
LINUX DEVICE DRIVER AND KERNEL PROGRAMMING
 PREREQUISITE : C and Linux Systems Programming

CH1: AN INTRO. TO DEVICE DRIVERS
 Role of the Device Drivers
 Splitting the kernel
 Classes of devices and modules
 Kernel Architecture or Model

CH2: BUILDING AND RUNNING MODULES
 Types of Modules in the kernel
 Writing Your first kernel module
 Module Related Commands
 Kernel Module vs Applications
 Compiling Modules
 Loading and Unloading Modules
 Module Parameters
 Modules and Exporting Symbols

Hands-On Assignments
 Lab1: Simple Hello Linux Kernel Module.
 Lab2: Write a module that can take an integer parameter when it is loaded, It should have a default

value when none is specified.
 Lab3: Write a pair of modules where the second one calls a function in the first one.

CH3: CHARACTER DEVICE DRIVERS
 Major and Minor Numbers
 The Internal Representation of Device Numbers
 Allocating and Freeing Device Numbers
 File Operations Data structure
 Driver methods and Function Pointers
 Char Device Registration
 The Cdev Structure
 The inode Structure
 The file Structure
 Manual Creation of Device Files
 Automatic Creation of Device Files

Hands-On Assignments
Lab1: Print the major and minor numbers when Registering by Static or Dynamic method.
Lab2: Implement a open,write,read and close entry point.
Lab3: Print the major and minor numbers when the device is Opened and keep track of the number

of times it has been opened since loading, and print out the counter every time the device is
opened.

Lab4: Modify the previous driver so that each opening of the device allocates its own data area,
which is freed upon release. Thus data will not be persistent across multiple opens.

Lab5 : Implement a lseek entry point and Keeping track of file position.
Lab6: Dynamical Node Creation,Adapt the previous dynamic registration driver to use udev to

create the device node on the fly.

CH4: MEMORY ALLOCATION TECHNIQUE
 The Real Story of kmalloc
 The Flags Argument
 __get_free_pages
 Memory zones
 vmalloc and Friends
 Memory caches

Hands-On Assignments
Lab1:Testing Maximum Memory Allocation ,using kmalloc()
Lab2:Testing Maximum Memory Allocation ,using __get_free_pages().
Lab3: Testing Memory Allocation,using vmalloc().
Lab4 :Memory cachesExtend your chararcter driver to allocate the driver's internal buffer by using

your own memory cache.Make sure you free any slabs you create.

CH5: ADVANCED CHAR DRIVER OPERATIONS
 Inpout/Output Control (ioctl)
 User space, the ioctl system call
 The ioctl driver method
 Choosing the ioctl Commands
 Using the ioctl Argument

 Hands-On Assignments
 Lab1 : Implement a ioctl entry point along with read and write entry point.
 Lab2 : Implement read and write entry point using ioctl command.
 Lab3 : Write a character driver that has three ioctl commands: a)Set the process ID to which

signals should be sent. b)Set the signal which should be sent. c)Send the signal.

CH6: CONCURRENCY AND RACE CONDITION
 Concurrency and its Managements
 Semaphores and Mutexes
 Linux Semaphore Implementation
 Introduction to the Semaphore API
 Spinlocks Implementation
 Introduction to the Spinlock API
 Spinlocks and Atomic Context

Hands-On Assignments
Lab1: Mutex Contention -Write three simple modules where the second and third one use a variable

exported from the first one.The second (third) module should attempt to lock the mutex and
if it is locked, either fail to load or hang until the mutex is available.

Lab2: Sempahore Contention -Now do the same thing using semaphores .

CH7: INTERRUPT AND INTERRUPT
HANDLING

 The Definition and Role of Interrupt
 Installing an Interrupt Handler
 The /proc Interface
 Implementing a Handler
 Handler Arguments and Return Value
 Installing a Shared Handler

Hands-On Assignments
Lab1: Write a module that shares its IRQ with your network card. You can generate some network interrupts

either by browsing or pinging.
Lab2: Extend the previous solution to construct a character driver that shares every possible interrupt with

already installed handlers.
Lab3: Mutex Unlocking from an Interrupt. Modify the simple interrupt sharing lab to have a mutex taken out

and then released in the interrupt handler.

 CH8: TIME, DELAY AND DEFERRED WORK
 Top and Bottom Halves
 Tasklets and Workqueues Mechanisms
 Measuring Time Lapses
 Using the jiffies Counter
 The Timer API

Hands-On Assignments
Lab1: Program based on Kernel Timer API
Lab2: Program based on Jiffies and HZ
Lab3: Program based on Taklet API
Lab4: Prgram based on Workqueue API
Lab5: Write a driver that puts launches a kernel timer whenever a write to the device takes place.

Pass some data to the driver and have it print out. Have it print out the current->pid field
when the timer function is scheduled, and then again when the function is executed.

Lab6: Write a module that launches a periodic kernel timer function; i.e., it should re-install itself.

CH9: FUNDAMENTALS OF BLOCK DEVICE DRIVER
 Block drivers Definitions.
 Block drivers Registration.
 Block device operations.
 Linux Block I/O Layer
 I/O Schedulers
 Block Driver Data Structures and Methods
 How to handle block devices

Hands-On Assignments
Lab1: Registering and unregistering a simple Block Driver

to get Major number.

 CH10: IMPLEMENTATION OF RAMDISK DEVIVE DRIVER
 RAMDISK-based block device driver
 Using the RAMDISK block device
 Driver registration
 Obtaining a gendisk object
 Implement the driver’s methods
 Request Queue & Handle the request queue

Hands-On Assignments
Lab1: Write a simple Block driver program to read (and/or write) from the node, using the
 standard I/O functions (open(), read(), write(), close() .After loading the module with insmod
 use this program to access the node.
Lab2: Mountable Read/Write Block Driver, Extend the previous exercise in order to put or create an
 ext3 or ex4 file system on your Block device.
Lab3: Write a program to implement a ram disk device and make it into many partition like systems

Hard disk and perform read() , write() operation through block driver vertical.

CH11: UNDERSTANDING PARTITIONING OF BLOCK DEVICES
 Partitioning a Block Device
 Sector,Cylinder and Head
 Structure of a generic MBR
 Partition Table
 The Bootstrap Code Area/Bootloader
 MBR – Partition Table Entries
 Boot Record Signature/Magic Number
 Creating a RAM Block Device

 Hands-On Assignments
 Lab1: Write a program to implement a ram disk device and make it into many partition like

systems Hard disk and perform read() , write() operation through block driver vertical.

 CH12: UNDERSTANDING USB DEVICE DRIVER

 USB Device Basics
 Types of USB Device Drivers
 USB Subsystem & Verticals
 USB Protocol & Device Layout
 Defferents types of data transfers
 USB and Sysfs Command
 USB Request Block
 Registering a USB Driver through Horizontal

Layer

Hands-On Assignments
Lab1:Installing a and writing a simple USB device driver.The driver should register itself with the

USB sub-system upon loading and unregister upon unloading.

Lab2: Write a USB device driver to print out information abot configuration , interfaces and
endpoint for a registered usb device.

CH13: UNDERSTANDING USB GADGET DEVICE DRIVER
 Linux USB Gadget & Host Drivers
 USB Gadget Driver Mechanism
 USB Host Driver Mechanism
 USB Core & Hot Plug n Play
 USB Gadget Transfer Functions
 Integration with a Vertical
 Types of USB Device Drivers

Hands-On Assignments
 First take at a USB Gadget Driver
 Getting down to the hardware of BBB
 Creating Interface for USB Gadget Driver
 Creating Enfpoint for USB Gadget Driver

CH14: CREATING BEAGLEBONE as USB GADGET DEVICE DRIVER
 Register a composite driver
 Structure of usb_composite_driver
 Structure of struct usb_function
 Creating Beaglebone BBB as a USB I/O Device

 LoopBack USB Gadget Device Driver
 Getting down to the hardware of BBB
 Creating Multiple Interface for USB Gadget Driver
 Controlling using custom USB Host Driver & App
 BBB as standard USB Devices
 Controlling BBB Gpio LED through USB Drivers
 Creating as standard USB storage device

CH15: PCI DEVICE DRIVER AND ITS ROLE
 Understanding the x86 processor bus: PCI
 PCI Core & Programming the PCI
 Finding & Interacting with a PCI Device
 PCI Bus, Device and Function numbers
 Registering & Finding a PCI device
 Mapping & Accessing the PCI device regions
 Accessing the Configuration Space
 Accessing the I/O and Memory Regions
 Enabling the PCI Device

Hands-On Assignments
Lab1:Registering the driver with the PCI subsystem.

Lab2: Write a module that scans your PCI devices, and
gathers information about them.For each found
device, read some information from its
configuration register.Fields you may wish to
obtain could include:
PCI_VENDOR_ID,
PCI_DEVICE_ID,
PCI_REVISION_ID,
PCI_INTERRUPT_LINE,PCI_LATENCY_TIMER,
PCI_COMMAND.

Lab3: Write a Character based PCI driver to find Information about IRQ Line,Memory region,I/O
region,configuration region,prefetchable and non-prefetchable region in BAR.

CH16: MEMORY MAPPING AND DMA
 What memory is DMA'able
 DMA addressing limitations
 Types of DMA mappings
 DMA Direction

Hands-On Assignments
Lab1: Write a module that allocates and maps a
suitable DMA buffer, and obtains the bus address
handle.

Do this in three ways:
(a)Using dma_alloc_coherent(),
(b)Using dma_map_single(),
(c)Using a DMA Pool.

CH17: BASIC NETWORK DEVICE DRIVER
 Registering the Network Driver
 Buffer Management with skbuffs
 Packet Transmission & Reception
 Reception using interrupt and poll
 Start the network interface’s transmit Queue
 Other network operations including statistics

Hands-On Assignments
Lab1: Building a Transmitting Network Driver,

Module to include a transmission function.
Lab2: Adding Reception, Extend your transmitting

device driver to include a reception function.

 CH18: ADVANVED NETWORK DEVICE DRIVER
 Registering with the Linux low level bus interface subsystem
 Allocating interface descriptor block (net_device)
 Device specific structure and initializing media specific fields
 Getting device specific structure object pointer
 Enabling Network interface card
 Getting the Device resources (MMIO and PMIO)
 Getting device MAC address
 Initialization of device methods in the net_device
 Registering net_device object with the kernel
 Registering the interrupt handler (ISR)
 Allocating Rxring and Txring
 Initializing the hardware (network interface card)

Hands-On Assignments
Lab3: Writing the PCI based Network Driver for NIC(Network Interface Card) .

Programming the Network Device Registers, Implementing the Transmission & Reception
with the actual device(NIC) and Setting up the network across computers.

 Why Training in Embisyslabs
 Flexible and Convenient time Slots for Classes.
 Experience and co-operative Trainers
 Maximum 6 to 8 Participants in one Batch.
 Indivisual Attention to each Participant.
 High Quality practical/application Oriented Training
 Repeatation classes will be conducted as required.

 Training and Practicals Process
 Classes 5-Days a week for Weekdays Batch
 Theory(1 1⁄2 -2 hrs.) and practical (2hrs.)
 OR
 Classes 2-Days for a Weekend Batch(Sat & Sun)
 Theory(2 1⁄2 -3 hrs) and practical (3hrs.)

 Embisyslabs @Bangalore
 info@embisyslabs.com

 +91-88848 67053
Embisys Labs Development,Training,Consultancy & Support www.embisyslabs.com

Anjan Paul

Anjan Paul

Anjan Paul

Anjan Paul

