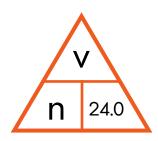


MOLE CALCULATIONS

number of moles = mass / molar mass (g.mol⁻¹)

number of moles = concentration x volume (mol.dm⁻³)



Avogadro's Constant = 6.02 x 10²³ atoms or molecules = 1 mole

MOLAR GAS CONSTANT

1 mole of ANY gas occupies 24.0 dm³ at room temperature & pressure

IDEAL GAS EQUATION

$$V = volume (m^3)$$

$$V = \text{volume (m}^3)$$
 $n = \text{no. of moles}$

$$\mathbf{R}$$
 = Gas Constant (8.31 J.K⁻¹.mol⁻¹) \mathbf{T} = Temperature (K)

$$PV = nRT$$

$$P = \underline{nRT}$$

$$T = \underline{PV}$$

$$nR$$

For changes in conditions:

$$\frac{\mathsf{P}_1\mathsf{V}_1}{\mathsf{T}_1} = \frac{\mathsf{P}_2\mathsf{V}_2}{\mathsf{T}_2}$$

ored YEAR 1 CHEMISTRY EQUATIONS (EDEXCEL)

MASS SPECTROSCOPY

Relative Atomic Mass =
$$\frac{\text{(mass isotope 1 x abundance)} + \text{(mass isotope 2 x abundance)} + ...}{\sum \text{abundance}}$$

OTHER EQUATIONS

% by mass =
$$\frac{\text{mass of element in 1 mole}}{\text{Mr}}$$

Empirical formula =
$$\frac{M1}{Mr1}$$
 : $\frac{M2}{Mr2}$: $\frac{M3}{Mr2}$

Where M1, M2 etc is the mass or % composition of element 1, 2 etc

then divide each by the smallest number to give empirical formula

% Atom Economy =
$$\frac{\text{mass of desired product}}{\text{total mass of all products}}$$
 x100

You can use mass or number of moles here!

% Yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100$$

You can replace masses with Mr values here too!

YEAR 1 PHYSICAL CHEMISTRY (EDEXCEL)

ENTHALPY

Q = energy transferred (J)

m = mass of **solution** (g)

c = specific heat capacity (J.K⁻¹.mol⁻¹)

 $\triangle T$ = **change** in temperature (°C **or** K)

$$Q = m.c. \triangle T$$

$$\triangle \mathbf{H} = \mathbf{Q}$$

Don't forget to add a sign for $\triangle H!$

Divide by 1000 for kJ.mol⁻¹

$\triangle \textbf{H reaction} = \sum \textbf{reactant mean bond enthalpies} - \sum \textbf{product mean bond enthalpies} \\ (kJ.mol^{-1}) \qquad (kJ.mol^{-1}) \qquad (kJ.mol^{-1})$

EQUILIBRIA

$$aA + bB = cC + dD$$

$$Kc = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

Where:
[A] = concentration
(mol.dm⁻³)
a = no. of moles from
equation

YEAR 1 PERIODICITY (EDEXCEL)

COMMON IONS

POSITIVE NEGATIVE

GROUP 1 = +GROUP 7 = -

GROUP 2 = 2+ GROUP 6 = 2-

 H^{\dagger} GROUP 5 = 3-

 Ag^{+}

Zn²⁺

Pb²⁺

Al³⁺

(Transition metals are variable)

e.g. Fe²⁺, Fe³⁺

MOLECULAR IONS

 NH_4^{\dagger} OH. NO_3 CN⁻ ammonium hydroxide nitrate cyanide CO_3^{2-} SO₄²⁻ PO₄³⁻ H₃O⁺ phosphate hydronium

carbonate

ACIDS & BASES

ACIDS BASES

ethanoic acid

HCI hydrochloric acid NaOH sodium hydroxide HNO₃ nitric acid KOH potassium hydroxide H₂SO₄ sulphuric acid $Ca(OH)_2$ calcium hydroxide phosphoric acid H_3PO_4 CuO copper (II) oxide

CH₃COOH

YEAR 1 PERIODICITY (EDEXCEL)

COMMON OXIDATION STATES

<u>POSITIVE</u>

GROUP 1 = +IGROUP 2 = +II

H = +I

Ag = +I

Zn = +II

Pb = +II or +IV

AI = + III

(Transition metals are variable)

Fe = +II or +III

Cu = +II (sometimes +I)

C = +II or +IV

NEGATIVE

F = -I

O = -II

CI = -I

Br = -I

I = -I

N = -III

S = -II

P = -III

Most common oxidation states, but may be positive when covalently bonded to more highly electronegative elements.

i.e. F or O

GROUP 1 SALTS: ALL SOLUBLE

NITRATE SALTS = ALL SOLUBLE

GROUP 2 SALTS: HYDROXIDES INCREASE IN SOLUBILITY DOWN THE GROUP

SULFATES DECREASE IN SOLUBILITY DOWN THE GROUP

CARBONATES ARE NOT SOLUBLE

Ag SALTS: ALL INSOLUBLE EXCEPT AgNO₃

Pb SALTS ALL INSOLUBLE EXCEPT Pb(NO₃)₂

GROUP 7 SALTS: ALL SOLUBLE EXCEPT AgX and PbX₂

CO₃ SALTS: ALL INSOLUBLE EXEPT GROUP 1

Tailored YEAR 1 CHEMISTRY PRACTICALS (EDEXCEL)

No.	Practical	Detail	Done?
1	Moles Determination	Use apparatus to record the volume of a gas	
2	Prepare a Standard Solution & Titration	Prepare a standard solution from a solid acid and use it to find the concentration of a solution of sodium hydroxide	
3	Titration	Use titration to find the concentration of a solution of hydrochloric acid	
4	Rates of Reaction	Investigate the rates of hydrolysis of haloalkanes	
5	Oxidation of ethanol	Use reflux and distillation techniques to oxidise and alcohol and isolate the product	
6	Nucleophilic Subsctitution	Chlorination of a 2-methylpropan-2-ol using conc. hydrochloric acid	
7	Testing for inorganic and organic substances	Use chemical tests to identify: - Group 2, Group 7, OH ⁻ , CO ₃ ²⁻ and SO ₄ ²⁻ ions in solution. - A carboxylic acid, an alcohol and an aldehyde.	
8	Enthalpy Changes	Determine the enthalpy change of a reaction using Hess' law. i.e. Determine the $\triangle H$ experimentally for two reactions and apply to Hess' Law to find another unknown $\triangle H$.	