

Acids & Bases The Basics

chemistry

Presented by Amelia McCutcheon

www.zenofchemistry.com

The Brønstead-Lowry Theory of Acids and bases

- Acids are proton (H⁺) donators
- Bases are proton (H⁺) acceptors
- Acid-base reactions involve transfer of a proton from an acid to a base

e.g. HCl +
$$H_2O$$
 \rightarrow Cl⁻ + H_3O^+
Acid base conj base conj acid

Conj = conjugate

The pH scale

 A solution's acidity is measured by the pH scale, which is logarithmic

The pH Scale

```
Increasing [H+]/Decreasing [OH-]

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Increasing [OH-]/Decreasing [H+]
```


$$K_w = [H^+].[OH^-] = 10^{-14} M^2$$

pH & pOH Scales

NEUTRAL

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

pOH Scale

pH + pOH = 14

$$pH = -log_{10}[H^+]$$
 or $[H^+] = 10^{-pH}$

$$pOH = -log_{10}[OH^{-}] or [OH^{-}] = 10^{-pOH}$$

Terminology

- Monoprotic acids: Have one acidic H
- Diprotic acids: Have two acidic H's
- Triprotic acids: Have three acidic H's
- Polyprotic acids: Have many acidic H's

$$H_3PO_{4(aq)} \iff H^+_{(aq)} + H_2PO_4^-_{(aq)}$$

$$H_2PO_4^{-}(aq) \rightleftharpoons H^{+}(aq) + HPO_4^{2-}(aq)$$

$$HPO_4^{2-}$$
 (aq) \longrightarrow H^+ (aq) $+ PO_4^{3-}$ (aq)

Terminology

Amphiprotic substances: can act as either an acid or a base

Acting as an acid:

$$H_2PO_4^{-}_{(aq)} + OH_{(aq)}^{-} \rightarrow HPO_4^{2-}_{(aq)}$$

Acting as a base:

$$H_2PO_{4(aq)}^- + H_{(aq)}^+ \rightarrow H_3PO_{4(aq)}^-$$

Strong & Weak Acids & Bases

- Strong acids & bases completely dissociate in water
- Weak acids and bases partially dissociate in water

Strong acids:

$$HX_{(I)} \rightarrow H^{+}_{(aq)} + X^{-}_{(aq)}$$

Weak acids:

$$HX_{(I)} \rightleftharpoons H^+_{(aq)} + X^-_{(aq)}$$

Complete dissociation

NO Ka value

Partial dissociation

HAS Ka value

Strong and weak acids

Strong acids

- Hydrochloric acid (HCl)
- Hydrobromic acid (HBr)
- Hydroiodic acid (HI)
- Nitric acid (HNO₃)
- Perchloric acid (HClO₄)
- Sulfuric acid (H₂SO₄)

Weak acids

- Hydrofluoric acid (HF)
- Acetic or ethanoic acid (CH₃COOH)
- Carbonic acid (H₂CO₃)
- Phosphoric acid (H₃PO₄)
- Ammonium ions (NH₄⁺
- Anything ending in –oic acid (e.g. benzoic acid)

Strong and weak bases

Strong bases

- Hydroxides:
 - Lithium (LiOH)
 - Sodium (NaOH)
 - Potassium (KOH)
 - Calcium (Ca(OH)₂)
 - Barium (Ba(OH)₂)
 - Strontium (Sr(OH)₂)
 - Cesium (CsOH)
 - Rubidium (RbOH)

Weak bases

- Ammonia (NH₃)
- Sodium carbonate (Na₂CO₃)
- Calcium carbonate (CaCO₃)
- Ethylamine ((C₂H₅)NH₂)
- Urea (NH₂)₂CO

Acids & bases: Equations you might need

Acids & Bases

 $pH = -log_{10}[H^+] \text{ or }$ $[H^+] = 10^{-pH}$

 $[H^+].[OH^-] = 10^{-14}$

 $[H^+]$

Hydrogen ion concentration, in mol/L or molar (M)

 $[OH^{-}]$

Hydroxide ion concentration, in mol/L or molar (M)

	n	number of moles (mol)
n	С	Concentration in mol/L or molar (M)
CV	V	Volume, in Litres (L)

	C _i	V _i	C _i	Initial concentration
tion	C _f	V _f	V _i	Initial volume
Dilution	C _f	R V _f	C _f	Final concentration
	C _i	V _i	V _f	Final volume

Some common reactions of acids

Acid + metal

Salt + H₂

Acid + metal hydroxide

Salt + H₂O

Acid + metal oxide

Salt + H₂O

Acid + metal carbonate

Salt + $H_2O + CO_2$

Acid + metal hydrogen carbonate

Salt + $H_2O + CO_2$

Acidic oxide + base

Salt + H₂O

Indicators

Indicator	Acidic colour	Basic Colour	pH range of colour change
Methyl violet	Yellow	Purple	0.0-2.0
Methyl orange	Red	Yellow	3.1-4.4
Bromothymol blue	Yellow	Violet	6.0-7.6
Phenolphthalein	Colourless	Pink	8.3-10.0

Universal Indicator

A mixture of different indicators which allows colour analysis of all pH values between 1-14

Acids & Bases

chemistry

Presented by Amelia McCutcheon

www.zenofchemistry.com