MATHSFORNURSES

Drug Concentration - Worked Solutions

Question 1

A patient is prescribed 6 g of a drug that is available in a $\mathbf{2 \%}$ solution. What volume of the solution should the patient be given?

A 2% solution means that there are 2 g of the drug in 100 ml of the fluid, so you can use this as the stock dose, and then your calculation will be the prescribed dose divided by the stock dose, multiplied by the volume the stock dose is in.

The prescribed dose is 6 g . The stock dose is 2 g and it is in a volume of 100 ml .
First, work out $6 \div 2$, which is 3 .
Then work out $3 \times 100 \mathrm{ml}$, which will be 300 ml .
Answer: 300ml

Question 2

A patient is prescribed 4 g of a drug that is available in a 1% solution. What volume of the solution should the patient be given?

A 1% solution means that there is 1 g of the drug in 100 ml of the fluid, so you can use this as the stock dose, and then your calculation will be the prescribed dose divided by the stock dose, multiplied by the volume the stock dose is in.

The prescribed dose is 4 g . The stock dose is 1 g and it is in a volume of 100 ml .
First, work out $4 \div 1$, which is 4 .
Then work out $4 \times 100 \mathrm{ml}$, which will be 400 ml .
Answer: 400ml

Question 3

A patient is prescribed 2 g of a drug that is available in a 5% solution. What volume of the solution should the patient be given?

A 5% solution means that there are 5 g of the drug in 100 ml of the fluid, so you can use this as the stock dose, and then your calculation will be the prescribed dose divided by the stock dose, multiplied by the volume the stock dose is in.

The prescribed dose is 2 g . The stock dose is 5 g and it is in a volume of 100 ml .

MATHSFORNURSES

Drug Concentration - Worked Solutions

First, work out $2 \div 5$, which is 0.4 (you could do this either using short division, or by realising that the fraction $2 / 5$ is equivalent to $4 / 10$, and $4 \div 10=0.4$).

Then work out $0.4 \times 100 \mathrm{ml}$, which will be 40 ml .

Answer: 40ml

Question 4

A patient is prescribed 80mg of a drug that is available in a 0.1% solution. What volume of the solution should the patient be given?

A 0.1% solution means that there are 0.1 g of the drug in 100 ml of the fluid, so you can use this as the stock dose, and then your calculation will be the prescribed dose divided by the stock dose, multiplied by the volume the stock dose is in.

Because the prescribed dose is in milligrams, you need to convert the 0.1 g of the stock dose into milligrams. You are converting from a larger unit to a smaller one so multiply by the scale factor of 1000 . This means that $0.1 \mathrm{~g}=0.1 \times 1000=100 \mathrm{mg}$

The prescribed dose is 80 mg . The stock dose is now 100 mg and it is in a volume of 100 ml .

First, work out $80 \div 100$, which is 0.8 .

Then work out $0.8 \times 100 \mathrm{ml}$, which will be 80 ml .
Answer: 80ml

Question 5

A patient is prescribed 250 mg of a drug that is available in a $\mathbf{2 . 5} \%$ solution. What volume of the solution should the patient be given?

A 2.5% solution means that there are 2.5 g of the drug in 100 ml of the fluid, so you can use this as the stock dose, and then your calculation will be the prescribed dose divided by the stock dose, multiplied by the volume the stock dose is in.

Because the prescribed dose is in milligrams, you need to convert the 2.59 of the stock dose into milligrams. You are converting from a larger unit to a smaller one so multiply by the scale factor of 1000 . This means that $2.5 \mathrm{~g}=2.5 \times 1000=2500 \mathrm{mg}$

The prescribed dose is 250 mg . The stock dose is now 2500 mg and it is in a volume of 100 ml .

MATHSFORNURSES

Drug Concentration - Worked Solutions

First, work out $250 \div 2500$, which is 0.1 .
Then work out $0.1 \times 100 \mathrm{ml}$, which will be 10 ml .
Answer: 10ml

