
Deploying Blazor WASM to Azure Static Web Apps
Let’s start off by doing a standalone deployment. Instead of using a classic option
like IIS, we’ll use the Azure Static Web Apps service which is a perfect service to

host our Blazor WebAssembly static files on. Azure Static Web Apps can do
much more than hosting Blazor WebAssembly, but we’ll use it to do exactly
that. In order to follow along, you’ll need an Azure account and a GitHub
account, since GitHub actions are used to build the project before deploying
it to the Azure. To demonstrate the process, we’ll use the client project from
the module12-end branch, but you can use your own repository to play
around. You can fork our own repository, or create a completely new one.
Alright, let’s start things off with logging into the Azure portal and searching
for the static web apps service first. Let’s click on that and go to the azure
web apps service page. Once we’re on the page, we’ll go to “New” and we’ll
get a new static web app creation wizard. On this form, we want to select a
Subscription, create or select a resource group, give our app a name,
something like module12-end or anything you like, and pick a region closest
to us. After that, we need to sign in with our GitHub account to be able to
access and work with our repository. After we’re prompted, we need to
accept the authorization… confirm the password if offered… and we can
access the repository now... Great! Now we can see three additional fields
on our form… Let’s pick the Organization... and then the repository… and
finally let’s pick the branch we want… Okay, now the deployment details are
set up. Next on, we want to configure GitHub action details… Let’s pick a
Blazor preset… enter BlazorProducts.Client/BlazorProducts.Client as our
app location since that’s where our csproj file resides… we don’t care much
about API since we don’t have an API in our project, and as an output
location, we can leave wwwroot. We can do a quick preview of the workflow
file to see if everything is in order… But we don’t want to worry about this
file too much right now since we’ll be able to change it if needed in our
GitHub actions panel. Alright, let’s go to the Review + Create and check out
our details quickly once more… and then click Create… This should trigger
the build and we can see that it says Deployment is in Progress… If we’re
quick enough, we can see that the GitHub action is triggered… GitHub action
actually builds the project using docker engine, and it practically publishes
our artifacts and deploys them to Azure Static Web Apps resource afterward

if the build succeeds. Ok great, once that the build is finished, we can go to
our resource... And navigate to the Url we’ve been assigned… And once the
page loads, we can see our application running in a production environment
which is great! But if we try to go to the products page… We’ll see the
application trying to fetch the data… and failing… That’s completely okay
since the application is still trying to fetch the API on the localhost:8081,
which was our production URL. There’s one more thing we need to take care
of. Let’s see what happens if we go to the products page… and try to reload
the application… We get a 404: Not Found message from Azure. If you
remember how we configured the routes in the last video when we hosted
the application in ASP.NET Core, we had to add a fallback route that leads to
index.html since this is a single page application and every route needs to
serve the index.html file. Since we don’t rely on the ASP.NET Core server
anymore, we need to configure routes again somehow. We can do that by
adding the routes.json file to the wwwroot of the application… and then
adding the following lines…

{

 "routes": [

 {

 "route": "/*",
 "serve": "/index.html",
 "statusCode": 200

 }

]

}

Once we commit the changes, and the GitHub actions publishes and deploys
our application again, this file will indicate that all the routes fallback to
index.html again… And to test this out, we can go to the products URL
again… and then refresh the page… and as we can see we don’t get a 404
not found anymore. Excellent. Now if you want to see what’s happening
behind the scenes and maybe find out why your build fails, you can go to
your repository on GitHub, and then to the Actions tab… and pick the latest
action that is related to your Azure Static Web apps workflow. Inside it, you
can find all kinds of useful information, including the fail reason and all the
build logs that can help you debug the problem. Alright, let’s wrap this video

up. Since this is a standalone deployment, our API is not available and we
can see that Products haven’t been fetched. That’s completely fine because
in the next video we’ll deploy our API too, and hit the endpoints once it’s
been deployed.

