LINUX DEVICE DRIVER AND KERNEL. PROGRAMMING

PREREQUISITE : C and Linux Systems Programming

CH1: AN INTRO. TO DEVICE DRIVERS
> Role of the Device Drivers

> Splitting the kernel
> Classes of devices and modules
> Kernel Architecture or Model

CH2: BUILDING AND RUNNING MODULES

VVVVVVVY

Character Device
Driver Tutorial

Types of Modules in the kernel
Writing Your first kernel module
Module Related Commands
Kernel Module vs Applications
Compiling Modules

Loading and Unloading Modules
Module Parameters

Modules and Exporting Symbols

File Operations
&
cdev structure

Hands-On Assignments

Lab1:
Lab2:

CH3:

VVVVVVVVVVY

Simple Hello Linux Kernel Module.
Write a module that can take an integer parameter when it is loaded, It should have a default
value when none is specified.

Lab3: Write a pair of modules where the second one calls a function in the first one.

CHARACTER DEVICE DRIVERS __

Major and Minor Numbers Userspace | App"‘fanon |
The Internal Representation of Device Numbers l
Allocating and Freeing Device Numbers | System callinterface |
File Operations Data structure |

Driver methods and Function Pointers | Framework |
Char Device Registration Kernel ‘

The Cdev Structure | Driver |
The inode Structure

The file Structure | Bus nfrastiucre |
Manual Creation of Device Files

Automatic Creation of Device Files | Hard‘ware |

Hands-On Assignments

Lab1: Print the major and minor numbers when Registering by Static or Dynamic method.
Lab2: Implement a open,write,read and close entry point.
Lab3: Print the major and minor numbers when the device is Opened and keep track of the number

of times it has been opened since loading, and print out the counter every time the device is
opened.

Lab4: Modify the previous driver so that each opening of the device allocates its own data area,

Lab5:

which is freed upon release. Thus data will not be persistent across multiple opens.
Implement a Iseek entry point and Keeping track of file position.

Lab6: Dynamical Node Creation,Adapt the previous dynamic registration driver to use udev to

create the device node on the fly.

CH4: MEMORY ALLOCATION TECHNIQUE

The Real Story of kmalloc

The Flags Argument ey aliccnc

__get_free_pages " oo Sisceted in
Memory zones =
vmalloc and Friends

Memory caches

Wirtuml memany Phrysical mamony

VVVVVY

Hands-On Assignments

Lab1:Testing Maximum Memory Allocation ,using kmalloc()

Lab2:Testing Maximum Memory Allocation ,using __get_free_pages().

Lab3: Testing Memory Allocation,using vmalloc().

Lab4 :Memory cachesExtend your chararcter driver to allocate the driver's internal buffer by using
your own memory cache.Make sure you free any slabs you create.

CH5: ADVANCED CHAR DRIVER OPERATIONS

Applications

> Inpout/Output Control (ioctl)

> User space, the ioctl system call
» The ioctl driver method Device Driver
» Choosing the ioctl Commands
> Using the ioctl Argument

Hands-On Assignments
Labl : Implement a ioctl entry point along with read and write entry point.
Lab2 : Implement read and write entry point using ioctl command.
Lab3 : Write a character driver that has three ioctl commands: a)Set the process ID to which
signals should be sent. b)Set the signal which should be sent. c)Send the signal.

CH6: CONCURRENCY AND RACE CONDITION

. Semaph
> Concurrency and its Managements Thread o B Thread
acquire #D e
> Semaphores and Mutexes orISR /< e] v w7\ or ISR
Pl

> Linux Semaphore Implementation -
> Introduction to the Semaphore API Mgﬁf' #3

; ; Thread Y, < it Thread
> Spinlocks Implementation #4 e
> Introduction to the Spinlock API =
> Spinlocks and Atomic Context

shared rasounce

Hands-On Assignments

Lab1: Mutex Contention -Write three simple modules where the second and third one use a variable
exported from the first one.The second (third) module should attempt to lock the mutex and
if it is locked, either fail to load or hang until the mutex is available.

Lab2: Sempahore Contention -Now do the same thing using semaphores .

CH7: INTERRUPT AND INTERRUPT

HANDLING . > handle_IRQ_event()
> The Definition and Role of Interrupt generates an interrupt yes/ \
> Installing an Interrupt Handler / .
processor interrupts Is there an interrupt run all interrupt

> The /pI'OC Interface the kemel handler on this line? handlers on this line
» Implementing a Handler bt / N
> Handler Arguments and Return Value ’ do_IRQY N B e

. 1 1 ret_from_intr() —» kernel code
> Installing a Shared Handler] i that was

interrupted

T T
Processor

Hands-On Assignments

Labl: Write a module that shares its IRQ with your network card. You can generate some network interrupts
either by browsing or pinging.

Lab2: Extend the previous solution to construct a character driver that shares every possible interrupt with
already installed handlers.

Lab3: Mutex Unlocking from an Interrupt. Modify the simple interrupt sharing lab to have a mutex taken out
and then released in the interrupt handler.

CHS8: TIME, DELAY AND DEFERRED WORK

—

» Top and Bottom Halves g
» Tasklets and Workqueues Mechanisms 'E Upper layer Kamel context
» Measuring Time Lapses | 2 driver
> Using the jiffies Counter | &
£ 2
> The Timer API g2
|9 Bottom-half Kernel context
Hands-On Assignments 8
Lab1: Program based on Kernel Timer API 5 |
Lab2: Program based on Jiffies and HZ |§ Top-half nterrupt context
B

Lab3: Program based on Taklet API

Lab4: Prgram based on Workqueue API

Lab5: Write a driver that puts launches a kernel timer whenever a write to the device takes place.
Pass some data to the driver and have it print out. Have it print out the current->pid field
when the timer function is scheduled, and then again when the function is executed.

Lab6: Write a module that launches a periodic kernel timer function; i.e., it should re-install itself.

CH9: FUNDAMENTALS OF BLOCK DEVICE DRIVER
Block drivers Definitions. P
Block drivers Registration. e

Block device operations. sys_read () /sys_write()
Linux Block I/0O Layer Temel
I/0 Schedulers Virtual File System
Block Driver Data Structures and Methods

How to handle block devices '

Page
Cache

VVVVVVY

Hands-On Assignments
Labl: Registering and unregistering a simple Block Driver '
to get Major number. e e

!

Block I/O layer ‘

CH10: IMPLEMENTATION OF RAMDISK DEVIVE DRIVER
RAMDISK-based block device driver |
Using the RAMDISK block device

Driver registration

Obtaining a gendisk object

Implement the driver’s methods

Request Queue & Handle the request queue

VVVVVY

Hands-On Assignments

Lab1: Write a simple Block driver program to read (and/or write) from the node, using the
standard 1I/0O functions (open(), read(), write(), close() .After loading the module with insmod
use this program to access the node.

Lab2: Mountable Read/Write Block Driver, Extend the previous exercise in order to put or create an
ext3 or ex4 file system on your Block device.

Lab3: Write a program to implement a ram disk device and make it into many partition like systems

Hard disk and perform read() , write() operation through block driver vertical.

CH11:

\ 274

VVVVVY

UNDERSTANDING PARTITIONING
Partitioning a Block Device
Sector,Cylinder and Head

Structure of a generic MBR

Partition Table

The Bootstrap Code Area/Bootloader
MBR - Partition Table Entries

Boot Record Signature/Magic Number
Creating a RAM Block Device

Hands-On Assignments

OF BLOCK DEVICES

Structure of a generic MBR

Offsets within sector Length
{In byres)

Cescription

000 -445 [uIER]] 46

LU0 1BE - 1FD &4

510511 1FE - 1FF 2

Bootstrap Code Area

Fartition Table

Bool Record Signalum

Labl: Write a program to implement a ram disk device and make it into many partition like
systems Hard disk and perform read() , write() operation through block driver vertical.

CH12: UNDERSTANDING USB DEVICE DRIVER

>

VVVVVVY

USB Device Basics

Types of USB Device Drivers
USB Subsystem & Verticals
USB Protocol & Device Layout
Defferents types of data transfers
USB and Sysfs Command

USB Request Block

Registering a USB Driver through Horizontal

Layer

Hands-On Assignments

USB Device

Lab1:Installing a and writing a simple USB device driver.The driver should register itself with the
USB sub-system upon loading and unregister upon unloading.

Lab2: Write a USB device driver to print out information abot configuration , interfaces and

CH13:

\7\7\7\7\7\7\7

endpoint for a registered usb device.

UNDERSTANDING USB GADGET DEVICE DRIVER

Linux USB Gadget & Host Drivers
USB Gadget Driver Mechanism
USB Host Driver Mechanism

USB Core & Hot Plug n Play

USB Gadget Transfer Functions
Integration with a Vertical

Types of USB Device Drivers

Hands-On Assignments

>
>
>
>

First take at a USB Gadget Driver

Getting down to the hardware of BBB
Creating Interface for USB Gadget Driver
Creating Enfpoint for USB Gadget Driver

.................. User Space
Kernel Space
Peripheral USB Device / OTG Controll
l - t - erlI-iarclmare Space
| USB Host |

CH14: CREATING BEAGLEBONE as USB GADGET DEVICE DRIVER

>
>
>

Register a composite driver
Structure of usb_composite_driver
Structure of struct usb_function

» Creating Beaglebone BBB as a USB I/O Device

LoopBack USB Gadget Device Driver
Getting down to the hardware of BBB

BBB as standard USB Devices

VVVVYVYVY

Creating as standard USB storage device

CH15: PCI DEVICE DRIVER AND ITS ROLE
Understanding the x86 processor bus: PCI
PCI Core & Programming the PCI

Finding & Interacting with a PCI Device

PCI Bus, Device and Function numbers
Registering & Finding a PCI device

Mapping & Accessing the PCI device regions
Accessing the Configuration Space
Accessing the I/O and Memory Regions
Enabling the PCI Device

\ 2 4

VVVVVVY

Hands-On Assignments
Labl:Registering the driver with the PCI subsystem.

Lab2: Write a module that scans your PCI devices, and
gathers information about them.For each found
device, read some information from its
configuration register.Fields you may wish to
obtain could include:

PCI_VENDOR_ID,
PCI_DEVICE_ID,
PCI_REVISION_ID,

Creating Multiple Interface for USB Gadget Driver
Controlling using custom USB Host Driver & App

Controlling BBB Gpio LED through USB Drivers

PCI_INTERRUPT_LINE,PCI_LATENCY_TIMER,

PCI_COMMAND.

00h

04h

il 1615 0
Device ID Vendor ID
Status Command
Class Code Revision ID

08h

Latency | Cache Line
BIST Header Type , ,
Timer Size

0ch

Base Address Registers (BAR) 0

Base Address Registers (BAR) 1

second
SN | subordinate | Secondary | Primary Bus

10h
14h

18h

Laten
. 9 Bus Number | Bus Number | Number
Timer
Secondary Status I/0 Limit 1/0 Base
Memory Limit Memory Base

Prefetchable Memory Limit | Prefecthable Memory Base
Prefetchable Base Upper 32 Bits
Prefetchable Base Limit 32 Bits

1Ch
20h
2h
28h
2Ch

I/0 Limit Upper 16 Bits ‘ I/0 Base Upper 16 Bits

Reserved

Expansion ROM Base Address Register (XROMBAR)
Interrupt
Line

Bridge Control Interrupt Pin

Lab3: Write a Character based PCI driver to find Information about IRQ Line,Memory region,lI/O
region,configuration region,prefetchable and non-prefetchable region in BAR.

CH16: MEMORY MAPPING AND DMA
» What memory is DMA'able
» DMA addressing limitations
» Types of DMA mappings
» DMA Direction

Hands-On Assignments

Lab1: Write a module that allocates and maps a
suitable DMA buffer, and obtains the bus address
handle.

Do this in three ways:
(a)Using dma_alloc_coherent(),
(b)Using dma_map_single(),
(c)Using a DMA Pool.

When DMA operates:

30h
34h
38h

3Ch

5 —o0 addr
AD15 addr =
ALE latch
s c::lf memory
5 3
control bus
g IOR/W,MEMR/W ° control
bus
T 5 data
HOLD fmee o x N e
HLDA £ contro :
- controller T Penpf-]era'
4 Dprea device

DACK +

CH17: BASIC NETWORK DEVICE DRIVER Netwo rk Device VI Od e|
Registering the Network Driver

Buffer Management with skbuffs
Packet Transmission & Reception

Reception using interrupt and poll N ebaicris stk
Start the network interface’s transmit Queue —{ sk_buff y net_device

Other network operations including statistics

VVVVVYY

|

‘ Network hardware driver

Hands-On Assignments

Lab1: Building a Transmitting Network Driver, t
Module to include a transmission function.

Lab2: Adding Reception, Extend your transmitting ‘
device driver to include a reception function.

Bus infrastructure
(platform, pei, usb, ete.)

CH18: ADVANVED NETWORK DEVICE DRIVER Hemen
» Registering with the Linux low level bus interface subsystem Applications e P
» Allocating interface descriptor block (net_device) - $------4 B--- AR
» Device specific structure and initializing media specific fields | systemCalls | |cons
> Getting device specific structure object pointer I \ _______
» Enabling Network interface card SL3cK l I
> Getting the Device resources (MMIO and PMIO) Jl?)river - ::ﬁ:‘:
» Getting device MAC address W Mgl
> Initialization of device methods in the net_device o
> Registering net_device object with the kernel LI
» Registering the interrupt handler (ISR) Hardware
» Allocating Rxring and Txring o
» [Initializing the hardware (network interface card)

Figure 1: Kernel space network driver

Hands-On Assignments

Lab3: Writing the PCI based Network Driver for NIC(Network Interface Card) .
Programming the Network Device Registers, Implementing the Transmission & Reception
with the actual device(NIC) and Setting up the network across computers.

Anjan Paul

Anjan Paul

Anjan Paul

Anjan Paul

