(Conocimiento expresado en un)

Modelo Computable
de un Dominio de Problema
de la Realidad

¢Donde esta expresado el
modelo?

Glenn Vandenburg: Real software engineering
https://youtu.be/RhdIBHHIimeM

https://youtu.be/RhdlBHHimeM

Interludio

LONE STAR
RUBY CONFERENCE

*

Yet if these phenomena fail to satisfy
the various external constraints, then
invariably a major redesign is required.
In effect the development process has

returned to the origin and one can
expect up to a 1I00-percent overrun in
schedule and/or costs.
—Winston Royce

2010

* rough cut *

MANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYSTEMS

Dr. Winston W. Royce

INTRODUCTION

| am going to describe my pesonal views about managing large software developments. | have had
various assignments during the past nir.: years, mostly concerned with the development of software packages
for spacecraft mission planning, commanding and post-flight analysis. In these assignments | have experienced
different degrees of success with respect to arriving at an operational state, on time, and within costs. | have
become prejudiced by my experiences and | am going to relate some of these prejudices in this presentation,

e ———— R

SYSTEM
REQUIREMENTS

SOFTWARE
REQUIREMENTS

ANALYSIS

CODING

TESTING

=\

OPERATIONS

Figure 2. Implementation steps to develop a large computer program for delivery to a customer.

e —— SN

/1

| believe in this concept, but the implementation described above is risky and invites failure. The
problem is illustrated in Figure 4, The testing phase which occurs at the end of the development cycle is the
first event for which timing, storage, input/output transfers, etc., are experienced as distinguished from
analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial
differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfy the various
external constraints, then invariably a major redesign is required. A simple octal patch or redo of some isolated
code will not fix these kinds of difficulties. The required design changes are likely to be so disruptive that the
software requirements upon which the design is based and which provides the rationale for everything are
violated. Either the requirements must be modified, or a substantial change in the design is required. In effect
the development process has returned to the origin and one can expect up to a 100-percent overrun in schedule
and/or costs.

e EREmmmm

//
| believe in this concept, but the implementation described above is risky and invites failure. The
problem is illustrated in Figure 4, The testing phase which occurs at the end of the development cycle is the
first event for which timing, storage, input/output transfers, etc., are experienced as distinguished from
analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial

differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfz the various

external constraints, then invariably a major redesign is requued A simple octal patch or redo of some usolated
oom changes are likely to be so disruptive that the
software requirements upon which the design is based and which provides the rationale for everything are
violated. Either the requirements must be modified, or a substantial change in the design is required. In effect
the development process has returned to the origin and one can expect up to a 100-percent overrun in schedule
and/or costs.

e EREmmmm

//
| believe in this concept, but the implementation described above is risky and invites failure. The
problem is illustrated in Figure 4, The testing phase which occurs at the end of the development cycle is the
first event for which timing, storage, input/output transfers, etc., are experienced as distinguished from
analyzed. These phenomena are not precisely analyzable. They are not the solutions to the standard partial

differential equations of mathematical physics for instance. Yet if these phenomena fail to satisfz the various

external constraints, then invariably a major redesign is requued A simple octal patch or redo of some usolated
wm changes are likely to be so disruptive that the
software requirements upon which the design is based and which provides the rationale for everything are
violated. Either the requirements must be modified, or a substantial change in the design is required. In effect |
the development process has returned to the origin and one can expect up to a 100-percent overrun inm

R ———— = e R, e = = =

and/gi iiiii
“

N

PRELIMINARY
PROGRAM
DESIGN \
ANALYSIS
PRELIMINARY \
 DESIGN
ANALYSIS PROGRAM
' DESIGN
PROGRAM \
DESIGN
CODING
CODING
TESTING \
A TESTING \

————p | OPERATIONS
L4

SYSTEM
REQUIREMENTS
(UPDATE)

SYSTEM
REQUIREMENTS
GENERATION

e —

SOFTWARE
REQUIREMENTS

Figure 9. Step 5: Involve tne customer — the involvement should be formal, in-depth, and continui

PRELIMINARY
PROGRAM
DESIGN

ANALYSIS

N

77 =" N

TESTING

/]

..

OPERATIONS

Fin del Interludio

Ahora si escuchemos a Glenn Vanderburg

What is Software Design?

by

Jack W. Reeves
©1992 C++ Journal

Object oriented techniques, and C++ in particular, seem to be taking the software world by
storm. Numerous articles and books have appeared describing how to apply the new techniques.
In general, the questions of whether O-O techniques are just hype have been replaced by
questions of how to get the benefits with the least amount of pain. Object oriented techniques
have been around for some time, but this exploding popularity seems a bit unusual. Why the
sudden interest? All kinds of explanations have been offered. In truth, there is probably no single
reason. Probably, a combination of factors has finally reached critical mass and things are taking
off. Nevertheless, it seems that C++ itself is a major factor in this latest phase of the software
revolution. Again, there are probably a number of reasons why, but I want to suggest an answer
from a slightly different perspective: C++ has become popular because it makes it easier to
design software and program at the same time.

https://wiki.c2.com/?WhatlsSoftwareDesign

;Qué es Diseno?

Descripcion, grafico o bosquejo en papel
relacionado con la cosa que se esta disenando,
destinado a su construccion

LONE STAR
RUBY CONFERENCE

case_info(options)
a[:example_group] .update(options)

tadata_for_next = options

method_added(id)

ame = id.to_s

aller_lines[name] « caller

1f test_method?(name)
test_method_metadata[name] = # _metadat
#_metadata_for_next = nil

end

end

def examples
#tc_examples |l= ExamplesCollection.new(

end

* rough cut *

;Qué es Diseno?

Diseno es |a
definicion que usamos para construir

LONE STAR
RUBY CONFERENCE

*

|_case_info(options)
ta[: example_group] .update(options)

st_info(options)
Btadata_for_next

= options

= id.to_s

caller_lines[name] « caller
1if test_method?(name) éﬁ pgthon
test_method_metadata[name] = & _m¢ ((&
#_metadata_for_next = nil -—Z)>
- =
end
Java _ _
def examples
#tc_examples |l= ExamplesCollec ERLANG

end

* rough cut *

¢Donde esta expresado el
Diseno de Software?

;Qué es lo que construimos?

iSoftware ejecutable!

.Qué es |o que usamos para construirlo?
.Que nos permite obtener Software ejecutable?

iCodigo Fuente!

Cadigo Fuente = Diseno de Software

Programar es Disenar

Disenar es Programar

=}

) (_7 01110

[(—]

COMPILER

Nuestros “Constructores” son los Compiladores

Testear y Debuggear son actividades de Diseno
(validacion y refinamiento de un disefo)

(@ qmeciiidier
Clentrrofiecontroler

e
;
s
(@it) ©) >
il Ao O repasitary
o maisdn O mixPartyRepasitor ResponseUtility
o s © Torenvuiny & nerchepastory ©
— & exceplontironer o SR cader)|
=] |s o
e
£ & filterResponsevariablesDats()
(© creneriovo
=
gar S
} e, siciespone
e S, =
i L
e e W=
i T = |

implements

(@ clentranenepostarymot

& ety omager

rofarrommpartyl |
niproiromusersl)

' Qué papel juegan los “"diagramas de diseno’?
Diagrama de Clases, de secuencia, etc

Visualizar el Diseiho
Pero no son el Diseno

; Por qué nos cuesta estimar?

¢ Por qué es dificil estimar?

o Descubrir vs. Entregar
o Estimar es dificil porque no estimamos Cémo
Construir sino CoOmo Disenar

; Que etapa cuesta mas?

LONE STAR
RUBY CONFERENCE

*

|_case_info(options)
ta[: example_group] .update(options)

st_info(options)
Btadata_for_next

= options

= id.to_s

caller_lines[name] « caller
1if test_method?(name) éﬁ pgthon
test_method_metadata[name] = & _m¢ ((&
#_metadata_for_next = nil -—Z)>
- =
end
Java _ _
def examples
#tc_examples |l= ExamplesCollec ERLANG

end

* rough cut *

Caracteristica fundamental:
Paso del Tiempo en el Modelo

Kernel-Magnitudes
Kernel-Numbers
Kernel-Text
Kernel-Chronology
Kernel-Methods

[anObject

message hash."

tself == anObject

ProtoObject

ActiveModel
Boolean
False
True

casing

class membership

converting

error handling

"Answer whether the receiver and the argument represent the same
object. If = is redefined in any subclass, consider also redefining the

hash
literalEqual:

. " . ¥
1 AR V Reserva Ecoldgica 3
- 5 S e VicenteLopez {
2 5 . 3
VO S \
o % \
o 4
La Farcla @) P Y
* R an Lot - " F3Dakota Restobar \
Martinez 5) £ LN e A
% S % oayon@® o % |
O\ % %]
% % . -y
oeioral 5 pes T LatucitaE
2 Desarrollo Lo de Pey i
cubtingara Q) Qi resosar L4 Lucila s
> L8
[EJLOPEZ CARRILLO SA. Holzen Hops @) w”'w\ NEND e
- A .
2 N 4 o SN i
@ Y o RS G NN, cornAQ |
o Rt X kY S GadenGiooveclub @ e 8 Ubertador@ oo /
A\ A 8 w‘*‘n G % [
2 1 o R Marmara @) e T Nely Q)
WA %, o Forestoan () S AN 3
5% R N R 5, s X @ 2 > Puerto De ol:vos@
Sl S o 3 -) % %
5 Ny XS A % %
e = %

La Panaderia de Pablo @)

A

B

[
7
=
vi’k:'u sTUDY
s

SIRY 11

™ £
ENTRY l{_i:.'ﬁL‘m Y|
¥ N

GARAGE =
[=

Es Dinamico - El tiempo transcurre

printOn: aStream
"Append to the argument, aStream, a sequence of characters that
identifies the receiver."

to =+

| title |
title « self class name.
aStream
nextPutAll: title aOrAnPrefix;
space;
th =T nextPutAll: title

Aquello representado por el modelo cambia

Plano de Arquitectura = Una casa
Software = Qué es una casa

Conclusiones

> E|l modelo esta expresado en el codigo fuente
o Los diagramas no son el modelo computable
o La documentacion no son el modelo computable

Conclusiones

> No es facil estimar el “diseno’
o Tenemos que estimar el diseno
o Implica estimar “descubrir”
o No estimamos construir

Conclusiones

> |a “construccion’ no cuesta nada, los

costoso es el diseno
o Crear el "ejecutable” a partir del diseno es lo que
hacen los compiladores

Conclusiones

Un "modelo computable” implica “ejecucion’
Cjecucion implica “paso del tiempo®

Hay que tener mucho cuidado al comparar
nuestros modelos con los de otras
profesiones

VYV

