5.1 Areas Between Curves

(1) Integrating with respect to x

$$Area = Base \times height$$

① Area when $f(x) \ge g(x)$

The area A of the region S bounded by y = f(x), y = g(x) on [a, b], where f(x) and g(x) are continuous and $f(x) \ge g(x)$ for all x in [a, b]

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} \{ f(x_i) - g(x_i) \} \Delta x = \int_{a}^{b} [f(x) - g(x)] dx$$

ex) Find the area of the region bounded above $y=x^2+1$, bounded below y=x and bounded on the sides by x=0 and x=1

ex) Find the area enclosed by $y = x^2$ and $y = 2x - x^2$

ex) Find Area of the regions bounded by curves $y = \frac{x}{\sqrt{x^2 + 1}}$ and $y = x^4 - x$

(2) General Area

The Area between the curves y = f(x) and y = g(x) and between x = a and x = b is

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

ex) Find the area bounded by $y = \sin x$, $y = \cos x$, x = 0, $x = \frac{\pi}{2}$

(2) Integrating with respect to y

The Area between the curves x = f(y) and x = g(y) and between y = c and y = d is

$$A = \int_{a}^{d} |f(y) - g(y)| dy$$

ex) Find the Area enclosed by y = x - 1, $y^2 = 2x + 6$

ex) Find the Area of the region enclosed by x + 2y = 3, y = x and $y = \frac{1}{4}x$ ($x \ge 0$)