Q2.

(a)

ATP is useful in many biological processes. Explain why.
(Total 4 mar

Q3.

Water and inorganic ions have important biological functions within cells. (a) Give **two** properties of water that are important in the cytoplasm of cells. For each property of water, explain its importance in the cytoplasm. Property 1______ Biological importance within cells______ Property 2_____ Biological importance within cells______ (4)(b) Other than sodium, name one inorganic ion and give one example of its biological importance in a cell. Name of inorganic ion______ Biological importance______ (2) (c) Compare and contrast the processes by which water and inorganic ions enter cells.

> (3) (Total 9 marks)

Q1.

Scientists investigated treatment of a human bladder infection caused by a species of bacterium. This species of bacterium is often resistant to the antibiotics currently used for treatment.

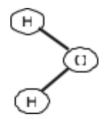
They investigated the use of a new antibiotic to treat the bladder infection. The new antibiotic inhibits the bacterial ATP synthase enzyme.

(a) Place a tick (r) in the appropriate box next to the equation which represents the reaction catalysed by ATP synthase.

$ATP \to ADP + P_i + H_2O$	
$ATP + H_2O \to ADP + P_i$	
$ADP + P_i \longrightarrow ATP + H_2O$	
$ADP + P_i + H_2O \to ATP$	

(1)

b)	The new antibiotic is safe to use in humans because it does not inhibit the ATP synthase found in human
	cells.


Suggest why human ATP synthase is not inhibited and bacterial synthase is inhibited.	
	(1)

Q4.

Fig. 2.1 represents a water molecule.

Ponds provide a very stable environment for aquatic organisms.

Three properties of water that contribute to this stability are as follows:

- the density of water decreases as the temperature falls below 4 °C so ice floats on the top of the pond
- it acts as a solvent for ions such as nitrates (NO3-)
- a large quantity of energy is required to raise the temperature of water by 1 $^{\circ}\text{C}.$

Explain how these three properties help organisms survive in the pond. (8 marks)

(8)

(Total 8 marks)

9 . 1	Describe the roles of iron ions, sodium ions, and phosphate ions in cells.	[5 mark

Q2.				
	(a)	1. F	Releases energy in small / manageable amounts	
			1. Accept less than glucose	
		2.	(Broken down) in a one step / single bond broken immediate energy compound / makes energy available rapidly	
			2. Accept easily broken down	
		3.	Phosphorylates / adds phosphate makes (phosphorylated substances) more reactive / lowers activation energy	
			3. Do not accept phosphorus or P on its own	
		4.	Reformed / made again	
			4. Must relate to regeneration	
				4
Q3.				[4]
	(a)	1.	Polar molecule	• • •
		2.	Acts as a (universal) solvent	
		OR		
		3.	(Universal) solvent	
		4.	(Metabolic) reactions occur faster in solution	
		OR		
		5 .	Reactive	
		6.	Takes place in hydrolysis / condensation / named reaction	
			Polar molecule so acts as (universal) solvent so (metabolic reactions are faster = 3 marks	
				4
	(b) Name of ion			
		Con	rect function within cell	
			lons other than sodium in specification are H ⁺ , Fe ²⁺ and PO ₄ ³⁻ but accept any correct ion (other than sodium) plus relevant function = 2.	
			Allow ion to be named in words but not as element, e.g, iron ion but not iron.	
				2
	(c)	1.	Comparison: both move down concentration gradient	
		2.	Comparison: both move through (protein) channels in membrane	
		_	Accept aquaporins (for water) and ion channels	
		3.	Contrast: ions can move against a concentration gradient by active transport	
				3 [9]

Q1.

(a)

$ATP \longrightarrow ADP + P_i + H_2O$	
$ATP + H_2O \longrightarrow ADP + P_i$	
$ADP + P_i \longrightarrow ATP + H_2O$	✓
$ADP + P_i + H_2O \longrightarrow ATP$	

(b) 1. Human ATP synthase has a different tertiary structure to bacterial ATP synthase

OR

Human ATP synthase has a different shape active site to bacterial ATP synthase

OF

Antibiotic cannot enter human cells/mitochondria

OR

Antibiotic not complementary (to human ATP synthase)

1

1

Q4. ice floats

(ice less dense because) molecules spread out molecules form, crystal structure / lattice / AW ice forms insulating layer / clearly described water (below ice), does not freeze / still liquid / remains water / kept at higher temperature organisms do not freeze animals / organisms, can still, swim / move allows, currents / nutrients, to circulate

solubility

ions / named ion, polar / charged ions /named ion, attracted to / bind to / interact with, water (named) organisms / plants / animals, uptake / AW, minerals / named mineral / nutrients correct use of named, mineral / nutrient, in organism

temperature stability

many / stable, (hydrogen) bonds between molecules at lot of energy to, force apart molecules / break bonds high (specific) heat capacity temperature does not change much / small variation in temperature effect of temperature on , enzymes / metabolic rate gases remain soluble hydrogen bonds

8

Iro	n	10	ne
по		ıu	113

 Haemoglobin binds/associates with oxygen

OR

Haemoglobin transports/loads oxygen;

Sodium ions

- Co-transport of glucose/amino acids (into cells);
- 3. (Because) sodium moved out by active transport/Na K pump;
- Creates a sodium concentration/diffusion gradient;
- 5. Affects osmosis/water potential;

Phosphate ions

- 6. Affects osmosis/water potential;
- Joins nucleotides/in phosphodiester bond/in backbone of DNA/RNA/in nucleotides;
- 8. Used in/to produce ATP;
- Phosphorylates other compounds (usually) making them more reactive;
- 10. Hydrophilic/water soluble part of phospholipid bilayer/membrane;

5 max Must ha

Must have MP1 for 5 max

- 3 max for sodium and 3 max for phosphate
- 1. Ignore reference to 2⁺ or 3⁺ in Fe²⁺ or Fe³⁺

Accept 5. OR 6. – **not** both

Accept for 1 mark, Sodium ions cause water reabsorption in kidneys OR

Sodium ions establish resting potential (in neurones)
OR

Sodium ion diffusion creates action potential

8. Reject 'energy produced'

09.1