

Sum & Product of the Roots of a Polynomial Equation

If the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ has roots α and β , then the sum of the roots, $\alpha + \beta = -\frac{b}{a}$ and the product of the roots, $\alpha\beta = \frac{c}{a}$

sum & product of the roots of any polynnomial equation

For the polynomial equation of degree n given by $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$, $a_n \neq 0$ the sum of the roots is $-\frac{a_{n-1}}{a_n}$ and the product of the roots is $\frac{(-1)^n a_0}{a_n}$

Exercises – No calculator on all questions

[worked solutions included]

- 1. The equation $x^2 5x 2 = 0$ has roots α and β .
 - (a) Write down the value $\alpha + \beta$ and the value of $\alpha\beta$.
 - (b) Find the value of $\alpha^2 \beta + \alpha \beta^2$.
 - (c) Find a quadratic equation which has roots $\alpha^2 \beta$ and $\alpha \beta^2$.
- 2. If α and β are the roots of the equation $2x^2 + 3x 7 = 0$ has roots, find the quadratic equation with integral coefficients whose roots are:
 - (a) 2α , 2β

- (b) $\frac{2}{\alpha}$, $\frac{2}{\beta}$
- 3. Consider the polynomial $f(x) = 2x^3 + 3x^2 6x 18$, $x \in \mathbb{R}$.
 - (a) For the polynomial equation f(x) = 0, state
 - (i) the sum of the roots;
 - (ii) the product of the roots.

A new polynomial equation is defined to be g(x) = f(x-5)

- (b) Find the sum of the roots of the equation g(x) = 0.
- **4.** Consider the equation $2x^4 13x^3 + 27x^2 13x 15 = 0$. Given that one of the zeros of the equation is $x_1 = 2 i$, find the other three zeros x_2 , x_3 and x_4 .