

Potential Energy Curves

Q 1. If the potential energy (U) of a particle is given by $U = 1/2 \text{ kx}^2$, where k is the spring constant and x is the displacement from equilibrium, what does the force (F) acting on the particle look like?

- A) F = kx
- B) F = -kx
- C) F = k/x
- D) F = -k/x

Q 2. The potential energy curve for a particle is given by U = mgx, where m is the mass, g is the gravitational acceleration, and x is the height above the Earth. What is the force acting on the particle due to gravity?

- A) F = mg
- B) F = -mg
- C) F = g/x
- D) F = -g/x

Q3. In a potential energy graph, what does the point where the slope (dU/dx) is zero indicate about the force acting on the particle at that point?

- A) The force is maximum.
- B) The force is zero.
- C) The force is increasing.
- D) The force is negative.

Q4. If a particle is at a position where the kinetic energy (K) is zero, and the potential energy (U) is equal to the total mechanical energy (E), what is significant about this point?

- A) It is a point of unstable equilibrium.
- B) It is a turning point where the particle changes direction.

- C) It indicates maximum potential energy.
- D) It is a point of maximum force.
- Q5. A particle moves in a potential energy landscape described by U(x). If the particle is at a point where the potential energy is a local minimum, what can be said about the equilibrium at this point?
- A) It is stable equilibrium.
- B) It is unstable equilibrium.
- C) It is neutral equilibrium.
- D) It is non-equilibrium.
- Q6. A particle's potential energy is described by $U = -ax^2 + bx$, where a and b are constants. At what value of x is the force on the particle zero?
- A) x = b/2a
- B) x = -b/a
- C) x = b/a
- D) x = 0
- Q7. Considering the potential energy function $U = \sin(x)$, where x is in radians, what is the force on the particle at $x = \pi/2$ radians?
- A) F = 0
- B) F = 1
- C) F = -1
- D) $F = cos(\pi/2)$
- Q8. A particle's potential energy is described by $U = A(x h)^2$, where A and h are constants. If h = 3 and A > 0, what is the nature of the force experienced by the particle at x = 3?
- A) The force is zero.
- B) The force is maximum.
- C) The force is positive.
- D) The force is negative.
- Q9. Which of the following statements is true when a particle moves from a region of high potential energy to a region of low potential energy under the influence of a conservative force?
- A) The force does positive work and increases the kinetic energy of the particle.
- B) The force does negative work and decreases the kinetic energy of the particle.

- C) The force does positive work and decreases the potential energy of the particle.
- D) The force does negative work and increases the potential energy of the particle.

Q 10. If a potential energy function U(x) has a sharp peak at x = 0, what does this imply about the forces acting on a particle near x = 0?

- A) The forces are zero near x = 0.
- B) The forces are large and positive near x = 0.
- C) The forces are large and negative near x = 0.
- D) The forces change direction at x = 0.

Answers UnCubed

A1: B) F = -kx

The derivative of $U = 1/2 \text{ kx}^2$ with respect to x is dU/dx = kx. According to the relation F = -dU/dx, the force is F = -kx, which aligns with Hooke's Law, indicating the force exerted by a spring.

A2: B) F = -mg

Differentiating U = mgx with respect to x gives dU/dx = mg. Since F = -dU/dx, the force is F = -mg, which is the gravitational force acting upward against the direction of increasing x (height).

A3: B) The force is zero.

At points where the slope of the potential energy curve, dU/dx, is zero, the force, given by F = -dU/dx, is also zero. This indicates a point where no net force acts on the particle, potentially an equilibrium point.

A4: B) It is a turning point where the particle changes direction.

At points where K = 0 and E = U, the particle has zero kinetic energy, meaning it stops momentarily. Such points are turning points where the direction of motion reverses.

A5: A) It is stable equilibrium.

At a local minimum of potential energy, any small displacement leads to a restoring force that pushes the particle back toward the minimum, characterizing stable equilibrium.

A6: C) x = b/a

To find where the force is zero, differentiate $U = -ax^2 + bx$ to get dU/dx = -2ax + b. Set dU/dx = 0 for the force to be zero:

-2ax + b = 0

x = b/(2a)

A7: A) F = 0

The force F is given by F = -dU/dx. Differentiating U = $\sin(x)$, we get dU/dx = $\cos(x)$. At x = $\pi/2$, $\cos(\pi/2) = 0$. Thus, F = 0

A8: C) The force is zero.

For the potential energy function $U = A(x - h)^2$, differentiate to find the force:

dU/dx = 2A(x - h)

At x = 3 (and given h = 3), dU/dx = 2A(3 - 3) = 0.

Thus, the force F = -dU/dx = 0. This indicates that at x = 3, the particle experiences no force, as it is at an equilibrium position.

A9: A) The force does positive work and increases the kinetic energy of the particle.

When a particle moves to a lower potential energy under a conservative force, the potential energy decrease translates into an increase in kinetic energy, meaning the work done by the force is positive.

A10: D) The forces change direction at x = 0.

A sharp peak in the potential energy function implies a rapid change in the slope of U(x) at x = 0. This rapid change in slope indicates that the direction and magnitude of the force (F = dU/dx) also change significantly at this point.

