


