
LINUX DEVICE DRIVER AND KERNEL PROGRAMMING
 PREREQUISITE : C and Linux Systems Programming

CH1: AN INTRO. TO DEVICE DRIVERS
 Role of the Device Drivers
 Splitting the kernel
 Classes of devices and modules
 Kernel Architecture or Model

CH2: BUILDING AND RUNNING MODULES
 Types of Modules in the kernel
 Writing Your first kernel module
 Module Related Commands
 Kernel Module vs Applications
 Compiling Modules
 Loading and Unloading Modules
 Module Parameters
 Modules and Exporting Symbols

Hands-On Assignments
 Lab1: Simple Hello Linux Kernel Module.
 Lab2: Write a module that can take an integer parameter when it is loaded, It should have a default

value when none is specified.
 Lab3: Write a pair of modules where the second one calls a function in the first one.

CH3: CHARACTER DEVICE DRIVERS
 Major and Minor Numbers
 The Internal Representation of Device Numbers
 Allocating and Freeing Device Numbers
 File Operations Data structure
 Driver methods and Function Pointers
 Char Device Registration
 The Cdev Structure
 The inode Structure
 The file Structure
 Manual Creation of Device Files
 Automatic Creation of Device Files

Hands-On Assignments
Lab1: Print the major and minor numbers when Registering by Static or Dynamic method.
Lab2: Implement a open,write,read and close entry point.
Lab3: Print the major and minor numbers when the device is Opened and keep track of the number

of times it has been opened since loading, and print out the counter every time the device is
opened.

Lab4: Modify the previous driver so that each opening of the device allocates its own data area,
which is freed upon release. Thus data will not be persistent across multiple opens.

Lab5 : Implement a lseek entry point and Keeping track of file position.
Lab6: Dynamical Node Creation,Adapt the previous dynamic registration driver to use udev to

create the device node on the fly.

CH4: MEMORY ALLOCATION TECHNIQUE
 The Real Story of kmalloc
 The Flags Argument
 __get_free_pages
 Memory zones
 vmalloc and Friends
 Memory caches

Hands-On Assignments
Lab1:Testing Maximum Memory Allocation ,using kmalloc()
Lab2:Testing Maximum Memory Allocation ,using __get_free_pages().
Lab3: Testing Memory Allocation,using vmalloc().
Lab4 :Memory cachesExtend your chararcter driver to allocate the driver's internal buffer by using

your own memory cache.Make sure you free any slabs you create.

CH5: ADVANCED CHAR DRIVER OPERATIONS
 Inpout/Output Control (ioctl)
 User space, the ioctl system call
 The ioctl driver method
 Choosing the ioctl Commands
 Using the ioctl Argument

 Hands-On Assignments
 Lab1 : Implement a ioctl entry point along with read and write entry point.
 Lab2 : Implement read and write entry point using ioctl command.
 Lab3 : Write a character driver that has three ioctl commands: a)Set the process ID to which

signals should be sent. b)Set the signal which should be sent. c)Send the signal.

CH6: CONCURRENCY AND RACE CONDITION
 Concurrency and its Managements
 Semaphores and Mutexes
 Linux Semaphore Implementation
 Introduction to the Semaphore API
 Spinlocks Implementation
 Introduction to the Spinlock API
 Spinlocks and Atomic Context

Hands-On Assignments
Lab1: Mutex Contention -Write three simple modules where the second and third one use a variable

exported from the first one.The second (third) module should attempt to lock the mutex and
if it is locked, either fail to load or hang until the mutex is available.

Lab2: Sempahore Contention -Now do the same thing using semaphores .

CH7: INTERRUPT AND INTERRUPT
HANDLING

 The Definition and Role of Interrupt
 Installing an Interrupt Handler
 The /proc Interface
 Implementing a Handler
 Handler Arguments and Return Value
 Installing a Shared Handler

Hands-On Assignments
Lab1: Write a module that shares its IRQ with your network card. You can generate some network interrupts

either by browsing or pinging.
Lab2: Extend the previous solution to construct a character driver that shares every possible interrupt with

already installed handlers.
Lab3: Mutex Unlocking from an Interrupt. Modify the simple interrupt sharing lab to have a mutex taken out

and then released in the interrupt handler.

 CH8: TIME, DELAY AND DEFERRED WORK
 Top and Bottom Halves
 Tasklets and Workqueues Mechanisms
 Measuring Time Lapses
 Using the jiffies Counter
 The Timer API

Hands-On Assignments
Lab1: Program based on Kernel Timer API
Lab2: Program based on Jiffies and HZ
Lab3: Program based on Taklet API
Lab4: Prgram based on Workqueue API
Lab5: Write a driver that puts launches a kernel timer whenever a write to the device takes place.

Pass some data to the driver and have it print out. Have it print out the current->pid field
when the timer function is scheduled, and then again when the function is executed.

Lab6: Write a module that launches a periodic kernel timer function; i.e., it should re-install itself.

CH9: FUNDAMENTALS OF BLOCK DEVICE DRIVER
 Block drivers Definitions.
 Block drivers Registration.
 Block device operations.
 Linux Block I/O Layer
 I/O Schedulers
 Block Driver Data Structures and Methods
 How to handle block devices

Hands-On Assignments
Lab1: Registering and unregistering a simple Block Driver

to get Major number.

 CH10: IMPLEMENTATION OF RAMDISK DEVIVE DRIVER
 RAMDISK-based block device driver
 Using the RAMDISK block device
 Driver registration
 Obtaining a gendisk object
 Implement the driver’s methods
 Request Queue & Handle the request queue

Hands-On Assignments
Lab1: Write a simple Block driver program to read (and/or write) from the node, using the
 standard I/O functions (open(), read(), write(), close() .After loading the module with insmod
 use this program to access the node.
Lab2: Mountable Read/Write Block Driver, Extend the previous exercise in order to put or create an
 ext3 or ex4 file system on your Block device.
Lab3: Write a program to implement a ram disk device and make it into many partition like systems

Hard disk and perform read() , write() operation through block driver vertical.

CH11: UNDERSTANDING PARTITIONING OF BLOCK DEVICES
 Partitioning a Block Device
 Sector,Cylinder and Head
 Structure of a generic MBR
 Partition Table
 The Bootstrap Code Area/Bootloader
 MBR – Partition Table Entries
 Boot Record Signature/Magic Number
 Creating a RAM Block Device

 Hands-On Assignments
 Lab1: Write a program to implement a ram disk device and make it into many partition like

systems Hard disk and perform read() , write() operation through block driver vertical.

 CH12: UNDERSTANDING USB DEVICE DRIVER

 USB Device Basics
 Types of USB Device Drivers
 USB Subsystem & Verticals
 USB Protocol & Device Layout
 Defferents types of data transfers
 USB and Sysfs Command
 USB Request Block
 Registering a USB Driver through Horizontal

Layer

Hands-On Assignments
Lab1:Installing a and writing a simple USB device driver.The driver should register itself with the

USB sub-system upon loading and unregister upon unloading.

Lab2: Write a USB device driver to print out information abot configuration , interfaces and
endpoint for a registered usb device.

CH13: UNDERSTANDING USB GADGET DEVICE DRIVER
 Linux USB Gadget & Host Drivers
 USB Gadget Driver Mechanism
 USB Host Driver Mechanism
 USB Core & Hot Plug n Play
 USB Gadget Transfer Functions
 Integration with a Vertical
 Types of USB Device Drivers

Hands-On Assignments
 First take at a USB Gadget Driver
 Getting down to the hardware of BBB
 Creating Interface for USB Gadget Driver
 Creating Enfpoint for USB Gadget Driver

CH14: CREATING BEAGLEBONE as USB GADGET DEVICE DRIVER
 Register a composite driver
 Structure of usb_composite_driver
 Structure of struct usb_function
 Creating Beaglebone BBB as a USB I/O Device

 LoopBack USB Gadget Device Driver
 Getting down to the hardware of BBB
 Creating Multiple Interface for USB Gadget Driver
 Controlling using custom USB Host Driver & App
 BBB as standard USB Devices
 Controlling BBB Gpio LED through USB Drivers
 Creating as standard USB storage device

CH15: PCI DEVICE DRIVER AND ITS ROLE
 Understanding the x86 processor bus: PCI
 PCI Core & Programming the PCI
 Finding & Interacting with a PCI Device
 PCI Bus, Device and Function numbers
 Registering & Finding a PCI device
 Mapping & Accessing the PCI device regions
 Accessing the Configuration Space
 Accessing the I/O and Memory Regions
 Enabling the PCI Device

Hands-On Assignments
Lab1:Registering the driver with the PCI subsystem.

Lab2: Write a module that scans your PCI devices, and
gathers information about them.For each found
device, read some information from its
configuration register.Fields you may wish to
obtain could include:
PCI_VENDOR_ID,
PCI_DEVICE_ID,
PCI_REVISION_ID,
PCI_INTERRUPT_LINE,PCI_LATENCY_TIMER,
PCI_COMMAND.

Lab3: Write a Character based PCI driver to find Information about IRQ Line,Memory region,I/O
region,configuration region,prefetchable and non-prefetchable region in BAR.

CH16: MEMORY MAPPING AND DMA
 What memory is DMA'able
 DMA addressing limitations
 Types of DMA mappings
 DMA Direction

Hands-On Assignments
Lab1: Write a module that allocates and maps a
suitable DMA buffer, and obtains the bus address
handle.

Do this in three ways:
(a)Using dma_alloc_coherent(),
(b)Using dma_map_single(),
(c)Using a DMA Pool.

CH17: BASIC NETWORK DEVICE DRIVER
 Registering the Network Driver
 Buffer Management with skbuffs
 Packet Transmission & Reception
 Reception using interrupt and poll
 Start the network interface’s transmit Queue
 Other network operations including statistics

Hands-On Assignments
Lab1: Building a Transmitting Network Driver,

Module to include a transmission function.
Lab2: Adding Reception, Extend your transmitting

device driver to include a reception function.

 CH18: ADVANVED NETWORK DEVICE DRIVER
 Registering with the Linux low level bus interface subsystem
 Allocating interface descriptor block (net_device)
 Device specific structure and initializing media specific fields
 Getting device specific structure object pointer
 Enabling Network interface card
 Getting the Device resources (MMIO and PMIO)
 Getting device MAC address
 Initialization of device methods in the net_device
 Registering net_device object with the kernel
 Registering the interrupt handler (ISR)
 Allocating Rxring and Txring
 Initializing the hardware (network interface card)

Hands-On Assignments
Lab3: Writing the PCI based Network Driver for NIC(Network Interface Card) .

Programming the Network Device Registers, Implementing the Transmission & Reception
with the actual device(NIC) and Setting up the network across computers.

 Why Training in Embisyslabs
 Flexible and Convenient time Slots for Classes.
 Experience and co-operative Trainers
 Maximum 6 to 8 Participants in one Batch.
 Indivisual Attention to each Participant.
 High Quality practical/application Oriented Training
 Repeatation classes will be conducted as required.

 Training and Practicals Process
 Classes 5-Days a week for Weekdays Batch
 Theory(1 1⁄2 -2 hrs.) and practical (2hrs.)
 OR
 Classes 2-Days for a Weekend Batch(Sat & Sun)
 Theory(2 1⁄2 -3 hrs) and practical (3hrs.)

 Embisyslabs @Bangalore
 info@embisyslabs.com

 +91-88848 67053
Embisys Labs Development,Training,Consultancy & Support www.embisyslabs.com

Anjan Paul

Anjan Paul

Anjan Paul

Anjan Paul

